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Appendix S2. Flux sweeping algorithm

The description of flux sweeping is reproduced from the book [1] written in Russian
with adaptation to our case. Let us rewrite diffusion equation
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into the flux form:
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Let us consider the system on the linear grid of M points, where xm = mh,
h = L/M . Discrete equations at the grid nodes are the following:
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(S2.1)

Let us write sweeping relation in the following form:

un+1
m = Pm jm+1/2 +Rm, m = 0, 1, 2, ..,M − 1,

where Pm and Rm — supplementary (“sweeping”) coefficients that should be
determined. First pair of these coefficients can be determined from left edge condition
∂u(0, t)/∂x = 0 (we consider Neuman condition):

P0 = 2τ/h, R0 = un0 . (S2.2)

Next supplementary coefficients Pm, Rm can be determined recurrently at the first
stage (forward sweeping):
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At the second stage (backward sweeping) we starts with calculating un+1
M from right

edge condition ∂u(L, t)/∂x = 0:
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Next, values of variable u and its flux j in the left grid points are calculated sequentially:

jm−1/2 = jm+1/2 −
h

τ
un+1
m +

h

τ
unm,

un+1
m−1 = Pm−1 jm−1/2 +Rm−1.

(S2.5)

Equations (S2.3),(S2.5) are called flux sweeping equations, whereas Eq (S2.2) and
Eq (S2.4) can be modified according to edge conditions.
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