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ADDITIONAL EXPERIMENTAL RESULTS 

Transient absorption spectra at early pump-probe delays 

 

 

Figure S1: Transient absorption spectrum of 60 M DmCry at early times after the photoexcitation 

pulse (< 4 μs), to highlight the clear increase in the signal in the ground state bleach region and the 

rapid decay component of the TrpH+ signal (assumed to be dominated by deprotonation). The same 

sample conditions were employed as in the main text (50 mM HEPES buffer, 100 mM KCl, 50% 

glycerol, 267 K). 
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Magnetic field-dependent transient absorption data 

 

Figure S2: (a) Magnetic field effect action spectrum at 22 mT recorded by transient absorption, 

showing the negative field effect in the radical absorbance region (500 – 650 nm, averaged over the 

first 80 s after the pump pulse). The protein sample conditions are the same as in the main text (50 

mM HEPES buffer, 100 mM KCl, 50% glycerol, 267 K). (b) Magnetic response profile of DmCry 

measured by transient absorption at 560 nm, averaged over the entire (0 – 80 μs) decay trace. Data 

are an average of 16 field-on-minus-field-off measurements at each field strength. The error bars 

represent one standard deviation. Sample conditions: 50 mM Tris HCl buffer, 100 mM NaCl, 60% 

glycerol, 265 K. The uncertainties illustrate the challenge presented by detection of this magnetic 

response by transient absorption. Fig 3 in the main article shows the improvement provided by 

BBCEAS. 
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Dependence of magnetic field effects on glycerol concentration 

Figure S3 shows equivalent data to Fig. 2 in the main text but for a lower glycerol concentration (10% 

v/v here cf. 50% elsewhere). The tryptophan radical cation deprotonation (marked in Fig. S3a) is very 

much quicker leading to a much reduced magnetic response, which is now below the detection limit of 

the transient absorption experiment (Fig. S3b).    

 

 

Figure S3: (a) DmCry transient absorption spectrum in 10% glycerol at 282 K. The rapid TrpH+ decay is 

much faster than in 50% glycerol solution and is essentially complete in 10 μs (cf. Fig 2a). (b) DmCry 

decay trace in 10% glycerol averaged over 500–580 nm. In 10% glycerol solution, the field effect 

cannot be detected by transient absorption, as shown in the upper graph. Sample conditions: 50 mM 

HEPES buffer, 100 mM KCl, 10% glycerol, 282 K. 

 

 


