Web Appendix for 'Comparison of Two Correlated ROC Curves at a Given Specificity or Sensitivity Level' by Leonidas E. Bantis and Ziding Feng Web-Appendix A (Simulation results)

Table 1: Comparison of sizes of Z and Z^* tests. Simulation results of 1000 replications for the scenario in which data representing diseased and healthy individuals are generated by the same bivariate normal distributions (valid null hypothesis since $ROC_1(t) = ROC_2(t)$). The data are generated such that $AUC_1 = AUC_2 = 0.6, 0.7$, and 0.8. Normality is also assumed for estimation. Sample sizes explored are (100, 100), (200, 200) and (100, 200). Correlation is set equal to $\rho = 0.2, 0.4, 0.6$ for the data of both the healthy and diseased individuals.

						Size	results			
					Z test			Z^*	test	
n_A, n_B	ρ	$AUC_1 = AUC_2$	t = 0.2	t = 0.4	t = 0.6	t = 0.8	t = 0.2	t = 0.4	t = 0.6	t = 0.8
		0.6	0.051	0.054	0.056	0.046	0.048	0.053	0.054	0.048
	0.2	0.7	0.051	0.055	0.056	0.040	0.049	0.055	0.055	0.051
		0.8	0.050	0.058	0.044	0.018	0.049	0.060	0.057	0.051
		0.6	0.057	0.055	0.055	0.049	0.051	0.053	0.053	0.049
100, 100	0.4	0.7	0.049	0.052	0.048	0.032	0.047	0.052	0.049	0.046
		0.8	0.048	0.058	0.047	0.011	0.048	0.059	0.055	0.050
		0.6	0.052	0.052	0.057	0.041	0.051	0.052	0.055	0.045
	0.6	0.7	0.049	0.050	0.048	0.027	0.045	0.050	0.050	0.045
		0.8	0.047	0.050	0.036	0.010	0.046	0.054	0.050	0.045
		0.6	0.056	0.060	0.062	0.059	0.054	0.060	0.062	0.060
	0.2	0.7	0.057	0.057	0.060	0.051	0.053	0.057	0.059	0.061
		0.8	0.051	0.059	0.054	0.043	0.049	0.059	0.063	0.063
		0.6	0.052	0.066	0.065	0.056	0.051	0.065	0.065	0.058
200, 200	0.4	0.7	0.057	0.058	0.060	0.046	0.056	0.058	0.060	0.056
		0.8	0.057	0.060	0.054	0.035	0.055	0.060	0.061	0.061
		0.6	0.050	0.064	0.059	0.045	0.050	0.064	0.058	0.047
	0.6	0.7	0.055	0.059	0.055	0.039	0.055	0.059	0.055	0.052
		0.8	0.053	0.050	0.050	0.032	0.053	0.049	0.060	0.058
		0.6	0.049	0.049	0.045	0.052	0.046	0.048	0.043	0.051
	0.2	0.7	0.056	0.049	0.047	0.042	0.055	0.049	0.048	0.048
		0.8	0.057	0.040	0.040	0.024	0.056	0.043	0.046	0.050
		0.6	0.056	0.040	0.044	0.045	0.051	0.040	0.044	0.045
100, 200	0.4	0.7	0.056	0.042	0.041	0.040	0.054	0.044	0.041	0.046
		0.8	0.056	0.041	0.038	0.024	0.058	0.041	0.042	0.047
		0.6	0.054	0.035	0.043	0.042	0.051	0.035	0.044	0.042
	0.6	0.7	0.054	0.044	0.040	0.041	0.053	0.045	0.039	0.043
		0.8	0.052	0.042	0.032	0.023	0.056	0.043	0.046	0.050

Table 2: Comparison of the power of Z and Z^* tests. Simulation results of 1000 replications for the normal setting (non-valid null hypothesis) under different scenarios. Normality is also assumed for estimation. Sample sizes explored are (100, 100), (200, 200), (300, 300), and (100, 300). Correlation is set equal to $\rho = 0.2, 0.4$, and 0.6 for the data of both the healthy and diseased individuals. The true difference $ROC_2(t) - ROC_1(t)$ to be detected is denoted by d.

			Power results										
				Z test			Z^*	* test					
$\overline{n_A, n_B}$	ρ	t = 0.540	t = 0.648	t = 0.753	t = 0.863	t = 0.540	t = 0.648	t = 0.753	t = 0.863				
		d = 0.20	d = 0.15	d = 0.10	d = 0.05	d = 0.20	d = 0.15	d = 0.10	d = 0.05				
					Assuming	Normality							
	0.2	0.786	0.704	0.523	0.203	0.812	0.756	0.702	0.624				
50, 50	0.4	0.872	0.796	0.585	0.216	0.897	0.863	0.800	0.6920				
	0.6	0.970	0.913	0.694	0.245	0.977	0.964	0.925	0.8390				
	0.2	0.975	0.963	0.918	0.713	0.978	0.971	0.951	0.900				
100, 100	0.4	0.993	0.988	0.962	0.770	0.993	0.991	0.980	0.949				
	0.6	1.000	0.997	0.989	0.862	1.000	0.999	0.995	0.986				
	0.2	1.000	0.999	0.999	0.980	1.000	0.999	0.999	0.991				
200, 200	0.4	1.000	1.000	1.000	0.994	1.000	1.000	1.000	0.999				
	0.6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000				
					Box	-Cox							
	0.2	0.769	0.655	0.486	0.181	0.755	0.692	0.602	0.505				
50, 50	0.4	0.861	0.745	0.543	0.192	0.866	0.788	0.690	0.564				
	0.6	0.933	0.859	0.626	0.223	0.939	0.899	0.825	0.696				
	0.2	0.972	0.953	0.891	0.656	0.970	0.961	0.909	0.825				
100, 100	0.4	0.991	0.979	0.930	0.696	0.988	0.977	0.957	0.879				
	0.6	1.000	0.996	0.979	0.782	0.998	0.993	0.984	0.946				
	0.2	1.000	1.000	0.993	0.960	1.000	1.000	0.994	0.978				
200, 200	0.4	1.000	1.000	1.000	0.982	0.999	0.998	0.998	0.991				
	0.6	1.000	1.000	1.000	0.999	1.000	1.000	1.000	0.999				

Table 3: Comparison of sizes of Z and Z^* tests. Simulation results of 1000 replications where data representing the diseased and healthy individuals are generated by the same bivariate normal distributions (valid null hypothesis). The data are generated such that $AUC_1 = AUC_2 = 0.6, 0.7, and 0.8$. The Box-Cox approach is used for estimation. Sample sizes explored are (100, 100), (200, 200) and (100, 200). Correlation is set equal to $\rho = 0.2, 0.4$, and 0.6 for the data of both the healthy and diseased individuals.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					Size results							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						Z test			Z^*	test		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n_A, n_B	ρ	$AUC_1 = AUC_2$	t = 0.2	t = 0.4	t = 0.6	t = 0.8	t = 0.2	t = 0.4	t = 0.6	t = 0.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.6	0.054	0.055	0.058	0.037	0.047	0.054	0.057	0.039	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.2	0.7	0.054	0.056	0.049	0.035	0.047	0.053	0.051	0.040	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.8	0.052	0.057	0.049	0.025	0.047	0.049	0.045	0.045	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.6	0.053	0.053	0.054	0.039	0.049	0.051	0.049	0.041	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100, 100	0.4	0.7	0.048	0.055	0.047	0.035	0.044	0.052	0.047	0.040	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.8	0.048	0.051	0.045	0.015	0.046	0.050	0.045	0.045	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.6	0.060	0.057	0.054	0.038	0.054	0.051	0.051	0.044	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.6	0.7	0.051	0.056	0.047	0.022	0.046	0.053	0.051	0.035	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.8	0.045	0.050	0.031	0.012	0.045	0.049	0.046	0.039	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.6	0.054	0.061	0.061	0.056	0.053	0.059	0.058	0.055	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.2	0.7	0.054	0.059	0.056	0.054	0.051	0.058	0.058	0.060	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.8	0.050	0.061	0.062	0.050	0.050	0.062	0.061	0.058	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.6	0.050	0.064	0.063	0.056	0.047	0.064	0.062	0.054	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	200, 200	0.4	0.7	0.055	0.057	0.060	0.050	0.049	0.056	0.057	0.053	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.8	0.060	0.060	0.058	0.041	0.053	0.062	0.057	0.052	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.6	0.051	0.063	0.060	0.047	0.043	0.064	0.062	0.049	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.6	0.7	0.052	0.059	0.055	0.042	0.045	0.057	0.056	0.053	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.8	0.057	0.055	0.053	0.033	0.054	0.057	0.053	0.052	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.6	0.053	0.047	0.047	0.047	0.052	0.047	0.050	0.052	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.2	0.7	0.060	0.050	0.049	0.047	0.053	0.049	0.045	0.046	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.8	0.056	0.045	0.044	0.027	0.056	0.045	0.046	0.044	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.6	0.056	0.042	0.048	0.051	0.045	0.041	0.045	0.051	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100, 200	0.4	0.7	0.059	0.043	0.040	0.047	0.055	0.044	0.044	0.054	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.8	0.053	0.046	0.043	0.028	0.053	0.044	0.048	0.044	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.6	0.055	0.038	0.042	0.047	0.043	0.037	0.045	0.050	
0.8 0.053 0.043 0.047 0.023 0.052 0.045 0.041 0.040		0.6	0.7	0.054	0.046	0.047	0.045	0.045	0.044	0.045	0.051	
			0.8	0.053	0.043	0.047	0.023	0.052	0.045	0.041	0.040	

Table 4: Exploration of Z^* test size. Simulation results of 1000 replications where data representing the diseased and healthy individuals are generated by bivariate lognormal and bivariate gamma distributions (valid null hypothesis). The data are generated such that $AUC_1 = AUC_2 = 0.6, 0.7, and 0.8$. The Box-Cox approach is used for estimation. Sample sizes explored are (100, 100), (200, 200) and (100, 200). Correlation is set equal to $\rho = 0.2, 0.4$, and 0.6 for the data of both the healthy and diseased individuals.

			Size results (Box-Cox)									
				Bivaria	te Gamm	as		Bivariate	Lognorma	ls		
$\overline{n_A, n_B}$	ρ	$AUC_1 = AUC_2$	t = 0.2	t = 0.4	t = 0.6	t = 0.8	t = 0.2	t = 0.4	t = 0.6	t = 0.8		
		0.6	0.042	0.051	0.047	0.054	0.054	0.055	0.058	0.043		
	0.2	0.7	0.045	0.042	0.049	0.049	0.060	0.057	0.055	0.043		
		0.8	0.045	0.049	0.039	0.043	0.060	0.055	0.043	0.035		
		0.6	0.030	0.039	0.046	0.045	0.057	0.056	0.058	0.050		
100, 100	0.4	0.7	0.041	0.042	0.049	0.044	0.055	0.052	0.047	0.039		
		0.8	0.039	0.050	0.048	0.046	0.054	0.054	0.048	0.035		
		0.6	0.025	0.050	0.051	0.042	0.059	0.054	0.059	0.046		
	0.6	0.7	0.036	0.051	0.058	0.048	0.054	0.053	0.051	0.038		
		0.8	0.047	0.049	0.041	0.036	0.052	0.051	0.039	0.033		
		0.6	0.048	0.059	0.057	0.054	0.069	0.079	0.082	0.068		
	0.2	0.7	0.047	0.051	0.049	0.047	0.062	0.071	0.071	0.058		
		0.8	0.044	0.049	0.048	0.039	0.066	0.065	0.067	0.055		
		0.6	0.038	0.050	0.055	0.049	0.055	0.068	0.071	0.060		
200, 200	0.4	0.7	0.045	0.040	0.033	0.033	0.058	0.062	0.060	0.051		
		0.8	0.044	0.054	0.047	0.043	0.062	0.062	0.059	0.053		
		0.6	0.036	0.045	0.051	0.051	0.054	0.065	0.062	0.046		
	0.6	0.7	0.033	0.042	0.044	0.041	0.057	0.057	0.058	0.044		
		0.8	0.036	0.040	0.044	0.043	0.057	0.053	0.057	0.051		
		0.6	0.039	0.040	0.052	0.053	0.065	0.056	0.050	0.051		
	0.2	0.7	0.039	0.049	0.048	0.045	0.061	0.054	0.052	0.051		
		0.8	0.044	0.049	0.048	0.045	0.068	0.053	0.048	0.050		
		0.6	0.034	0.041	0.037	0.054	0.058	0.054	0.047	0.050		
100, 200	0.4	0.7	0.041	0.049	0.045	0.040	0.055	0.052	0.044	0.052		
		0.8	0.045	0.042	0.038	0.032	0.055	0.043	0.047	0.047		
		0.6	0.038	0.044	0.051	0.053	0.049	0.041	0.044	0.044		
	0.6	0.7	0.029	0.041	0.042	0.045	0.052	0.051	0.042	0.042		
		0.8	0.037	0.041	0.038	0.042	0.051	0.041	0.046	0.040		

Table 5: Power simulation results of 1000 replications for the non-normal settings (non-valid null hypothesis) under different scenarios. The kernel-based method is considered for estimation. Sample sizes explored are (100, 100), (200, 200), (300, 300), and (100, 300). Correlation is set equal to $\rho = 0.2, 0.4$, and 0.6 for data of both the healthy and diseased individuals. The true difference $ROC_2(t) - ROC_1(t)$ to be detected is denoted by d.

					Pow	er results			
			Bivariate	Gammas			Bivariate I	Lognormals	
n_A, n_B	ρ	t = 0.540	t = 0.648	t = 0.753	t = 0.863	t = 0.3790	t = 0.5350	t = 0.6890	t = 0.847
		d = 0.20	d = 0.15	d = 0.10	d = 0.05	d = 0.20	d = 0.15	d = 0.10	d = 0.05
					Box-Co	ox approach			
	0.2	0.503	0.462	0.347	0.217	0.733	0.642	0.503	0.337
50, 50	0.4	0.600	0.544	0.419	0.273	0.842	0.755	0.607	0.397
	0.6	0.758	0.687	0.532	0.333	0.953	0.893	0.756	0.526
	0.2	0.806	0.739	0.610	0.430	0.942	0.905	0.820	0.637
100, 100	0.4	0.892	0.833	0.688	0.493	0.986	0.967	0.894	0.726
	0.6	0.973	0.949	0.842	0.621	1.000	0.994	0.975	0.855
	0.2	0.977	0.965	0.885	0.718	0.996	0.992	0.969	0.890
200, 200	0.4	0.999	0.991	0.944	0.801	1.000	1.000	0.993	0.949
	0.6	1.000	0.999	0.990	0.897	1.000	1.000	1.000	0.993
					Kernel-b	ased approach			
	0.2	0.4180	0.3930	0.3000	0.1790	0.6250	0.5200	0.3340	0.1620
50, 50	0.4	0.5190	0.4620	0.3690	0.2270	0.7200	0.5810	0.4000	0.1930
	0.6	0.6310	0.5710	0.4390	0.2770	0.8480	0.7250	0.5310	0.2610
	0.2	0.7240	0.6850	0.5620	0.3690	0.9010	0.7960	0.5910	0.3050
100, 100	0.4	0.8060	0.7900	0.6440	0.4210	0.9500	0.8790	0.6950	0.3670
	0.6	0.9270	0.8970	0.7720	0.5140	0.9910	0.9570	0.8320	0.5160
	0.2	0.9340	0.9320	0.8490	0.6340	0.9950	0.9720	0.8730	0.5470
200, 200	0.4	0.9790	0.9770	0.9170	0.7300	0.9990	0.9910	0.9260	0.6400
	0.6	0.9970	0.9930	0.9700	0.8260	1.0000	1.0000	0.9770	0.7920

Table 6: Exploration of Z^* test size. Simulation results of 1000 replications where data representing diseased and healthy individuals are generated by bivariate lognormal and bivariate gamma distributions (valid null hypothesis since $ROC_1(t) = ROC_2(t)$). The data are generated such that $AUC_1 = AUC_2 = 0.6, 0.7, \text{ and } 0.8$. The kernel-based approach is used for estimation. Sample sizes explored are (100, 100), (200, 200) and (100, 200). Correlation is set equal to $\rho = 0.2, 0.4,$ and 0.6 for the data of both the healthy and diseased individuals.

			Bivaria	ate Gamm	as		Bivariate	Lognorma	ıls
$\overline{n_A, n_B} \rho$	$AUC_1 = AUC_2$	t = 0.2	t = 0.4	t = 0.6	t = 0.8	t = 0.2	t = 0.4	t = 0.6	t = 0.8
	0.6	0.034	0.036	0.040	0.049	0.044	0.045	0.053	0.057
0.2	2 0.7	0.033	0.039	0.032	0.046	0.042	0.052	0.057	0.057
	0.8	0.047	0.049	0.051	0.051	0.039	0.049	0.057	0.060
	0.6	0.035	0.031	0.037	0.045	0.048	0.055	0.054	0.053
100,100 0.4	4 0.7	0.039	0.035	0.041	0.039	0.048	0.058	0.049	0.054
	0.8	0.040	0.038	0.043	0.048	0.048	0.052	0.046	0.051
	0.6	0.036	0.0440	0.0430	0.0310	0.0480	0.062	0.055	0.043
0.6	6 0.7	0.042	0.0450	0.0460	0.0570	0.0530	0.061	0.048	0.045
	0.8	0.043	0.0440	0.0410	0.0440	0.0490	0.047	0.047	0.043
	0.6	0.054	0.052	0.050	0.042	0.051	0.055	0.055	0.063
0.2	2 0.7	0.049	0.046	0.045	0.051	0.051	0.056	0.057	0.071
	0.8	0.044	0.045	0.043	0.050	0.053	0.050	0.072	0.067
	0.6	0.046	0.045	0.046	0.044	0.048	0.052	0.058	0.060
200,200 0.4	4 0.7	0.043	0.037	0.039	0.040	0.050	0.054	0.058	0.070
	0.8	0.035	0.053	0.038	0.043	0.046	0.054	0.070	0.068
	0.6	0.045	0.044	0.041	0.047	0.045	0.053	0.068	0.059
0.6	6 0.7	0.043	0.042	0.043	0.051	0.045	0.051	0.064	0.067
	0.8	0.033	0.039	0.048	0.060	0.046	0.054	0.068	0.065
	0.6	0.051	0.049	0.055	0.058	0.050	0.045	0.046	0.056
0.2	2 0.7	0.049	0.049	0.044	0.052	0.056	0.043	0.052	0.058
	0.8	0.051	0.045	0.050	0.054	0.053	0.048	0.057	0.062
	0.6	0.046	0.043	0.042	0.049	0.047	0.040	0.048	0.054
100,200 0.4	4 0.7	0.044	0.042	0.040	0.050	0.055	0.046	0.051	0.057
	0.8	0.045	0.040	0.049	0.038	0.052	0.042	0.054	0.061
	0.6	0.039	0.042	0.053	0.053	0.056	0.044	0.052	0.052
0.6	6 0.7	0.044	0.038	0.043	0.049	0.058	0.051	0.049	0.050
	0.8	0.041	0.035	0.037	0.041	0.058	0.051	0.051	0.055

Table 7: Size simulation results with respect to the AUC of 1000 replications where data representing the diseased and healthy individuals are generated by bivariate lognormal and bivariate gamma distributions (valid null hypothesis $ROC_1(t) = ROC_2(t)$). The data are generated such that $AUC_1 = AUC_2 = 0.6, 0.7$, and 0.8. The Box-Cox, kernel-based and DeLong's methods are compared. Sample sizes explored are (100, 100), (200, 200) and (100, 200). Correlation is set equal to $\rho = 0.2, 0.4$, and 0.6 for the data of both the healthy and diseased individuals.

	AUC size results								
			Biv	variate Gar	nmas	Bivaria	ate Lognor	rmals	
$\overline{n_A, n_B}$	ρ	AUC	Box - Cox	Kernel	DeLong	Box - Cox	Kernel	DeLong	
		0.6	0.051	0.040	0.042	0.056	0.051	0.055	
	0.2	0.7	0.049	0.048	0.043	0.057	0.053	0.052	
		0.8	0.059	0.055	0.044	0.054	0.054	0.055	
		0.6	0.040	0.037	0.044	0.058	0.059	0.058	
100, 100	0.4	0.7	0.042	0.042	0.043	0.055	0.055	0.056	
		0.8	0.041	0.043	0.043	0.055	0.055	0.051	
		0.6	0.052	0.045	0.048	0.052	0.062	0.061	
	0.6	0.7	0.047	0.045	0.044	0.057	0.059	0.058	
		0.8	0.047	0.050	0.045	0.053	0.055	0.045	
		0.6	0.057	0.059	0.054	0.058	0.063	0.059	
	0.2	0.7	0.057	0.050	0.053	0.059	0.053	0.057	
		0.8	0.046	0.041	0.044	0.063	0.056	0.049	
	0.4	0.6	0.053	0.050	0.046	0.062	0.059	0.057	
200, 200	0.4	0.7	0.040	0.038	0.038	0.060	0.049	0.050	
		0.8	0.048	0.048	0.049	0.061	0.053	0.053	
		0.6	0.047	0.045	0.040	0.065	0.056	0.062	
	0.6	0.7	0.044	0.044	0.042	0.059	0.051	0.056	
		0.8	0.041	0.036	0.038	0.057	0.056	0.050	
		0.6	0.045	0.042	0.039	0.045	0.051	0.052	
	0.2	0.7	0.049	0.047	0.045	0.051	0.049	0.044	
		0.8	0.051	0.052	0.052	0.046	0.048	0.047	
		0.6	0.044	0.042	0.043	0.047	0.044	0.047	
100, 200	0.4	0.7	0.043	0.040	0.045	0.051	0.045	0.043	
		0.8	0.043	0.047	0.054	0.049	0.051	0.046	
		0.6	0.039	0.044	0.046	0.041	0.043	0.043	
	0.6	0.7	0.031	0.030	0.031	0.043	0.044	0.045	
		0.8	0.039	0.039	0.045	0.048	0.054	0.046	

Table 8: Power simulation results with respect to the AUC of 1000 replications where data representing diseased and healthy individuals are generated by bivariate lognormal and bivariate gamma distributions (non-valid null hypothesis). The Box-Cox, kernel-based and DeLong's methods are compared. Sample sizes explored are (50, 50), (100, 100), and (200,200). Correlation is set equal to $\rho = 0.2, 0.4$, and 0.6 for data of both the healthy and diseased individuals.

		AUC power results										
		Biv	variate Gar	nmas	Bivari	ate Lognor	mals					
n_A, n_B	ρ	Box - Cox	Kernel	DeLong	Box - Cox	Kernel	DeLong					
	0.2	0.511	0.469	0.480	0.762	0.663	0.721					
50, 50	0.4	0.610	0.569	0.575	0.857	0.754	0.830					
	0.6	0.768	0.737	0.736	0.949	0.894	0.952					
	0.2	0.809	0.776	0.771	0.953	0.909	0.949					
100, 100	0.4	0.896	0.882	0.875	0.988	0.964	0.987					
	0.6	0.972	0.969	0.969	0.994	0.994	0.998					
	0.2	0.979	0.968	0.972	0.999	0.998	0.999					
200, 200	0.4	0.998	0.995	0.993	1.000	1.000	1.000					
	0.6	1.000	1.000	1.000	1.000	1.000	1.000					

Web-Appendix B (technical details)

1 Appendix

1.1 Derivation of the partial derivatives for the delta method

$$\begin{aligned} \frac{\partial ROC_{1}(t)}{\partial \mu_{1A}} &= -\frac{\sqrt{2}}{2\sqrt{\pi}\sigma_{1B}}exp\left(-0.5\left(\frac{\mu_{1A}-\mu_{1B}-\Phi^{-1}(t)\sigma_{1A}}{\sigma_{1B}}\right)^{2}\right)\\ \frac{\partial ROC_{1}(t)}{\partial \mu_{1B}} &= \frac{\sqrt{2}}{2\sqrt{\pi}\sigma_{1B}}exp\left(-0.5\left(\frac{\mu_{1A}-\mu_{1B}-\Phi^{-1}(t)\sigma_{1A}}{\sigma_{1B}}\right)^{2}\right)\\ \frac{\partial ROC_{1}(t)}{\partial \sigma_{1A}} &= \frac{\Phi^{-1}(t)}{\sqrt{2\pi}\sigma_{1B}}exp\left(-0.5\left(\frac{\mu_{1A}-\mu_{1B}-\Phi^{-1}(t)\sigma_{1A}}{\sigma_{1B}}\right)^{2}\right)\\ \frac{\partial ROC_{1}(t)}{\partial \sigma_{1B}} &= \frac{\sqrt{2}}{2\sqrt{\pi}}exp\left(-0.5\left(\frac{\mu_{1A}-\mu_{1B}-\Phi^{-1}(t)\sigma_{1A}}{\sigma_{1B}}\right)^{2}\right)\left(\frac{\mu_{1A}-\mu_{1B}-\sigma_{1A}\Phi^{-1}(t)}{\sigma_{1B}^{2}}\right)\end{aligned}$$

and the expressions are similar for $\frac{\partial ROC_2(t)}{\partial \mu_{2A}}$, $\frac{\partial ROC_2(t)}{\partial \mu_{2B}}$, $\frac{\partial ROC_2(t)}{\partial \sigma_{2A}}$ and $\frac{\partial ROC_2(t)}{\partial \sigma_{2B}}$.

$$\frac{\partial \Phi^{-1}(R\hat{O}C_{1}(t))}{\partial \mu_{1A}} = -\frac{1}{\sigma_{1B}}$$

$$\frac{\partial \Phi^{-1}(R\hat{O}C_{1}(t))}{\partial \mu_{1B}} = \frac{1}{\sigma_{1B}}$$

$$\frac{\partial \Phi^{-1}(R\hat{O}C_{1}(t))}{\partial \sigma_{1A}} = \frac{\Phi^{-1}(t)}{\sigma_{1B}}$$

$$\frac{\partial \Phi^{-1}(R\hat{O}C_{1}(t))}{\partial \sigma_{1B}} = \frac{\mu_{1A} - \mu_{1B} - \Phi^{-1}(t)\sigma_{1A}}{\sigma_{1B}^{2}}.$$
(1)

Similarly for the expressions that correspond to $\Phi^{-1}(\hat{ROC}_2(t))$.

1.2 Derivation of the partial derivatives for the delta method in the presence of covariates

$$\begin{split} \frac{\partial \Phi^{-1} \left(ROC_{1,Z}(t) \right)}{\partial \beta_0^{(1A)}} &= -\frac{1}{\sigma_{1B}} \\ \frac{\partial \Phi^{-1} \left(ROC_{1,Z}(t) \right)}{\partial \beta_j^{(1A)}} &= -\frac{z_j^{(1A)}}{\sigma_{1B}} \\ \frac{\partial \Phi^{-1} \left(ROC_{1,Z}(t) \right)}{\partial \beta_0^{(1B)}} &= \frac{1}{\sigma_{1B}} \\ \frac{\partial \Phi^{-1} \left(ROC_{1,Z}(t) \right)}{\partial \beta_j^{(1A)}} &= \frac{z_j^{(1B)}}{\sigma_{1B}} \\ \frac{\partial \Phi^{-1} \left(ROC_{1,Z}(t) \right)}{\partial \sigma_{1A}} &= -\frac{\sigma_{1B} \Phi^{-1}(t)}{\sigma_{1A}^2} \\ \frac{\partial \Phi^{-1} \left(ROC_{1,Z}(t) \right)}{\partial \sigma_{1B}} &= -\frac{\left(\beta_0^{(1B)} + \sum_{j=1}^p \beta_j^{(1B)} Z_{ji}^{(1B)} \right) - \left(\beta_0^{(1A)} + \sum_{j=1}^p \beta_j^{(1A)} Z_{ji}^{(1A)} \right)}{\sigma_{1A}^2} + \frac{\Phi^{-1}(t)}{\sigma_{1A}^2}. \end{split}$$

where j = 1, ..., p. The expressions for $ROC_2(t)$ are similar.

1.3 Partial derivatives for the delta method (AUC)

$$\begin{aligned} \frac{\partial \Phi^{-1} (AUC_1)}{\partial \mu_{1A}} &= \frac{-1}{\sigma_{1B}\sqrt{1 + (\sigma_{1A}/\sigma_{1B})^2}} \\ \frac{\partial \Phi^{-1} (AUC_1)}{\partial \mu_{1B}} &= \frac{1}{\sigma_{1B}\sqrt{1 + (\sigma_{1A}/\sigma_{1B})^2}} \\ \frac{\partial \Phi^{-1} (AUC_1)}{\partial \sigma_{1A}} &= \frac{\sigma_{1A}(\mu_{1A} - \mu_{1B})}{\sigma_{1B}^3(1 + (\sigma_{1A}/\sigma_{1B})^2)^{3/2}} \\ \frac{\partial \Phi^{-1} (AUC_1)}{\partial \sigma_{1A}} &= \frac{(\mu_{1A} - \mu_{1B})}{\sigma_{1B}^2(1 + (\sigma_{1A}/\sigma_{1B})^2)^{3/2}} \end{aligned}$$

1.4 Partial derivatives for the delta method in the presence of covariates (AUC)

$$\begin{aligned} \frac{\partial \Phi^{-1} (AUC_{1,Z})}{\partial \beta_0^{(1A)}} &= \frac{-1}{\sigma_{1B} \sqrt{1 + \left(\frac{\sigma_{1A}}{\sigma_{1B}}\right)^2}} \\ \frac{\partial \Phi^{-1} (AUC_{1,Z})}{\partial \beta_j^{(1A)}} &= \frac{-z_j^{(1A)}}{\sigma_{1B} \sqrt{1 + \left(\frac{\sigma_{1A}}{\sigma_{1B}}\right)^2}} \\ \frac{\partial \Phi^{-1} (AUC_{1,Z})}{\partial \beta_0^{(1B)}} &= \frac{1}{\sigma_{1B} \sqrt{1 + \left(\frac{\sigma_{1A}}{\sigma_{1B}}\right)^2}} \\ \frac{\partial \Phi^{-1} (AUC_{1,Z})}{\partial \beta_j^{(1B)}} &= \frac{z_j^{(1B)}}{\sigma_{1B} \sqrt{1 + \left(\frac{\sigma_{1A}}{\sigma_{1B}}\right)^2}} \\ \frac{\partial \Phi^{-1} (AUC_{1,Z})}{\partial \sigma_{1A}} &= -\frac{\sigma_{1A}}{\sigma_{1B}^3 \left(\frac{\sigma_{1A}^2}{\sigma_{1B}^2} + 1\right)^{3/2}} \\ \frac{\partial \Phi^{-1} (AUC_{1,Z})}{\partial \sigma_{1A}} &= \frac{\sigma_{1A}^2}{\sigma_{1B}^4 \left(\frac{\sigma_{1A}^2}{\sigma_{1B}^2} + 1\right)^{3/2}} - \frac{1}{\sigma_{1B}^2 \left(\frac{\sigma_{1A}^2}{\sigma_{1B}^2} + 1\right)^{1/2}} \end{aligned}$$

The expressions are similar for $\Phi^{-1}(AUC_{2,Z})$.

1.5 Derivation of the information matrix for the binormal-bivariate setting

Fisher's information matrix in this case is of the form:

$$I = - \begin{pmatrix} \frac{\partial^{2}l(\mathbf{p})}{\partial\mu_{1A}^{2}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\mu_{1A}\partial\mu_{2A}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{1A}^{2}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{1A}\partial\sigma_{2A}} & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{1A}\partial\cos\nu_{A}} & 0 \\ 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\mu_{1B}^{2}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\mu_{1B}\partial\mu_{2B}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2A}^{2}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2A}\partial\sigma_{1A}} & 0 \\ \frac{\partial^{2}l(\mathbf{p})}{\partial\mu_{2A}\partial\mu_{1A}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}^{2}} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2A}\partial\sigma_{1A}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{1B}} & 0 & 0 & 0 \\ 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2A}\partial\sigma_{1A}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{1B}} & 0 & 0 & 0 \\ 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\mu_{1B}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}^{2}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{1B}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{2A}} & 0 \\ 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{1B}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{2A}} & 0 & 0 \\ 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{1B}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{2A}} & 0 \\ 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{1B}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{2A}} & 0 \\ 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{1B}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{2A}} & 0 \\ 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{1B}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{2B}} & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{2B}} & 0 \\ 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{1B}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{2B}} & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{2B}} & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{2B}} & 0 \\ 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{1B}} & 0 & 0 & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2B}\partial\sigma_{2B}} & 0 & \frac{\partial^{2}l(\mathbf{p})}{\partial\sigma_{2}\partial\sigma_{2}\partial\sigma_{2}} & 0 &$$

We present all the derivations required:

$$\begin{aligned} \frac{\partial^2 \log L}{\partial \mu_{1A}^2} &= \frac{n_A}{\sigma_{1A}^2 \left(\frac{\cos a^2}{\sigma_{1A}^2 \sigma_{2A}^2} - 1\right)} \\ \frac{\partial^2 \log L}{\partial \sigma_{1A}^2} &= \frac{1}{\left(\sigma_{1A}^2 \sigma_{2A}^2 - \cos a^2\right)^3} \sum_{i=1}^{n_A} \left(A_{1i} - A_{2i} - A_{3i} - A_{4i} + A_{5i}\right) \end{aligned}$$

where

$$\begin{aligned} A_{1i} &= \sigma_{1A}{}^4 \sigma_{2A}{}^6 + \cos_A{}^3 \left(2 \,\mu_{1A} \,\mu_{2A} \,\sigma_{2A}{}^2 + 2 \,W_{1Ai} \,W_{2Ai} \,\sigma_{2A}{}^2 - 2 \,W_{1Ai} \,\mu_{2A} \,\sigma_{2A}{}^2 - 2 \,W_{2Ai} \,\mu_{1A} \,\sigma_{2A}{}^2 \right) \\ A_{2i} &= \sigma_{1A}{}^2 \left(3 \,W_{1Ai}{}^2 \,\sigma_{2A}{}^6 - 6 \,W_{1Ai} \,\mu_{1A} \,\sigma_{2A}{}^6 + 3 \,\mu_{1A}{}^2 \,\sigma_{2A}{}^6 \right) \\ A_{3i} &= \cos_A{}^2 \left(\sigma_{1A}{}^2 \left(3 \,W_{2Ai}{}^2 \,\sigma_{2A}{}^2 - 6 \,W_{2Ai} \,\mu_{2A} \,\sigma_{2A}{}^2 + 3 \,\mu_{2A}{}^2 \,\sigma_{2A}{}^2 \right) + W_{1Ai}{}^2 \,\sigma_{2A}{}^4 + \mu_{1A}{}^2 \,\sigma_{2A}{}^4 - 2 \,W_{1Ai} \,\mu_{1A} \,\sigma_{2A}{}^4 \right) \\ A_{4i} &= \cos_A{}^4 \left(W_{2Ai}{}^2 - 2 \,W_{2Ai} \,\mu_{2A} + \mu_{2A}{}^2 + \sigma_{2A}{}^2 \right) \\ A_{5i} &= \cos_A{} \,\sigma_{1A}{}^2 \left(6 \,\mu_{1A} \,\mu_{2A} \,\sigma_{2A}{}^4 + 6 \,W_{1Ai} \,W_{2Ai} \,\sigma_{2A}{}^4 - 6 \,W_{1Ai} \,\mu_{2A} \,\sigma_{2A}{}^4 - 6 \,W_{2Ai} \,\mu_{1A} \,\sigma_{2A}{}^4 \right) \end{aligned}$$

$$\frac{\partial^2 log L}{\partial cov_A^2} = -\frac{1}{\left(\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2\right)^3} \sum_{i=1}^{n_A} (B_{1i} - B_{2i} + B_{3i} - B_{4i})$$

$$\begin{split} B_{1i} &= \cos x_{A}^{2} \left(\left(3 \, W_{2Ai}^{2} - 6 \, W_{2Ai} \, \mu_{2A} + 3 \, \mu_{2A}^{2} \right) \, \sigma_{1A}^{2} + \left(3 \, W_{1Ai}^{2} - 6 \, W_{1Ai} \, \mu_{1A} + 3 \, \mu_{1A}^{2} \right) \, \sigma_{2A}^{2} \right) \\ B_{2i} &= \cos x_{A}^{3} \left(2 \, W_{1Ai} \, W_{2Ai} - 2 \, W_{1Ai} \, \mu_{2A} - 2 \, W_{2Ai} \, \mu_{1A} + 2 \, \mu_{1A} \, \mu_{2A} \right) \\ B_{3i} &= \cos x_{A}^{4} + \sigma_{2A}^{4} \left(\sigma_{1A}^{2} \left(W_{1Ai}^{2} - 2 \, W_{1Ai} \, \mu_{1A} + \mu_{1A}^{2} \right) - \sigma_{1A}^{4} \right) + \sigma_{1A}^{4} \, \sigma_{2A}^{2} \left(W_{2Ai}^{2} - 2 \, W_{2Ai} \, \mu_{2A} + \mu_{2A}^{2} \right) \\ B_{4i} &= \cos x_{A} \, \sigma_{1A}^{2} \, \sigma_{2A}^{2} \left(6 \, W_{1Ai} \, W_{2Ai} - 6 \, W_{1Ai} \, \mu_{2A} - 6 \, W_{2Ai} \, \mu_{1A} + 6 \, \mu_{1A} \, \mu_{2A} \right) \end{split}$$

$$\begin{aligned} \frac{\partial^{2} log L}{\partial \mu_{1A} \partial \sigma_{1A}} &= \frac{2 \, \sigma_{1A} \, \sigma_{2A}^{2} \, \sum_{i=1}^{n_{A}} \left(W_{2Ai} \, cov_{A} - cov_{A} \, \mu_{2A} - W_{1Ai} \, \sigma_{2A}^{2} + \mu_{1A} \, \sigma_{2A}^{2} \right)}{(\sigma_{1A}^{2} \, \sigma_{2A}^{2} - cov_{A}^{2})^{2}} &= 0 \\ \frac{\partial^{2} log L}{\partial \mu_{1A} \partial \mu_{2A}} &= \frac{n_{A} cov_{A}}{\sigma_{1A}^{2} \, \sigma_{2A}^{2} - cov_{A}^{2}} \\ \frac{\partial^{2} log L}{\partial \mu_{1A} \partial \sigma_{2A}} &= -\frac{\sigma_{2A} \, \sum_{i=1}^{n_{A}} \left(2 \, cov_{A}^{2} \, \left(W_{1Ai} - \mu_{1A} \right) - 2 \, cov_{A} \, \sigma_{1A}^{2} \, \left(W_{2Ai} - \mu_{2A} \right) \right)}{(\sigma_{1A}^{2} \, \sigma_{2A}^{2} - cov_{A}^{2})^{2}} &= 0 \\ \frac{\partial^{2} log L}{\partial \mu_{1A} \partial cov_{A}} &= -\sum_{i=1}^{n_{A}} \frac{cov_{A}^{2} \, \left(W_{2Ai} - \mu_{2A} \right) - \sigma_{2A}^{2} \, \left(cov_{A} \, \left(2 \, W_{1Ai} - 2 \, \mu_{1A} \right) - \sigma_{1A}^{2} \, \left(W_{2Ai} - \mu_{2A} \right) \right)}{(\sigma_{1A}^{2} \, \sigma_{2A}^{2} - cov_{A}^{2})^{2}} &= 0 \\ \frac{\partial^{2} log L}{\partial \sigma_{1A} \partial \mu_{2A}} &= -\frac{\sigma_{1A} \, \sum_{i=1}^{n_{A}} \left(2 \, cov_{A}^{2} \, \left(W_{2Ai} - \mu_{2A} \right) - 2 \, cov_{A} \, \sigma_{2A}^{2} \, \left(W_{1Ai} - \mu_{1A} \right) \right)}{(\sigma_{1A}^{2} \, \sigma_{2A}^{2} - cov_{A}^{2})^{2}} &= 0 \end{aligned}$$

$$\frac{\partial^{2} log L}{\partial \sigma_{1A} \partial \sigma_{2A}} = \sum_{i=1}^{n_{A}} \left(\sigma_{1A}^{3} \left(2 \cos \alpha_{A} \left(C_{1i} \right) + 2 \cos \alpha^{2} \right) - \cos \alpha^{2} \sigma_{1A} \left(4 W_{1A}^{2} - 8 W_{1A} \mu_{1A} + 4 \mu_{1A}^{2} \right) \right) \sigma_{2A}^{3} + \sum_{i=1}^{n_{A}} \left(\sigma_{1A} \left(2 \cos \alpha^{3} \left(C_{1i} \right) - 2 \cos \alpha^{4} \right) - \cos \alpha^{2} \sigma_{1A}^{3} \left(4 W_{2A}^{2} - 8 W_{2A} \mu_{2A} + 4 \mu_{2A}^{2} \right) \right) \sigma_{2A}^{3}$$

where

$$C_{1i} = 2 W_{1A} W_{2A} - 2 W_{1A} \mu_{2A} - 2 W_{2A} \mu_{1A} + 2 \mu_{1A} \mu_{2A}$$

$$\frac{\partial^2 log L}{\partial \sigma_{1A} \partial cov_A} = \sum_{i=1}^{n_A} \frac{\sigma_{1A} \left(cov_A{}^3 D_{1i} + D_{2i} - cov_A{}^2 \sigma_{2A}{}^2 D_{3i} \right) - \sigma_{1A}{}^3 \left(\sigma_{2A}{}^4 D_{4i} + cov_A D_{5i} \right)}{\left(\sigma_{1A}{}^2 \sigma_{2A}{}^2 - cov_A{}^2 \right)^3}$$

$$D_{1i} = 2 W_{2Ai}{}^2 - 4 W_{2Ai} \mu_{2A} + 2 \mu_{2A}{}^2 + 2 \sigma_{2A}{}^2$$

$$D_{2i} = cov_A \sigma_{2A}{}^4 \left(4 W_{1Ai}{}^2 - 8 W_{1Ai} \mu_{1A} + 4 \mu_{1A}{}^2 \right)$$

$$D_{3i} = 6 W_{1Ai} W_{2Ai} - 6 W_{1Ai} \mu_{2A} - 6 W_{2Ai} \mu_{1A} + 6 \mu_{1A} \mu_{2A}$$

$$D_{4i} = 2 W_{1Ai} W_{2Ai} - 2 W_{1Ai} \mu_{2A} - 2 W_{2Ai} \mu_{1A} + 2 \mu_{1A} \mu_{2A}$$

$$D_{5i} = 2 \sigma_{2A}{}^4 - \sigma_{2A}{}^2 \left(2 W_{2Ai}{}^2 - 4 W_{2Ai} \mu_{2A} + 2 \mu_{2A}{}^2 \right)$$

Note that all remaining nonzero derivatives are completely analogous to the above results and can be derived by substituting the parameters of the corresponding group. We also derive:

$$\begin{split} \frac{\partial^2 log L}{\partial \mu_{1A} \partial \mu_{1B}} &= 0, \frac{\partial^2 log L}{\partial \mu_{1A} \partial \sigma_{1B}} = 0, \frac{\partial^2 log L}{\partial \mu_{1A} \partial \mu_{2B}} = 0, \frac{\partial^2 log L}{\partial \mu_{1A} \partial \sigma_{2B}} = 0, \frac{\partial^2 log L}{\partial \mu_{1A} \partial \sigma_{2B}} = 0, \\ \frac{\partial^2 log L}{\partial \sigma_{1A} \partial \mu_{1B}} &= 0, \frac{\partial^2 log L}{\partial \sigma_{1A} \partial \sigma_{1B}} = 0, \frac{\partial^2 log L}{\partial \sigma_{1A} \partial \mu_{2B}} = 0, \frac{\partial^2 log L}{\partial \sigma_{1A} \partial \sigma_{2B}} = 0, \frac{\partial^2 log L}{\partial \sigma_{1A} \partial \sigma_{2B}} = 0, \\ \frac{\partial^2 log L}{\partial \mu_{1B} \partial \mu_{2A}} &= 0, \frac{\partial^2 log L}{\partial \mu_{1B} \partial \sigma_{2A}} = 0, \frac{\partial^2 log L}{\partial \mu_{1B} \partial cov_A} = 0, \\ \frac{\partial^2 log L}{\partial \sigma_{1B} \partial \mu_{2A}} &= 0, \frac{\partial^2 log L}{\partial \sigma_{1B} \partial \sigma_{2A}} = 0, \frac{\partial^2 log L}{\partial \sigma_{1B} \partial cov_A} = 0, \\ \frac{\partial^2 log L}{\partial \sigma_{2A} \partial \mu_{2B}} &= 0, \frac{\partial^2 log L}{\partial \sigma_{2A} \partial \sigma_{2B}} = 0, \frac{\partial^2 log L}{\partial \sigma_{2A} \partial cov_B} = 0, \\ \frac{\partial^2 log L}{\partial \sigma_{2A} \partial \mu_{2B}} &= 0, \frac{\partial^2 log L}{\partial \sigma_{2A} \partial \sigma_{2B}} = 0, \frac{\partial^2 log L}{\partial \sigma_{2A} \partial cov_B} = 0, \\ \frac{\partial^2 log L}{\partial \sigma_{2A} \partial \mu_{2B}} &= 0, \frac{\partial^2 log L}{\partial \sigma_{2B} \partial \sigma_{2B}} = 0, \frac{\partial^2 log L}{\partial \sigma_{2A} \partial cov_B} = 0, \\ \frac{\partial^2 log L}{\partial \sigma_{2A} \partial \mu_{2B}} &= 0, \frac{\partial^2 log L}{\partial \sigma_{2B} \partial \sigma_{2B}} = 0, \frac{\partial^2 log L}{\partial \sigma_{2A} \partial cov_B} = 0, \\ \frac{\partial^2 log L}{\partial \sigma_{2A} \partial \mu_{2B}} &= 0, \frac{\partial^2 log L}{\partial \sigma_{2B} \partial \sigma_{2B}} = 0, \frac{\partial^2 log L}{\partial \sigma_{2A} \partial cov_B} = 0, \\ \frac{\partial^2 log L}{\partial \sigma_{2A} \partial \mu_{2B}} &= 0, \frac{\partial^2 log L}{\partial \sigma_{2B} \partial \sigma_{2B}} = 0, \frac{\partial^2 log L}{\partial \sigma_{2A} \partial cov_B} = 0. \end{split}$$

1.6 Box-Cox transformation

The negative Fisher information matrix in this setting is

$$\begin{pmatrix} \frac{\partial^2(p)}{\partial \mu_{1A}^{(\Lambda)} \partial 2} & 0 & 0 & \frac{\partial^2(p)}{\partial \mu_{1A}^{(\Lambda)} \partial \mu_{2A}^{(\Lambda)}} & 0 & 0 & 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \mu_{1A}^{(\Lambda)} \partial \lambda_{1}} & \frac{\partial^2(p)}{\partial \mu_{1A}^{(\Lambda)} \partial \mu_{2A}^{(\Lambda)}} \\ 0 & \frac{\partial^2(p)}{\partial \sigma_{1A}^{(\Lambda)} \partial z} & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{1A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{1A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} \\ 0 & 0 & \frac{\partial^2(p)}{\partial \mu_{1B}^{(\Lambda)} \partial \lambda_{1}} & \frac{\partial^2(p)}{\partial \sigma_{1A}^{(\Lambda)} \partial \lambda_{2A}} \\ 0 & 0 & \frac{\partial^2(p)}{\partial \mu_{1B}^{(\Lambda)} \partial \lambda_{1}} & 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{1A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{1A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} \\ 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{1A}^{(\Lambda)} \partial \lambda_{1}} & \frac{\partial^2(p)}{\partial \sigma_{1A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} \\ 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{1B}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} & 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{1B}^{(\Lambda)} \partial \sigma_{2B}^{(\Lambda)}} \\ 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{1B}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} & 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{1B}^{(\Lambda)} \partial \sigma_{2B}^{(\Lambda)}} \\ \frac{\partial^2(p)}{\partial \sigma_{1B}^{(\Lambda)} \partial \sigma_{1B}^{(\Lambda)} & 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2B}^{(\Lambda)}} \\ 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{1A}^{(\Lambda)}} & 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2B}^{(\Lambda)}} \\ 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{1A}^{(\Lambda)}} & 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2B}^{(\Lambda)}} \\ 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{1A}^{(\Lambda)}} & 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} \\ 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{1A}^{(\Lambda)}} & 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} \\ 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{1A}^{(\Lambda)}} & 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} \\ 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{1A}^{(\Lambda)}} & 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} \\ 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{1A}^{(\Lambda)}} & 0 & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} \\ 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{1A}^{(\Lambda)}} & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} \\ 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} & 0 & 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} \\ 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} \\ 0 & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial \sigma_{2A}^{(\Lambda)}} & \frac{\partial^2(p)}{\partial \sigma_{2A}^{(\Lambda)} \partial$$

The derivatives included in the upper left 10×10 part of the above matrix are completely analogous to the ones derived in the previous subsection. Counting the matrix columns from left to right, note also that given the derivatives of the 11th column, the derivatives of the 12th column can be straightforwardly obtained by simple substitution of the corresponding parameters involved. Regarding the derivatives of the 11th column, we derive:

$$\frac{\partial^2 l(\boldsymbol{p})}{\partial \mu_{1A}^{(\lambda_1)} \partial \lambda_1} = \sum_{i=1}^{n_A} \frac{\sigma_{2A}^{(\lambda_2)^2} \left(W_{1Ai}^{\lambda_1} \lambda_1 \log(W_{1Ai}) - W_{1Ai}^{\lambda_1} + 1 \right)}{\lambda_1^2 \left(\sigma_{1A}^{(\lambda_1)^2} \sigma_{2A}^{(\lambda_2)^2} - \cos v_A^{(\lambda_1,2)^2} \right)}$$
$$\frac{\partial^2 l(\boldsymbol{p})}{\partial \sigma_{1A}^{(\lambda_1)} \partial \lambda_1} = \sum_{i=1}^{n_A} \frac{2 \sigma_{1A}^{(\lambda_1)} \sigma_{2A}^{(\lambda_2)^2} \left(K_{1i} \right) \left(K_{2i} \right)}{\lambda_1^3 \lambda_2 \left(\sigma_{1A}^{(\lambda_1)^2} \sigma_{2A}^{(\lambda_2)^2} - \cos v_A^{(\lambda_1,2)^2} \right)^2}$$

where,

$$K_{1i} = W_{1Ai}^{\lambda_1} \lambda_1 \log(W_{1Ai}) - W_{1Ai}^{\lambda_1} + 1$$

$$K_{2i} = cov_A^{(\lambda_{1,2})} \lambda_1 (1 - W_{2Ai}^{\lambda_2} \lambda_2) - \lambda_2 \sigma_{2A}^{(\lambda_2)^2} (1 + W_{1Ai}^{\lambda_1}) + (\lambda_1 \lambda_2) (cov_A^{(\lambda_{1,2})} \mu_{2A}^{(\lambda_2)} - \mu_{1A}^{(\lambda_1)} \sigma_{2A}^{(\lambda_2)^2})$$

$$\frac{\partial^2 l(\boldsymbol{p})}{\partial \mu_{1B}^{(\lambda_1)} \partial \lambda_1} = \sum_{i=1}^{n_B} \frac{\sigma_{2B}^{(\lambda_1)^2} \left(W_{1Bi}^{\lambda_1} \lambda_1 \log (W_{1Bi}) - W_{1Bi}^{\lambda_1} + 1 \right)}{\lambda_1^2 \left(\sigma_{1B}^{(\lambda_1)^2} \sigma_{2B}^{(\lambda_1)^2} - \cos v_B^{(\lambda_1,2)^2} \right)}$$
$$\frac{\partial^2 l(\boldsymbol{p})}{\partial \sigma_{1B}^{(\lambda_1)} \partial \lambda_1} = \sum_{i=1}^{n_B} \frac{2 \sigma_{1B}^{(\lambda_1)} \sigma_{2B}^{(\lambda_1)^2} \left(K_{1i}' \right) \left(K_{2i}' \right)}{\lambda_1^3 \lambda_2 \left(\sigma_{1B}^{(\lambda_1)^2} \sigma_{2B}^{(\lambda_1)^2} - \cos v_B^{(\lambda_1,2)^2} \right)^2}$$

where,

$$K_{1i}' = W_{1Bi}^{\lambda_1} \lambda_1 \log(W_{1Bi}) - W_{1Bi}^{\lambda_1} + 1$$

$$K_{2i}' = cov_B^{(\lambda_{1,2})} \lambda_1 (1 - W_{2Bi}^{\lambda_2} \lambda_2) - \lambda_2 \sigma_{2B}^{(\lambda_1)^2} (1 + W_{1Bi}^{\lambda_1}) + (\lambda_1 \lambda_2) (cov_B^{(\lambda_{1,2})} \mu_{2B}^{(\lambda_2)} - \mu_{1B}^{(\lambda_1)} \sigma_{2B}^{(\lambda_1)^2})$$

$$\frac{\partial^{2} l(\boldsymbol{p})}{\partial \mu_{2A}^{(\lambda_{2})} \partial \lambda_{1}} = \sum_{i=1}^{n_{A}} -\frac{\cos (\lambda_{1,2})}{\lambda_{1}^{2}} \left(W_{1Ai}^{\lambda_{1}} \lambda_{1} \log(W_{1Ai}) - W_{1Ai}^{\lambda_{1}} + 1 \right)}{\lambda_{1}^{2} \left(\sigma_{1A}^{(\lambda_{1})^{2}} \sigma_{2A}^{(\lambda_{2})^{2}} - \cos (\lambda_{1,2})^{2} \right)} \\
\frac{\partial^{2} l(\boldsymbol{p})}{\partial \sigma_{2A}^{(\lambda_{2})} \partial \lambda_{1}} = \sum_{i=1}^{n_{A}} -\frac{2 \cos (\lambda_{1,2})}{\lambda_{1}^{3} \lambda_{2} \left(\sigma_{1A}^{(\lambda_{1})^{2}} \sigma_{2A}^{(\lambda_{2})} - \cos (\lambda_{1,2})^{2} \right)^{2}} \\$$

where

$$L_{1i} = cov_A^{(\lambda_{1,2})} \lambda_2 (1 - W_{1Ai}^2) - \lambda_1 \sigma_{1A}^{(\lambda_1)^2} (1 + W_{2Ai})^{\lambda_2} + \lambda_1 \lambda_2 (cov_A^{(\lambda_{1,2})} \mu_{1A}^{(\lambda_1)} - \mu_{2A}^{(\lambda_2)} \sigma_{1A}^{(\lambda_1)^2})$$

$$\frac{\partial^2 l(\boldsymbol{p})}{\partial \mu_{2B}^{(\lambda_2)} \partial \lambda_1} = \sum_{i=1}^{n_B} -\frac{\cos (\lambda_{1,2})^2 \left(W_{1Bi}^{\lambda_1} \lambda_1 \log(W_{1Bi}) - W_{1Bi}^{\lambda_1} + 1\right)}{\lambda_1^2 \left(\sigma_{1B}^{(\lambda_1)^2} \sigma_{2B}^{(\lambda_1)^2} - \cos (\lambda_{1,2}^{(\lambda_1,2)^2}\right)}$$
$$\frac{\partial^2 l(\boldsymbol{p})}{\partial \sigma_{2B}^{(\lambda_2)} \partial \lambda_1} = \sum_{i=1}^{n_B} -\frac{2 \cos (\lambda_{1,2})^2 \sigma_{2B}^{(\lambda_1)} \left(K_{1i}^{\prime}\right) \left(L_{1i}^{\prime}\right)}{\lambda_1^3 \lambda_2 \left(\sigma_{1B}^{(\lambda_1)^2} \sigma_{2B}^{(\lambda_1)^2} - \cos (\lambda_{1,2}^{(\lambda_1,2)^2}\right)^2}\right)^2$$

where

$$L_{1i}^{'} = cov_{B}^{(\lambda_{1,2})} \lambda_{2}(1 - W_{1Bi}^{2}) - \lambda_{1} \sigma_{1B}^{(\lambda_{1})^{2}}(1 + W_{2Bi})^{\lambda_{2}} + \lambda_{1} \lambda_{2}(cov_{B}^{(\lambda_{1,2})} \mu_{1B}^{(\lambda_{1})} - \mu_{2B}^{(\lambda_{2})} \sigma_{1B}^{(\lambda_{1})^{2}})$$

$$\frac{\partial^2 l(\mathbf{p})}{\partial cov_A^{(\lambda_{1,2})} \partial \lambda_1} = \sum_{i=1}^{n_A} -\frac{(K_{1i}) (M_{1i} + M_{2i})}{\lambda_1^3 \lambda_2 \left(\sigma_{1A}^{(\lambda_1)^2} \sigma_{2A}^{(\lambda_2)^2} - cov_A^{(\lambda_{1,2})^2}\right)^2}$$

where

$$M_{1i} = cov_A^{(\lambda_{1,2})^2} (1 - W_{2Ai}^{\lambda_2}) - 2cov_A^{(\lambda_{1,2})} \lambda_2 \sigma_{2A}^{(\lambda_2)^2} (1 - W_{1Ai}^{\lambda_1}) + \lambda_1 \sigma_{1A}^{(\lambda_1)^2} \sigma_{2A}^{(\lambda_2)^2} + 2W_{1Ai}^{\lambda_1}$$

$$M_{2i} = \lambda_1 \lambda_2 \mu_{2A}^{(\lambda_2)} (cov_A^{(\lambda_{1,2})^2} + \sigma_{1A}^{(\lambda_1)^2} \sigma_{2A}^{(\lambda_2)^2}) - \lambda_1 \sigma_{2A}^{(\lambda_2)^2} (W_{2Ai}^{\lambda_2} \sigma_{1A}^{(\lambda_1)^2} + 2cov_A^{(\lambda_{1,2})} \lambda_2 \mu_{1A}^{(\lambda_1)})$$

$$\frac{\partial^2 l(\boldsymbol{p})}{\partial cov_B^{(\lambda_{1,2})} \partial \lambda_1} = \sum_{i=1}^{n_B} -\frac{(K_{1i}) (M_{1i} + M_{2i})}{\lambda_1^3 \lambda_2 \left(\sigma_{1B}^{(\lambda_1)^2} \sigma_{2B}^{(\lambda_1)^2} - cov_B^{(\lambda_{1,2})^2}\right)^2}$$

where

$$M_{1i}^{'} = cov_{B}^{(\lambda_{1,2})^{2}} (1 - W_{2Bi}^{\lambda_{2}}) - 2cov_{B}^{(\lambda_{1,2})} \lambda_{2} \sigma_{2B}^{(\lambda_{1})^{2}} (1 - W_{1Bi}^{\lambda_{1}}) + \lambda_{1} \sigma_{1B}^{(\lambda_{1})^{2}} \sigma_{2B}^{(\lambda_{1})^{2}} + 2W_{1Bi}^{\lambda_{1}}$$

$$M_{2i}^{'} = \lambda_{1} \lambda_{2} \mu_{2B}^{(\lambda_{2})} (cov_{B}^{(\lambda_{1,2})^{2}} + \sigma_{1B}^{(\lambda_{1})^{2}} \sigma_{2B}^{(\lambda_{1})^{2}}) - \lambda_{1} \sigma_{2B}^{(\lambda_{1})^{2}} (W_{2Bi}^{\lambda_{2}} \sigma_{1B}^{(\lambda_{1})^{2}} + 2cov_{B}^{(\lambda_{1,2})} \lambda_{2} \mu_{1B}^{(\lambda_{1})})$$

$$\frac{\partial^2 l(\boldsymbol{p})}{\partial \lambda_1^2} = \sum_{i=1}^{n_A} \frac{\frac{2N_{1i}^2 - N_{2i}}{\sigma_{1A}^{(\lambda_1)^2}} + \frac{N_{3i}}{\sigma_{1A}^{(\lambda_1)^2}\sigma_{2A}^{(\lambda_2)^2}}}{\frac{2\cos^{(\lambda_{1,2})^2}}{\sigma_{1A}^{(\lambda_{1,2})^2}\sigma_{2A}^{(\lambda_{2})^2}} - 2} + \sum_{i=1}^{n_B} \frac{\frac{2N_{1i}^{'} - N_{2i}^{'}}{\sigma_{1B}^{(\lambda_{1})^2}} + \frac{N_{3i}^{'}}{\sigma_{1B}^{(\lambda_{1})^2}\sigma_{2B}^{(\lambda_{1})^2}}}{\frac{2\cos^{(\lambda_{1,2})^2}}{\sigma_{1B}^{(\lambda_{1})^2}\sigma_{2B}^{(\lambda_{1})^2}} - 2}$$

where,

$$\begin{split} N_{1i} &= \frac{W_{1Ai}^{\lambda_{1}} - 1}{\lambda_{1}^{2}} - \frac{W_{1Ai}^{\lambda_{1}} \log (W_{1Ai})}{\lambda_{1}} \\ N_{2i} &= \left(2\mu_{1A}^{(\lambda_{1})} - \frac{2\left(W_{1Ai}^{\lambda_{1}} - 1\right)}{\lambda_{1}} \right) \left(\frac{2W_{1Ai}^{\lambda_{1}} - 2}{\lambda_{1}^{3}} - \frac{2W_{1Ai}^{\lambda_{1}} \log (W_{1Ai})}{\lambda_{1}^{2}} + \frac{W_{1Ai}^{\lambda_{1}} \log (W_{1Ai})^{2}}{\lambda_{1}} \right) \\ N_{3i} &= 2\cos_{A}^{(\lambda_{1},2)} \left(\mu_{2A}^{(\lambda_{2})} - \frac{W_{2Ai}^{\lambda_{2}} - 1}{\lambda_{2}} \right) \left(\frac{2W_{1Ai}^{\lambda_{1}} - 2}{\lambda_{1}^{3}} - \frac{2W_{1Ai}^{\lambda_{1}} \log (W_{1Ai})}{\lambda_{1}^{2}} + \frac{W_{1Ai}^{\lambda_{1}} \log (W_{1Ai})^{2}}{\lambda_{1}} \right) \\ N_{1i}^{'} &= \frac{W_{1Bi}^{\lambda_{1}} - 1}{\lambda_{1}^{2}} - \frac{W_{1Bi}^{\lambda_{1}} \log (W_{1Bi})}{\lambda_{1}} \\ N_{2i}^{'} &= \left(2\mu_{1B}^{(\lambda_{1})} - \frac{2\left(W_{1Bi}^{\lambda_{1}} - 1\right)}{\lambda_{1}} \right) \left(\frac{2W_{1Bi}^{\lambda_{1}} - 2}{\lambda_{1}^{3}} - \frac{2W_{1Bi}^{\lambda_{1}} \log (W_{1Bi})}{\lambda_{1}^{2}} + \frac{W_{1Ai}^{\lambda_{1}} \log (W_{1Ai})^{2}}{\lambda_{1}} \right) \\ N_{3i}^{'} &= 2\cos_{B}^{(\lambda_{1,2})} \left(\mu_{2B}^{(\lambda_{2})} - \frac{W_{2Bi}^{\lambda_{2}} - 1}{\lambda_{2}} \right) \left(\frac{2W_{1Bi}^{\lambda_{1}} - 2}{\lambda_{1}^{3}} - \frac{2W_{1Bi}^{\lambda_{1}} \log (W_{1Bi})}{\lambda_{1}^{2}} + \frac{W_{1Bi}^{\lambda_{1}} \log (W_{1Bi})^{2}}{\lambda_{1}} \right) \end{split}$$

$$\frac{\partial^{2}l(\boldsymbol{p})}{\partial\lambda_{1}\partial\lambda_{2}} = \sum_{i=1}^{n_{A}} \frac{2 \cos^{(\lambda_{1,2})}_{A} \left(W_{1Ai}^{\lambda_{1}} \lambda_{1} \log \left(W_{1Ai} \right) - W_{1Ai}^{\lambda_{1}} + 1 \right) \left(W_{2Ai}^{\lambda_{2}} \lambda_{2} \log \left(W_{2Ai} \right) - W_{2Ai}^{\lambda_{2}} + 1 \right)}{\lambda_{1}^{2} \lambda_{2}^{2} \left(2 \sigma^{(\lambda_{1})^{2}}_{1A} \sigma_{2A}^{(\lambda_{2})^{2}} - 2 \cos^{(\lambda_{1,2})^{2}}_{A} \right)} + \sum_{i=1}^{n_{B}} \frac{2 \cos^{(\lambda_{1,2})}_{B} \left(W_{1Bi}^{\lambda_{1}} \lambda_{1} \log \left(W_{1Bi} \right) - W_{1Bi}^{\lambda_{1}} + 1 \right) \left(W_{2Bi}^{\lambda_{2}} \lambda_{2} \log \left(W_{2Bi} \right) - W_{2Bi}^{\lambda_{2}} + 1 \right)}{\lambda_{1}^{2} \lambda_{2}^{2} \left(2 \sigma_{1B}^{(\lambda_{1})^{2}} \sigma_{2B}^{(\lambda_{1})^{2}} - 2 \cos^{(\lambda_{1,2})^{2}}_{B} \right)}.$$

Derivatives included in the last column of Fisher's information matrix: $\frac{\partial^{2}l(\boldsymbol{p})}{\partial \mu_{1A}^{(\lambda_{1})} \partial \lambda_{2}}, \frac{\partial^{2}l(\boldsymbol{p})}{\partial \sigma_{1A}^{(\lambda_{1})} \partial \lambda_{2}}, \frac{\partial^{2}l(\boldsymbol{p})}{\partial \sigma_{1A}^{(\lambda_{1})} \partial \lambda_{2}}, \frac{\partial^{2}l(\boldsymbol{p})}{\partial \mu_{1B}^{(\lambda_{1})} \partial \lambda_{2}}, \frac{\partial^{2}l(\boldsymbol{p})}{\partial \sigma_{1B}^{(\lambda_{1})} \partial \lambda_{2}}, \frac{\partial^{2}l(\boldsymbol{p})}{\partial \sigma_{2B}^{(\lambda_{1})} \partial \lambda_{1}}, \frac{\partial^{2}l(\boldsymbol{p})}{\partial \sigma_{2B}^{(\lambda_{1})} \partial$

1.7 Normality with covariates

Here, we restate and derive all derivatives of matrix M_A . All derivatives contained in matrix M_B are completely analogous to the ones that follow.

	$\left(egin{array}{c} rac{\partial^2 l({oldsymbol p}_Z)}{\partial eta_0^{(1A)^2}} \end{array} ight)$	 $\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \boldsymbol{\beta}_0^{(1A)} \partial \boldsymbol{\beta}_j^{(1A)}}$	 $\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \boldsymbol{\beta}_0^{(1A)} \partial \boldsymbol{\beta}_p^{(2A)}}$	$\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \boldsymbol{\beta}_0^{(1A)} \partial \sigma_{1A}}$	$\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \boldsymbol{\beta}_0^{(1A)} \partial \sigma_{2A}}$	$rac{\partial^2 l({oldsymbol p}_Z)}{\partial eta_0^{(1A)}\partial cov_A}$,	
	•	 ÷	 ÷	:	:	÷	
	÷	 $\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \beta_j^{(1A)^2}}$	 	$\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \beta_j^{(1A)} \partial \sigma_{1A}}$	$\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \beta_j^{(1A)} \partial \sigma_{2A}}$	$\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \boldsymbol{\beta}_j^{(1A)} \partial cov_A}$	
$M_A =$	÷	 $\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \boldsymbol{\beta}_j^{(1A)} \partial \boldsymbol{\beta}_{j'}^{(1A)}}$	 				
	$\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \beta_p^{(2A)} \partial \beta_0^{(1A)}}$	 	 $\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \beta_p^{(2A)^2}}$	$\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \beta_p^{(2A)} \partial \sigma_{1A}}$	$\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \beta_p^{(2A)} \partial \sigma_{2A}}$	$\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \beta_p^{(2A)} \partial cov_A}$	
	$rac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \sigma_{1A} \partial \beta_0^{(1A)}}$	 	 $rac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \sigma_{1A} \beta_p^{(2A)}}$	$\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \sigma_{1A}^2}$	$\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \sigma_{1A} \partial \sigma_{2A}}$	$\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \sigma_{1A} \partial cov_A}$	
	$rac{\partial^2 l(oldsymbol{p}_Z)}{\partial \sigma_{2A} \partial eta_0^{(1A)}}$	 	 $rac{\partial^2 l(oldsymbol{p}_Z)}{\partial \sigma_{2A} eta_p^{(2A)}}$	$rac{\partial^2 l({oldsymbol p}_Z)}{\partial \sigma_{2A} \partial \sigma_{1A}}$	$rac{\partial^2 l({oldsymbol p}_Z)}{\partial \sigma^2_{2A}}$	$rac{\partial^2 l(oldsymbol{p}_Z)}{\partial \sigma_{2A}\partial cov_A}$	
	$\left(\begin{array}{c} rac{\partial^2 l(oldsymbol{p}_Z)}{\partial cov_A \partial eta_0^{(1A)}} \end{array} ight)$	 	 $rac{\partial^2 l(\hat{oldsymbol{p}}_Z)}{\partial cov_A eta_p^{(2A)}}$	$rac{\partial^2 l(oldsymbol{p}_Z)}{\partial cov_A \partial \sigma_{1A}}$	$rac{\partial^2 l(oldsymbol{p}_Z)}{\partial cov_A\partial\sigma_{2A}}$	$rac{\partial^2 l(oldsymbol{p}_Z)}{\partial cov_A^2}$,	$\Big)_{((p+4)\times(p+4)).}$

•

$$\begin{aligned} \frac{\partial^2 l(\mathbf{p}_Z)}{\partial \beta_0^{(1A)^2}} &= -\frac{n_A}{\sigma_{1A}^2 - \frac{cov_A^2}{\sigma_{2A}^2}} \\ \frac{\partial^2 l(\mathbf{p}_Z)}{\partial \beta_0^{(1A)} \beta_j^{(1A)}} &= -\sum_{i=1}^{n_A} \frac{Z_{ji}^{(1A)}}{\sigma_{1A}^2 - \frac{cov_A^2}{\sigma_{2A}^2}} \\ \frac{\partial^2 l(\mathbf{p}_Z)}{\partial \beta_0^{(1A)} \beta_j^{(2A)}} &= \sum_{i=1}^{n_A} \frac{Z_{ji}^{(2A)} cov_A}{\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2} \\ \frac{\partial^2 l(\mathbf{p}_Z)}{\partial \beta_0^{(1A)} \sigma_{1A}} &= 0 \\ \frac{\partial^2 l(\mathbf{p}_Z)}{\partial \beta_0^{(1A)} cov_A} &= 0 \\ \frac{\partial^2 l(\mathbf{p}_Z)}{\partial \beta_j^{(1A)} cov_A} &= 0 \\ \frac{\partial^2 l(\mathbf{p}_Z)}{\partial \beta_j^{(1A)} cov_A} &= 0 \\ \frac{\partial^2 l(\mathbf{p}_Z)}{\partial \beta_j^{(1A)^2}} &= -\sum_{i=1}^{n_A} \frac{Z_{ji}^{(1A)}}{\sigma_{1A}^2 - \frac{cov_A^2}{\sigma_{2A}^2}} \\ \frac{\partial^2 l(\mathbf{p}_Z)}{\partial \beta_j^{(2A)^2}} &= -\sum_{i=1}^{n_A} \frac{Z_{ji}^{(1A)}}{\sigma_{2A}^2 - \frac{cov_A^2}{\sigma_{1A}^2}} \\ \frac{\partial^2 l(\mathbf{p}_Z)}{\partial \beta_j^{(1A)} \beta_{j'}^{(1A)}} &= -\sum_{i=1}^{n_A} \frac{Z_{ji}^{(1A)} Z_{j'}^{(1A)}}{\sigma_{1A}^2 - \frac{cov_A^2}{\sigma_{2A}^2}}, j \neq j \\ \frac{\partial^2 l(\mathbf{p}_Z)}{\partial \beta_j^{(2A)} \beta_{j'}^{(2A)}} &= -\sum_{i=1}^{n_A} \frac{Z_{ji}^{(2A)} Z_{j'}^{(2A)}}{\sigma_{2A}^2 - \frac{cov_A^2}{\sigma_{2A}^2}}, j \neq j \end{aligned}$$

$$\begin{array}{rcl} \frac{\partial^2 l({\bf p}_Z)}{\partial \beta_k^{(1A)} \sigma_{1A}} &= \sigma_{1A} \sum_{i=1}^{n_A} \frac{2Z_{ki}^{(1A)} cov_A \sigma_{2A}^2 (W_{2Ai} - \beta_0^{(2A)} - \sum_{j=1}^{p} \beta_j^{(2A)} Z_{ji}^{(2A)})}{(\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2)^2} \\ &= \sigma_{1A} \sum_{i=1}^{n_A} \frac{2Z_{ki}^{(1A)} \sigma_{2A}^4 (W_{1Ai} - \beta_0^{(1A)} - \sum_{j=1}^{p} \beta_j^{(1A)} Z_{ji}^{(1A)})}{(\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2)^2} \\ \frac{\partial^2 l({\bf p}_Z)}{\partial \beta_k^{(2A)} \sigma_{2A}} &= \sigma_{2A} \sum_{i=1}^{n_A} \frac{2Z_{ki}^{(2A)} cov_A \sigma_{1A}^2 (W_{1Ai} - \beta_0^{(1A)} - \sum_{j=1}^{p} \beta_j^{(2A)} Z_{ji}^{(2A)})}{(\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2)^2} \\ &= \sigma_{2A} \sum_{i=1}^{n_A} \frac{2Z_{ki}^{(2A)} \sigma_{1A}^4 (W_{2Ai} - \beta_0^{(2A)} - \sum_{j=1}^{p} \beta_j^{(2A)} Z_{ji}^{(2A)})}{(\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2)^2} \\ \frac{\partial^2 l({\bf p}_Z)}{\partial \beta_k^{(1A)} \sigma_{2A}} &= \sigma_{2A} \sum_{i=1}^{n_A} \frac{2Z_{ki}^{(1A)} cov_A \sigma_{1A}^2 (W_{2Ai} - \beta_0^{(2A)} - \sum_{j=1}^{p} \beta_j^{(2A)} Z_{ji}^{(2A)})}{(\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2)^2} \\ &= \sigma_{2A} \sum_{i=1}^{n_A} \frac{2Z_{ki}^{(1A)} cov_A \sigma_{1A}^2 (W_{2Ai} - \beta_0^{(1A)} - \sum_{j=1}^{p} \beta_j^{(1A)} Z_{ji}^{(1A)})}{(\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2)^2} \\ \frac{\partial^2 l({\bf p}_Z)}{\partial \beta_k^{(2A)} \sigma_{1A}} &= \sigma_{1A} \sum_{i=1}^{n_A} \frac{2Z_{ki}^{(2A)} cov_A \sigma_{2A}^2 (W_{1Ai} - \beta_0^{(1A)} - \sum_{j=1}^{p} \beta_j^{(2A)} Z_{ji}^{(2A)})}{(\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2)^2} \\ \\ = \sigma_{1A} \sum_{i=1}^{n_A} \frac{2Z_{ki}^{(2A)} cov_A \sigma_{2A}^2 (W_{1Ai} - \beta_0^{(1A)} - \sum_{j=1}^{p} \beta_j^{(2A)} Z_{ji}^{(2A)})}{(\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2)^2} \\ \\ \frac{\partial^2 l({\bf p}_Z)}{\partial \beta_k^{(1A)} cov_A} &= \sigma_{1A} \sum_{i=1}^{n_A} \frac{2Z_{ki}^{(1A)} cov_A (\beta_0^{(1A)} + \sum_{j=1}^{p} \beta_j^{(2A)} Z_{ji}^{(2A)} - W_{1Ai})}{(\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2)^2} \\ \\ = \sum_{i=1}^{n_A} \frac{Z_{ki}^{(1A)} \sigma_{1A}^2 \sigma_{2A}^2 (\beta_0^{(2A)} + \sum_{j=1}^{p} \beta_j^{(2A)} Z_{ji}^{(2A)} - W_{2Ai})}{(\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2)^2} \\ \\ = \sum_{i=1}^{n_A} \frac{Z_{ki}^{(1A)} cov_A (\beta_0^{(2A)} + \sum_{j=1}^{p} \beta_j^{(2A)} Z_{ji}^{(2A)} - W_{2Ai})}{(\sigma_{1A}^2 \sigma_{2A}^2 - cov_A^2)^2} \\ \\ = \sum_{i=1}^{n_A} \frac{Z_{ki}^{(1A)} \sigma_{2A}^2 \sigma_{2A}^2 \sigma_{2A}^2 \sigma_A^2 \sigma_A^2}{(\sigma_{2A}^2 \sigma_{2A} - cov_A^2)^2} \\ \\ = \sum_{i=1}^{n_A} \frac{Z_{ki}^{(2A)} \sigma_{2A}^2 \sigma_{2A}^2 \sigma_A^2 \sigma_A^2}{(\sigma_{2A}^2 \sigma_{2A$$

and the remaining derivatives $\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \sigma_{1A}^2}$, $\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \sigma_{2A}^2}$, $\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \sigma_{1A} \partial \sigma_{2A}}$, $\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \sigma_{1A} \partial cov_A}$, $\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial \sigma_{2A} \partial cov_A}$ and $\frac{\partial^2 l(\boldsymbol{p}_Z)}{\partial cov_A^2}$ are analogous to their counterparts presented in section (1.5).

1.8 Partial derivatives for the construction of the Z test in the setting where covariates are present

$$\begin{split} \frac{\partial ROC_{1,Z}(t)}{\partial \beta_0^{(1A)}} &= -\frac{\sqrt{2}}{2\sqrt{\pi}\sigma_{1B}} \exp\left(-\frac{1}{2} \left(\frac{\beta_0^{(1A)} + \sum_{j=1}^p \beta_j^{(1A)} Z_j^{(1A)} - \left(\beta_0^{(1B)} + \sum_{j=1}^p \beta_j^{(1B)} Z_j^{(1B)}\right)}{\sigma_{1B}} - \frac{\sigma_{1B} \Phi^{-1}(t)}{\sigma_{1A}}\right)^2\right) \\ \frac{\partial ROC_{1,Z}(t)}{\partial \beta_j^{(1A)}} &= -\frac{z_j^{(1A)}\sqrt{2}}{2\sqrt{\pi}\sigma_{1B}} \exp\left(-\frac{1}{2} \left(\frac{\beta_0^{(1A)} + \sum_{j=1}^p \beta_j^{(1A)} Z_j^{(1A)} - \left(\beta_0^{(1B)} + \sum_{j=1}^p \beta_j^{(1B)} Z_j^{(1B)}\right)}{\sigma_{1B}} - \frac{\sigma_{1B} \Phi^{-1}(t)}{\sigma_{1A}}\right)^2\right) \\ \frac{\partial ROC_{1,Z}(t)}{\partial \beta_0^{(1B)}} &= \frac{\sqrt{2}}{2\sqrt{\pi}\sigma_{1B}} \exp\left(-\frac{1}{2} \left(\frac{\beta_0^{(1A)} + \sum_{j=1}^p \beta_j^{(1A)} Z_j^{(1A)} - \left(\beta_0^{(1B)} + \sum_{j=1}^p \beta_j^{(1B)} Z_j^{(1B)}\right)}{\sigma_{1B}} - \frac{\sigma_{1B} \Phi^{-1}(t)}{\sigma_{1A}}\right)^2\right) \\ \frac{\partial ROC_{1,Z}(t)}{\partial \beta_j^{(1B)}} &= \frac{z_j^{(1B)}\sqrt{2}}{2\sqrt{\pi}\sigma_{1B}} \exp\left(-\frac{1}{2} \left(\frac{\beta_0^{(1A)} + \sum_{j=1}^p \beta_j^{(1A)} Z_j^{(1A)} - \left(\beta_0^{(1B)} + \sum_{j=1}^p \beta_j^{(1B)} Z_j^{(1B)}\right)}{\sigma_{1B}} - \frac{\sigma_{1B} \Phi^{-1}(t)}{\sigma_{1A}}\right)^2\right) \\ \frac{\partial ROC_{1,Z}(t)}{\partial \sigma_{1A}} &= \frac{-\sigma_{1B} \Phi^{-1}(t)}{\sqrt{2\pi}\sigma_{1A}^2} \exp\left(-\frac{1}{2} \left(\frac{\beta_0^{(1A)} + \sum_{j=1}^p \beta_j^{(1A)} Z_j^{(1A)} - \left(\beta_0^{(1B)} + \sum_{j=1}^p \beta_j^{(1B)} Z_j^{(1B)}\right)}{\sigma_{1B}} - \frac{\sigma_{1B} \Phi^{-1}(t)}{\sigma_{1A}}\right)^2\right) \\ \frac{\partial ROC_{1,Z}(t)}{\partial \sigma_{1B}} &= \frac{1}{3\pi\sqrt{2}} \exp\left(-\frac{1}{2} \left(\frac{\beta_0^{(1A)} + \sum_{j=1}^p \beta_j^{(1A)} Z_j^{(1A)} - \left(\beta_0^{(1B)} + \sum_{j=1}^p \beta_j^{(1B)} Z_j^{(1B)}\right)}{\sigma_{1B}} - \frac{\sigma_{1B} \Phi^{-1}(t)}{\sigma_{1A}}\right)^2\right) \\ \times & \left(\frac{\beta_0^{(1A)} + \sum_{j=1}^p \beta_j^{(1A)} Z_j^{(1A)} - \left(\beta_0^{(1B)} + \sum_{j=1}^p \beta_j^{(1B)} Z_j^{(1B)}\right)}{\sigma_{1B}} - \frac{\sigma_{1B} \Phi^{-1}(t)}{\sigma_{1A}}\right)^2\right) \\ \times & \left(\frac{\beta_0^{(1A)} + \sum_{j=1}^p \beta_j^{(1A)} Z_j^{(1A)} - \left(\beta_0^{(1B)} + \sum_{j=1}^p \beta_j^{(1B)} Z_j^{(1B)}\right)}{\sigma_{1B}} - \frac{\sigma_{1B} \Phi^{-1}(t)}{\sigma_{1A}}\right)^2\right) \\ \times & \left(\frac{\beta_0^{(1A)} + \sum_{j=1}^p \beta_j^{(1A)} Z_j^{(1A)} - \left(\beta_0^{(1B)} + \sum_{j=1}^p \beta_j^{(1B)} Z_j^{(1B)}\right)}{\sigma_{1B}} - \frac{\sigma_{1B} \Phi^{-1}(t)}{\sigma_{1A}}\right)^2\right) \\ \end{array}\right) \\ \end{array}$$

2 Figure: Box-Cox-based ROC curves for the prostate cancer data

Figure 1: ROC estimates obtained from empirical-based and Box-Cox approaches for PSA alone (thin line) and the combined biomarker values (thick line). Left to right (i.e., scenarios (1) to (3)) for the empirical-based approach: $(AUC_{PSA} = 0.7185, AUC_C = 0.7933), (AUC_{PSA} = 0.7347, AUC_C = 0.8620), (AUC_{PSA} = 0.6682, AUC_C = 0.8342)$. Left to right (i.e., scenarios (1) to (3)) for the Box-Cox approach: $(AUC_{PSA} = 0.7118, AUC_C = 0.7946), (AUC_{PSA} = 0.7242, AUC_C = 0.8597), (AUC_{PSA} = 0.6728, AUC_C = 0.8345).$

Web-Appendix C (Additional Simulation results)

Table 9: Comparison of sizes of BTI and BTII confidence intervals by Qin et al. (2006). Simulation results of 1000 replications for the scenario in which data representing diseased and healthy individuals are generated by the same bivariate normal distributions (valid null hypothesis since $ROC_1(t) = ROC_2(t)$). The data are generated such that $AUC_1 = AUC_2 = 0.6, 0.7$, and 0.8. Sample sizes explored are (100, 100), (200, 200) and (100, 200). Correlation is set equal to $\rho = 0.2, 0.4, 0.6$ for the data of both the healthy and diseased individuals.

						Size	results			
					BTI			B	TII	
n_A, n_B	ρ	$AUC_1 = AUC_2$	t = 0.2	t = 0.4	t = 0.6	t = 0.8	t = 0.2	t = 0.4	t = 0.6	t = 0.8
		0.6	0.032	0.064	0.052	0.049	0.031	0.042	0.038	0.035
	0.2	0.7	0.046	0.045	0.042	0.030	0.029	0.038	0.027	0.018
		0.8	0.029	0.031	0.031	0.017	0.021	0.025	0.023	0.008
		0.6	0.048	0.059	0.040	0.040	0.034	0.047	0.029	0.024
100, 100	0.4	0.7	0.045	0.046	0.039	0.031	0.030	0.033	0.025	0.017
		0.8	0.030	0.035	0.025	0.021	0.020	0.022	0.020	0.008
		0.6	0.039	0.052	0.035	0.031	0.023	0.036	0.025	0.020
	0.6	0.7	0.035	0.044	0.041	0.027	0.026	0.027	0.017	0.012
		0.8	0.032	0.027	0.026	0.013	0.023	0.017	0.015	0.004
		0.6	0.060	0.047	0.057	0.041	0.048	0.039	0.052	0.036
	0.2	0.7	0.054	0.052	0.048	0.042	0.046	0.040	0.040	0.033
		0.8	0.051	0.049	0.043	0.031	0.043	0.040	0.033	0.020
		0.6	0.0470	0.043	0.044	0.032	0.037	0.043	0.039	0.025
200, 200	0.4	0.7	0.0470	0.046	0.047	0.034	0.039	0.043	0.036	0.030
		0.8	0.0470	0.054	0.035	0.025	0.029	0.044	0.027	0.018
		0.6	0.0360	0.046	0.052	0.028	0.026	0.034	0.035	0.027
	0.6	0.7	0.0450	0.043	0.041	0.035	0.032	0.037	0.030	0.025
		0.8	0.0390	0.046	0.036	0.023	0.037	0.031	0.026	0.012
		0.6	0.043	0.051	0.052	0.054	0.039	0.036	0.038	0.037
	0.2	0.7	0.043	0.046	0.038	0.036	0.031	0.036	0.035	0.023
		0.8	0.051	0.032	0.033	0.026	0.037	0.030	0.029	0.013
		0.6	0.040	0.034	0.044	0.043	0.033	0.025	0.034	0.028
100, 200	0.4	0.7	0.038	0.042	0.039	0.034	0.030	0.031	0.032	0.021
		0.8	0.048	0.030	0.032	0.027	0.034	0.021	0.023	0.015
		0.6	0.035	0.030	0.040	0.032	0.027	0.021	0.028	0.018
	0.6	0.7	0.043	0.039	0.039	0.025	0.028	0.020	0.022	0.013
		0.8	0.054	0.026	0.036	0.016	0.039	0.016	0.019	0.006

Table 10: Comparison of sizes of BTI and BTII confidence intervals by Qin et al. (2006). Simulation results of 1000 replications for the scenario in which data representing diseased and healthy individuals are generated by the same bivariate gamma distributions (valid null hypothesis since $ROC_1(t) = ROC_2(t)$). The data are generated such that $AUC_1 = AUC_2 = 0.6, 0.7$, and 0.8. Sample sizes explored are (100, 100), (200, 200) and (100, 200). Correlation is set equal to $\rho = 0.2, 0.4, 0.6$ for the data of both the healthy and diseased individuals.

						Size	results			
					BTI			B	TII	
$\overline{n_A, n_B}$	ρ	$AUC_1 = AUC_2$	t = 0.2	t = 0.4	t = 0.6	t = 0.8	t = 0.2	t = 0.4	t = 0.6	t = 0.8
		0.6	0.038	0.040	0.038	0.042	0.027	0.032	0.028	0.032
	0.2	0.7	0.043	0.042	0.044	0.035	0.035	0.029	0.027	0.028
		0.8	0.042	0.045	0.035	0.022	0.030	0.033	0.025	0.010
		0.6	0.033	0.041	0.040	0.041	0.019	0.024	0.028	0.029
100, 100	0.4	0.7	0.039	0.040	0.041	0.037	0.021	0.022	0.026	0.022
		0.8	0.043	0.031	0.033	0.017	0.031	0.021	0.020	0.010
		0.6	0.033	0.049	0.036	0.036	0.022	0.034	0.022	0.023
	0.6	0.7	0.037	0.035	0.032	0.026	0.023	0.026	0.017	0.012
		0.8	0.029	0.036	0.030	0.008	0.017	0.023	0.012	0.002
		0.6	0.057	0.039	0.037	0.045	0.051	0.0310	0.036	0.035
	0.2	0.7	0.049	0.035	0.036	0.039	0.042	0.0350	0.034	0.029
		0.8	0.048	0.042	0.037	0.028	0.032	0.0410	0.032	0.017
		0.6	0.042	0.041	0.047	0.040	0.028	0.0310	0.035	0.028
200, 200	0.4	0.7	0.034	0.033	0.036	0.028	0.026	0.0280	0.020	0.022
		0.8	0.037	0.046	0.034	0.026	0.028	0.0400	0.027	0.014
		0.6	0.028	0.042	0.038	0.041	0.023	0.029	0.032	0.027
	0.6	0.7	0.037	0.039	0.035	0.046	0.023	0.028	0.023	0.029
		0.8	0.027	0.036	0.051	0.026	0.023	0.024	0.039	0.022
		0.6	0.043	0.049	0.048	0.052	0.034	0.036	0.043	0.041
	0.2	0.7	0.048	0.041	0.048	0.040	0.040	0.036	0.034	0.025
		0.8	0.049	0.037	0.036	0.021	0.035	0.030	0.030	0.014
		0.6	0.041	0.047	0.035	0.034	0.034	0.028	0.027	0.017
100, 200	0.4	0.7	0.038	0.045	0.039	0.037	0.024	0.033	0.026	0.026
		0.8	0.042	0.039	0.022	0.021	0.027	0.020	0.021	0.010
		0.6	0.034	0.040	0.046	0.039	0.024	0.029	0.037	0.026
	0.6	0.7	0.039	0.034	0.029	0.026	0.026	0.022	0.021	0.015
		0.8	0.037	0.033	0.036	0.016	0.022	0.023	0.015	0.007

Table 11: Power simulation results of 1000 replications for the normal setting (non-valid null hypothesis) under different scenarios. The BTI and BTII methods are considered. Sample sizes explored are (50, 50), (100, 100), and (200, 200). Correlation is set equal to $\rho = 0.2, 0.4$, and 0.6 for data of both the healthy and diseased individuals. The true difference $ROC_2(t) - ROC_1(t)$ to be detected is denoted by d.

					Powe	r results			
					No	rmals			
			B	TI			B	ГII	
$\overline{n_A, n_B}$	ρ	d = 0.20	d = 0.15	d = 0.10	d = 0.05	d = 0.20	d = 0.15	d = 0.10	d = 0.05
	0.2	0.518	0.415	0.285	0.100	0.504	0.421	0.256	0.085
50, 50	0.4	0.574	0.454	0.294	0.097	0.568	0.436	0.269	0.087
	0.6	0.636	0.504	0.319	0.105	0.644	0.490	0.292	0.083
	0.2	0.826	0.754	0.622	0.306	0.848	0.774	0.632	0.302
100, 100	0.4	0.860	0.802	0.653	0.319	0.891	0.812	0.665	0.301
	0.6	0.923	0.833	0.695	0.338	0.944	0.870	0.725	0.329
	0.2	0.984	0.966	0.906	0.646	0.987	0.972	0.925	0.689
200, 200	0.4	0.995	0.972	0.930	0.667	0.997	0.984	0.936	0.703
	0.6	1.000	0.989	0.952	0.705	1.000	0.996	0.962	0.749
					Gai	nmass			
			B	TI			B	ΓII	
n_A, n_B	ρ	d = 0.20	d = 0.15	d = 0.10	d = 0.05	d = 0.20	d = 0.15	d = 0.10	d = 0.05
	0.2	0.329	0.271	0.186	0.080	0.303	0.264	0.174	0.064
50, 50	0.4	0.341	0.294	0.204	0.083	0.324	0.265	0.182	0.076
	0.6	0.423	0.338	0.221	0.099	0.399	0.316	0.199	0.071
	0.2	0.562	0.518	0.376	0.194	0.560	0.509	0.372	0.176
100, 100	0.4	0.619	0.535	0.405	0.228	0.617	0.537	0.408	0.221
	0.6	0.743	0.623	0.445	0.217	0.754	0.624	0.445	0.194
	0.2	0.841	0.778	0.648	0.403	0.851	0.781	0.662	0.419
200, 200	0.4	0.892	0.851	0.747	0.477	0.893	0.861	0.755	0.480
	0.6	0.947	0.910	0.797	0.512	0.956	0.919	0.816	0.518