

Supplementary Figure 1. *HOPX* is hypermethylated in NPC. (a) Methylation levels of *HOPX* in Normal (n = 24) and NPC (n = 24) tissues from the genome-wide methylation microarray data. Mean \pm s.d.; Student's *t*-tests. (b) Bisulfite pyrosequencing analysis of the *HOPX* promoter region in NPEC (NP69, N2-Tert and N2-Bmi1) and NPC (SUNE1, CNE1, CNE2, HNE1 and HONE1) cell lines. Magenta words: CG site of cg21899596. These data are representative of three independent experiments.

Supplementary Figure 2. *HOPX* is hypermethylated in NPC cells. (a) Bisulfite pyrosequencing analysis of the *HOPX* promoter region in NPEC (NP69, N2-Tert and N2-Bmi1) and NPC (SUNE1, CNE1, CNE2, HNE1 and HONE1) cell lines following treatment with DAC. Magenta words: CG site of cg21899596. These data are representative of three independent experiments.

Supplementary Figure 3. HOPX suppresses HONE1 cell migration *in vitro*. (a) The ectopic expression of HOPX in HONE1 cells was confirmed by western blotting. (b,c) Migration ability was measured using a wound healing assay (200 ×) (b) and Transwell assay without Matrigel (200 ×) (c) in HONE1 cells with the vector or HOPX overexpression. Scale bar: 100 μ m; Mean \pm s.d.; *, *P* < 0.01 compared with vector; Student's *t*-tests. These data are representative of three independent experiments.

Supplementary Figure 4. Silencing HOPX promotes NPC cell migration *in vitro*. Control NC, or *HOPX*-siRNAs (si-1 and si-2) were used to knock down the expression of HOPX in CNE2 and SUNE1 cells with stable HOPX overexpression (CH and SH). (a) The silencing effects of HOPX in CH and SH cells were confirmed by western blotting. (b,c) Wound healing assay (200 ×) (b) and Transwell assay without Matrigel (200 ×) (c) were used to measure the migration abilities. Scale bar: 100 μ m; mean \pm s.d.; *, *P* < 0.01 compared with NC; Student's *t*-tests. These data are representative of three independent experiments.

Supplementary Figure 5. HOPX exhibits little effect on NPC cell proliferation *in vitro*. (a) MTT assay was performed to examine the effect of HOPX on cell viability in CNE2 and SUNE1 cells stably overexpressed the vector or HOPX, or N2-Tert and NP69 cells transfected with the control NC or *HOPX*-siRNAs (si-1 and si-2). Mean \pm s.d.; *P* > 0.05 compared with vector or NC; Student's *t*-tests. (b) Colony formation assay was used to examine the effect of HOPX on colonization in CNE2, SUNE1 and HONE1 cells with the vector or HOPX overexpression. Mean \pm s.d.; *P* > 0.05 compared with vector; Student's *t*-tests. These data are representative of three independent experiments.

Supplementary Figure 6. HOPX partially inhibits EMT in NPC cells. (a) Phase contrast images (200 ×) of SH cells which were transfected with the control NC or *HOPX*-siRNAs (si-1 and si-2). SH cells indicated SUNE1 cells with HOPX overexpression. Scale bar: 100 μ m. (b) The mRNA level of *ECADHERIN* was identified using a tumor metastasis PCR array in SUNE1 cells stably overexpressed the vector or HOPX. Mean \pm s.d.; *, *P* < 0.01 compared with vector; Student's *t*-tests. These data are representative of three independent experiments.

Supplementary Figure 7. HOPX suppresses *SNAIL* **expression in NPC.** (**a**,**b**) Real time RT-PCR was used to examine the mRNA level of EMT-TFs (*SNAIL*, *SLUG*, *ZEB1*, *ZEB2*, *TWIST1* and *FOXC2*) in CNE2 and SUNE1 cells stably overexpressed the vector or HOPX (**a**), or N2-Tert and NP69 cells transiently expressed control NC or *HOPX*-siRNAs (si-1 and si-2) (**b**). Mean \pm s.d.; *, *P* < 0.01 compared with vector or NC; Student's *t*-tests. (**c**) ChIP assay using an anti-HOPX antibody was performed to pull down HOPX. Western blotting (WB) was conducted to examine HOPX using an anti-HOPX Antibody. (**d**,**e**) ChIP-PCR assay was conducted to assess the enrichment of HOPX in the promoter regions of *SNAIL* in CH, SH, N2-Tert and NP69 cells. CH and SH cells indicated CNE2 and SUNE1 cells with HOPX exogenous expression. These data are representative of three independent experiments.

Supplementary Figure 8. Silencing HDAC2 reverses the inhibitory effects of HOPX on invasiveness and EMT in NPC. (a) IP assay using anti-HOPX antibody was performed to pull down HOPX. Western blotting (WB) was conducted to examine HOPX using an anti-HOPX Antibody. (b) Western blotting assay was used to assess the expression levels of HDAC2, HOPX and GAPDH. (c) Transwell assay with Matrigel (200 ×) was used to measure the invasive ability of CH and SH cells which were transfected with the control siNC or siHDAC2. Scale bar: 100 µm; mean \pm s.d.; *, *P* < 0.01 compared with siNC; Student's *t*-tests. (d) Western blotting assay was used to examine the expression levels of SNAIL, ECADHERIN, HDAC2, HOPX and GAPDH in CH and SH cells which were transfected with the control siNC or siHDAC2. CH and SH cells indicated CNE2 and SUNE1 cells with HOPX exogenous expression. These data are representative of three independent experiments.

Supplementary Figure 9. HOPX inhibits SRF-mediated SNAIL transcription in NPC. (a) Wild type and mutant SNAIL-luciferase reporters were constructed and transfected with the control N or SRF construct in CNE2 and SUNE1 cells for 24 h. Luciferase reporter assay was used to detect the luciferase activity. Mean \pm s.d.; *, P < 0.01 compared with N-wt; Student's t-tests. (b) Co-IP assay was used to measure the interaction between HOPX and SRF in CNE2 and SUNE1 cells stably overexpressed the vector or HOPX. (c) Western blotting assay was used to assess the expression levels of SRF, HOPX and GAPDH. (d) Wild type and mutant SNAIL-luciferase reporters were constructed and transfected with the vector (V) or HOPX construct in CNE2 and SUNE1 cells for 24 h. Luciferase reporter assay was used to detect the luciferase activity. Mean \pm s.d.; *, P < 0.01 compared with V-wt; Student's *t*-tests. (e) CNE2 and SUNE1 cells were co-transfected with the HOPX and SRF. V and N were used as empty vectors of HOPX and SRF, respectively. Relative SRF and HOPX mRNA expressions were measured via real time RT-PCR. Mean \pm s.d.; *, P < 0.01 compared with V + N; Student's *t*-tests. (f) Transwell assay with Matrigel (200 ×) was used to measure the invasive ability of CH and SH cells which were transfected with the control N or SRF expression plasmids. Scale bar: 100 μ m; mean \pm s.d.; *, P < 0.01 compared with N; Student's *t*-tests. (g) Western blotting assay was used to examine the expression levels of SNAIL, ECADHERIN, SRF, HOPX and GAPDH in CH and SH cells which were transfected with the control N or SRF expression plasmids. CH and SH cells indicated CNE2 and SUNE1 cells with HOPX exogenous expression. These data are representative of three independent experiments.

Supplementary Figure 10. HOPX is co-localized with HDAC2 and SRF in NPC cells. (a) Immunofluorescence images ($600 \times$) of HOPX (orange), HDAC2 (magenta) and SRF (cyan) expression in CNE2 and SUNE1 cells stably overexpressed the vector or HOPX. Scale bar: 100 µm. These data are representative of three independent experiments.

Supplementary Figure 11. Restoring HOPX expression inhibits NPC cell aggressiveness *in vivo*. (a) Quantification of the average volumes of the primary foot pad tumors. Mean \pm s.d.; *P* > 0.05 compared with vector; Student's *t*-tests. (b) Representative images (200 ×) of the microscopic primary tumor in foot pad stained with H & E. Arrows represent lymphatic vessels. Scale bar: 100 µm. These data are representative of eight independent experiments (each mouse sample was considered as one independent experiment; three technological replications were repeated in each sample).

Supplementary Figure 12. The methylation level of *HOPX* is positively associated with the *SNAIL* mRNA level in NPC. (a) *HOPX* methylation levels were determined via bisulfite pyrosequencing, while the *SNAIL* mRNA levels were determined via real time RT-PCR in NPC tissues (n = 24). Statistical analysis was performed using the Pearson's coefficient test. These data are representative of three independent experiments.

Supplementary Figure 13. *HOPX* hypermethylation is associated with poor prognosis in the combined cohort of NPC. All patients in the training and validation cohorts were combined (n = 443). (a-c) Kaplan-Meier analysis was performed to determine the DMFS (a), OS (b) and DFS (c) according to *HOPX* methylation levels (low methylation *vs* high methylation) in NPC patients. Adjusted univariate Cox proportional hazard models were used to calculate the HR values and *P* values.

Supplementary Figure 14. *HOPX* hypermethylation is associated with poor prognosis stratified by TNM stage. (a) DMFS, (b) OS and (c) DFS in NPC patients within TNM stage III-IV (n = 335). Adjusted univariate Cox proportional hazard models were used to calculate the HR values and *P* values.

Supplementary Figure 15. HOPX exhibits little effect on the WNT signaling pathway. (a) Co-IP assay was used to measure the interaction between HOPX and SMAD4 in SUNE1 cells with stable HOPX overexpression. (b) Western blotting assay of HOPX, β -CATENIN, MMP9 and CYCLIND1 expression in CNE2 and SUNE1 cells with vector or HOPX overexpression. These data are representative of three independent experiments.

Supplementary Table 1. The top 10 differentially expressed genes between SUNE1 cells with HOPX or vector overexpression using tumor metastasis PCR array. P value is compared with the control using Student's *t*-tests; genes are ranked by P value. These data are representative of three independent experiments.

Gene	Functional Gene Grouping	Fold change	P value	
CXCL12	Cytokines	3.26595684	0.000110047	
IL1B	Cell Cycle Regulation;			
	Negative Regulation of Cell Proliferation;	49 6101702	0.000008619	
	Cytokines;	48.6101/03 0.000908		
	Apoptosis			
NME4	Other Genes Related to Metastasis	37.14376425	0.001387345	
MMP2	Matrix Metalloproteinases	21.40828154	0.001792716	
EPHB2	Receptors	3.133358068	0.002630822	
SERPINE1	Other ECM Proteins	10.77413353	0.003052426	
COL4A2	Other ECM Proteins	4.537641016	0.004445524	
ECADHERIN	Cell to Cell Adhesion	2.213765777	0.004685254	
SYK	Cell to Cell Adhesion;	0 265441000	0.005026694	
	Other Genes Related to Growth	0.203441999	0.005950084	
CD44	Cell to Cell Adhesion;	2 205021400	0.006076176	
	Transmembrane Receptors	5.585851498		

	Training Cohort (n = 255)			Validation C		
	Low	High		Low	High	
Characteristic	Methylation	Methylation	P value [*]	Methylation	Methylation	P value [*]
	Group (%)	Group (%)		Group (%)	Group (%)	
	n=70	n=185		n=77	n=111	
Age (mean ±						
S.D.)						
< 45	41 (58.6)	93 (50.3)	0.236	35 (45.5)	37 (33.3)	0.093
≥45	29 (41.4)	92 (49.7)		42 (54.5)	74 (66.7)	
Sex						
Female	17 (24.3)	52(28.1)	0.540	23 (29.9)	29 (26.1)	0.573
Male	53 (75.7)	133(71.9)		54 (70.1)	82 (73.9)	
WHO pathologic type						
I + II	1 (1.4)	5 (2.7)	0.475	8 (10.4)	6 (5.4)	0.201
III	69 (98.6)	180(97.3)		69(89.6)	105 (94.6)	
VCA-IgG						
< 80	9 (12.9)	20(10.8)	0.646	55 (71.4)	65 (58.6)	0.071
≥ 80	61 (87.2)	165(89.2)		22 (28.6)	46 (41.4)	
EA-IgG						
< 10	16 (22.9)	33(17.8)	0.364	24 (31.2)	24 (21.6)	0.104
≥ 10	54 (77.2)	152(82.2)		53 (68.8)	87 (78.4)	
TNM Stage						
I-II	23 (32.9)	38 (20.5)	0.040	21(27.3)	26 (23.4)	0.549
III-IV	47 (67.1)	147 (79.5)		56 (72.7)	85(76.6)	
Relapses or deaths						
No	57 (81.4)	120 (64.9)	0.010	60 (77.9)	67 (60.4)	0.011
Yes	13 (18.6)	65 (35.1)		17 (22.1)	44 (39.6)	

Supplementary Table 2. Clinical characteristics of Nasopharyngeal Carcinoma patients according to the *HOPX* methylation level in the training and validation Cohorts.

Distant metastasis

No	63 (90.0)	137 (74.1)	0.006	69 (89.6)	82 (73.9)	0.008
Yes	7 (10.0)	48 (25.9)		8 (10.4)	29 (26.1)	
Death						
No	56 (80.0)	114 (61.6)	0.011	63 (81.8)	73 (65.8)	0.016
Yes	14 (20.0)	71 (38.4)		14 (18.2)	38 (34.2)	

Yes 14 (20.0) 71 (38.4) 14 (18.2) 38 (34.2) * χ^2 test or Fisher's exact test; TNM, tumor-node-metastasis; VCA-IgA, viral capsid antigen immunoglobulin A; EA-IgA, early antigen immunoglobulin A; All patients were restaged according to the 7th edition of the AJCC Cancer Staging Manual. **Supplementary Table 3.** Univariate and multivariate Cox regression analysis of *HOPX* methylation level and survival.

	Univariate analysis		Multivariate analysis			
Variable	HR	95%CI	P value	HR	95%CI	P value
Distant metastasis-free survival						
Training set						
HOPX methylation						
(Low vs High)	2.93	1.33-6.48	0.008	2.44	1.10-5.43	0.028
TNM stage (I-IIvs III-IV)	6.43	2.01-20.59	0.002	5.00	1.55-16.10) 0.007
Sex (Female vs Man)	2.05	1.00-4.19	0.049			
Age ($\leq 45 vs > 45$ years)	3.09	1.72-5.53	< 0.001	2.60	1.45-4.67	0.001
WHO type (I + II vs III)	0.23	0.08-0.63	0.004	0.30	0.11-0.86	0.025
VCA-IgG (< 80 $vs \ge 80$)	2.46	0.77-7.88	0.129			
EA-IgG (< 10 $vs \ge 10$)	1.76	0.80-3.90	0.161			
Validation set						
HOPX methylation						
(Low vs High)	2.82	1.29-6.17	0.009	2.75	1.26-6.03	0.011
TNM stage (I-II vs III-IV)	3.11	1.10-8.79	0.032	3.02	1.07-8.52	0.037
Sex (Female vs Man)	1.72	0.75-3.91	0.198			
Age ($\leq 45 vs > 45$ years)	2.02	0.95-4.27	0.068			
WHO type (I + II vs III)	1.41	0.34-5.85	0.639			
VCA-IgG ($< 80 vs \ge 80$)	0.70	0.35-1.43	0.329			
EA-IgG (< 10 $vs \ge 10$)	0.72	0.36-1.44	0.357			
Overall survival						
Training set						
HOPX methylation						
(Low vs High)	2.25	1.27-3.99	0.006	2.01	1.13-3.57	0.018
TNM stage (I-IIvs III-IV)	2.98	1.54-5.77	0.001	2.50	1.29-4.86	0.007
Sex (Female vs Man)	1.95	1.12-3.42	0.019	1.87	1.07-3.28	0.028

Age ($\leq 45 vs > 45$ years)	2.84	1.80-4.49	< 0.001	2.58	1.63-4.08	< 0.001
WHO type (I + II vs III)	0.33	0.12-0.92	0.033			
VCA-IgG (< 80 $vs \ge 80$)	2.41	0.97-5.94	0.057			
EA-IgG (< 10 $vs \ge 10$)	1.64	0.89-3.02	0.112			
Validation set						
HOPX methylation						
(Low vs High)	2.17	1.18-4.01	0.013	2.13	1.15-3.93	0.016
TNM stage (I-II vs III-IV)	3.68	1.46-9.26	0.006	3.61	1.43-9.08	0.006
Sex (Female vs Man)	1.34	0.70-2.55	0.379			
Age ($\leq 45 vs > 45$ years)	1.34	0.75-2.39	0.327			
WHO type (I + II vs III)	0.98	0.35-2.71	0.966			
VCA-IgG (< 80 $vs \ge 80$)	0.81	0.45-1.45	0.475			
EA-IgG (< 10 $vs \ge 10$)	0.97	0.53-1.79	0.924			
Disease-free survival						
Training set						
HOPX methylation						
(Low vs High)	2.15	1.19-3.91	0.012	1.99	1.10-3.63	0.024
TNM stage (I-II vs III-IV)	2.55	1.31-4.95	0.006	2.16	1.11-4.22	0.023
Sex (Female vs Man)	1.68	0.96-2.96	0.070			
Age ($\leq 45 vs > 45$ years)	2.28	1.44-3.63	< 0.001	2.10	1.32-3.35	0.002
WHO type (I + II vs III)	0.33	0.12-0.88	0.027			
VCA-IgG (< 80 $vs \ge 80$)	2.14	0.87-5.30	0.099			
EA-IgG (< 10 $vs \ge 10$)	1.30	0.72-2.36	0.386			
Validation set						
HOPX methylation						
(Low vs High)	2.03	1.16-3.55	0.013	1.96	1.12-3.43	0.019
TNM stage (I-II vs III-IV)	3.06	1.39-6.73	0.005	2.97	1.35-6.53	0.007
Sex (Female vs Man)	1.49	0.81-2.75	0.202			
Age ($\leq 45 vs > 45$ years)	1.62	0.93-2.81	0.086			

WHO type (I + II vs III)	1.63	0.51-5.19	0.411
VCA-IgG (< 80 $vs \ge 80$)	0.70	0.35-1.43	0.329
EA-IgG (< 10 <i>vs</i> ≥ 10)	0.89	0.51-1.56	0.679

Adjusted multivariate Cox proportional hazard models were used to calculate the HR values and P values, including *HOPX* methylation level (low *vs* high), TNM stage (stage I-II *vs* III-IV), sex (female *vs* male), age (< 45 *vs* \geq 45 years), WHO pathological type (I + II *vs* III), VCA-IgA (< 1:80 *vs* \geq 1:80) and EA-IgA (< 1:10 *vs* \geq 1:10). Variables which were significantly associated with survival are presented.

Supplementary Table 4. Multivariate Cox regression analysis of *HOPX* methylation level and survival in the combined cohort.

Variable	HR	95%CI	<i>P</i> value				
Distant metastasis-free survival							
HOPX methylation (Low vs High)	2.52	1.45-4.38	0.001				
TNM stage (I-II vs III-IV)	3.83	1.77-8.31	0.001				
Age ($\leq 45 vs > 45$ years)	2.30	1.45-3.65	<0.001				
Overall survival							
HOPX methylation (Low vs High)	2.03	1.34-3.08	0.001				
TNM stage (I-II vs III-IV)	2.80	1.64-4.81	<0.001				
Age ($\leq 45 vs > 45$ years)	1.95	1.36-2.80	<0.001				
Disease-free survival							
HOPX methylation (Low vs High)	1.84	1.23-2.77	0.003				
TNM stage (I-II vs III-IV)	2.44	1.46-4.06	0.001				
Age ($\leq 45 vs > 45$ years)	1.85	1.29-2.63	0.001				

Adjusted multivariate Cox proportional hazard models were used to calculate the HR values and P values, including *HOPX* methylation level (low *vs* high), TNM stage (stage I-II *vs* III-IV), sex (female *vs* male), age (< 45 *vs* \geq 45 years), WHO pathological type (I + II *vs* III), VCA-IgA (< 1:80 *vs* \geq 1:80) and EA-IgA (< 1:10 *vs* \geq 1:10). Variables which were significantly associated with survival are presented.

Supplementary Table 5. Primers used in this study.

Gene	Sequence (5' to 3')				
BSP PCR primers					
<i>HOPX-</i> F	GTTCTTAGGGATTTTTTGTAGGAATTG				
HOPX-R	CTTCCTTCACTCCTTCCTTAAAAC (5'Biotin)				
BSP sequencing primer					
НОРХ	GGATTTTTTGTAGGAATTGTAT				
Real time RT-PCR pr	imers				
HOPX-F	CACCACGCTGTGCCTCAT				
HOPX-R	CCATTTCTGGGTCTCCTCC				
SNAIL-F	TAATCCAGAGTTTACCTTCCAGC				
SNAIL-R	CTCATCTGACAGGGAGGTCAG				
SLUG-F	CCCTGAAGATGCATATTCGGA				
SLUG-R	CTGCAAATGCTCTGTTGCAG				
ZEB1-F	TCACTAGTGTTTACCAGAACAGTG				
ZEB1-R	GAACACTGTTCTGGTCAGCA				
ZEB2-F	CTACAAGCGCTTGACATCAC				
ZEB2-R	TAGCATTTGGTGCTGATCTGTC				
TWIST1-F	AGTCTTACGAGGAGCTGCAG				
TWIST1-R	CTCTGGAGGACCTGGTAGAG				
FOXC2-F	CTTCTACCGGGAGAACAAGC				
FOXC2-R	CTCCTTCTCCTTGGACACGT				
ECADHERIN-F	GAAGAGGACCAGGACTTTGAC				
ECADHERIN-R	GTAGTCATAGTCCTGGTCTTTGTC				
a-CATENIN-F	CCTGAGGAGTTGGATGACTC				
α-CATENIN-R	TCCTTTACCTCGGGTAAAGTC				

VIMENTIN-F	ATTCCACTTTGCGTTCAAGG
VIMENTIN-R	CTTCAGAGAGAGGAAGCCGA
FIBRONECTIN-F	CACGATGATATGGAGAGCCA
FIBRONECTIN-R	TATTTGGTGGCCACCATAAGTC
SRF-F	CACCATCATGACGTCATCCG
SRF-R	CTATCACAGCCATCTGGTGG

siRNA sequences

siRNA-NC-F	5'-UUCUCCGAACGUGUCACGUTT-3'
siRNA-NC-R	5'-ACGUGACACGUUCGGAGAATT-3'
si <i>HOPX</i> -1-F	5'-GAAGCUAUGUGUAUCUUCUTT-3'
si <i>HOPX</i> -1-R	5'-AGAAGAUACACAUAGCUUCTT-3'
si <i>HOPX-2-</i> F	5'-CCCUAAGUCACUUUCCUUATT-3'
si <i>HOPX</i> -2-R	5'-UAAGGAAAGUGACUUAGGGTT-3'

ChIP-PCR primers

SNAIL-1-F	AGGAGTCCCCGCCCGGGCTCTCACC
SNAIL-1-R	GCAGCAGCGCCGCCAACTCCCTTAA
SNAIL-2-F	GGGGCGTCAGAAGCGCTCAGACCAC
SNAIL-2-R	GTTCGCTGGCGCAGCGCGGGTCGTC
SNAIL-3-F	GTGTCCCTTTCCTCGCTTCCTC
SNAIL-3-R	CGGGACACCTGACCTTCCGAC
SNAIL-4-F	TTCTGTCCGGGGGCTGTGCCCTG
SNAIL-4-R	CGCACGTGGCTCTCGGCGGCTTG
SNAIL-5-F	AGTCACCCCGACCCCTGTCAG
SNAIL-5-R	CACTCAGAGCCTCTCCCGAAG
SNAIL-6-F	TCCAAACTCCTACGAGGCCCTG
SNAIL-6-R	TCCCAGAGGAAGTGAAGAATTA

Antibody	Company	Catalog no.	Dilution
Western blotting			
GAPDH	Santa Cruz	sc-25778	1:1000
НОРХ	Santa Cruz	SC-30216	1:200
ECADHERIN	BD	610181	1:2000
a-CATENIN	BD	610193	1:500
VIMENTIN	Proteintech	10366-1-AP	1:1000
FIBRONECTIN	Proteintech	156131-AP	1:500
SNAIL	Abcam	ab180714	1:1000
SRF	Proteintech	16821-1-AP	1:800
HDAC2	Proteintech	12922-3-AP	1:1000
SMAD4	Proteintech	10231-1-AP	1:200
β-CATENIN	Proteintech	51067-2-AP	1:500
CYCLIND1	Proteintech	60186-1-Ig	1:500
MMP9	Proteintech	10375-2-AP	1:500
Mouse	CST	7076	1:5000
Rabbit	CST	7074	1:5000
Immunohistochemistry			
НОРХ	Santa Cruz	SC-30216	1:100
SNAIL	Abcam	ab180714	1:200
Immunofluorescence			
SRF	Proteintech	16821-1-AP	1:100
HDAC2	Santa Cruz	SC-6296	1:100
НОРХ	Santa Cruz	SC-30216	1:100
ECADHERIN	BD	610181	1:100
a-CATENIN	BD	610193	1:100

Supplementary Table 6. Antibodies used in this study.

VIMENTIN	Proteintech	10366-1-AP	1:100
goat Anti-rabbit, Alexa Fluor®	Life	A-11008	1:1000
594 IgG secondary antibody			
goat Anti-mouse, Alexa Fluor®	Life	A-11001	1:1000
594 IgG secondary antibody			
rabbit Anti-goat, Alexa Fluor®	Life	A-27018	1:1000
647 IgG secondary antibody			

Co-Immunoprecipitation

НОРХ	Santa Cruz	SC-30216	3µg
SRF	Proteintech	16821-1-AP	3µg
HDAC2	Proteintech	12922-3-AP	3µg
IgG	Proteintech	30000-0-AP	3µg

Chromatin Immunoprecipitation

HOPX	Santa Cruz	SC-30216	2.0 ml per 0.5 ml Protein
			A/G sepharose beads
HDAC2	Abcam	ab7029	0.5mg per 5ml Protein
			A/G sepharose beads
Н3К9Ас	Abcam	ab10812	0.2mg per 2ml Protein
			A/G sepharose beads
SRF	CST	5147	1:100
IgG	Sigma	SLBJ3775V	1:100

Supplementary Figure 16. Full unedited western blotting gels for all figures.

HOPX A GAPDH A GAPCHA A GAPCHA

Full unedited gel for Figure 4d,e

Full unedited gel for Figure 2e

Full unedited gel for Figure 5c, d and g

Full unedited gel for Supplementary Figure 3a

Full unedited gel for Supplementary Figure 4a

Full unedited gel for Supplementary Figure 7c

Full unedited gel for Supplementary Figure 8a,b,d

Full unedited gel for Supplementary Figure 9b,c,g

Full unedited gel for Supplementary Figure 15

