

Figure A. Flow cytometry analysis of vimentin (a-d) and cytokeratin-13 (e-h) expression in hPVECs (a,b,c,e,f,g) and HeLa cells (d) (positive control for vimentin). Cells were labelled with anti-vimentin and anti-cytokeratin-13 antibodies. Comparison of CK-13 and vimentin were made by comparing fluorescence in the M1 and M2 channels. hPVECs did not show vimentin expression (b) as compared to HeLa cells (d). Cytokeratin expression was observed in hPVECs (f) and VK2/E6E7 cells (h). The figures shown are the representative pictures from three independent experiments are shown. Primary antibody controls for vimentin expression in hPVECs (e) and VK2/E6E7 cells (g) are shown (FLI-H: log fluorescence intensity).

Figure B. Immunofluorescence localization of SLC4A-1 in hPVECs (a), VK2/E6E7 cells (b) and RBCs (c). SLC4A1 expression was seen on the cell membrane of RBCs (arrows). No expression was seen in hPVECs (a) and VK2/E6E7 cells (b). Nuclei of hPVECs (a), VK2/E6E7 cells stained with DAPI. Figure shown (Mag. 40X) is the representative picture from three independent experiments (a, b, c: FITC + DAPI merge).

clustalw.aln

CLUSTAL 2.1 multiple sequence alignment

gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	CATAAACCCT66C6C6CCC66CCC66CACTCTTCT66TCCCCACA6AC
gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	TCAGAGAGAACCCACCATGGTGCTGTCTCCTGCCGACAAGACCAACGTCA
gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	CCGCTGCCC6GTGTA-GGTCGGCGCGCACGCTGGCGAGTATGGTGCGGAG AGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGGCGAGTATGGTGCGGAG
gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	GCCCT6GAGAGGATGTTCCTGTCAATCCCCACCAAGACCTACTTCCC GCCCT6GAGAGGATGTTCCTGTCCTTCCCCACCACCAAGACCTACTTCCC
gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	GCACTTCGACCTGAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGA GCACTTCGACCTGAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCAAGA
gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	AGGTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGACATGCCC AGGTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGACATGCCC
gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	AACGCGCTGTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGGA AACGCGCTGTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGGA
gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	CCC66TCAACTTCAAGCTCCTAAGCCACTGCCTGCTGGTGACCCTG6CCG CCC66TCAACTTCAAGCTCCTAAGCCACTGCCTGCT6GTGACCCTG6CCG
gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	CCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAG CCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCACGCCTCCCTGGACAAG
gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	TTCCT66CTTCT6TGA6CACC6T6CTGACCTCCAAATACC6TTAAAAT TTCCT66CTTCT6TGA6CACC6T6CTGACCTCCAAATACC6TTAA6CT66
gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	TACTTATCCACTCCAAAAGCAGCGAGAGAAAGCTTTTTATT AGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCAGCCCCCC
gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	TTATATATCTCCGCGCGCGGGGCCCG6GGAAAAAACAAAAAACCTTCT
gi VK2/E6E7cells _HBAmRNA gi NM_000558.4 _HBA1mRNA	GCGGCAAAAAAAAAAAAAAAAAAAAAAA
CLUSTAL 2.1 Multiple Sequence Alignments	
Sequence type explicitly set to DNA Sequence format is Pearson	
Sequence 1: gi VK2/E6E7cells HBA_mRNA	482 bp
Sequence 2: gi NM_000558.4 HBA1_mRNA	627 bp
Start of Pairwise alignments Aligning	
Sequences (1:2) Aligned. Score: 83.61 Guide tree file created: [clustalw.dnd]	
There are 1 groups Start of Multiple Alignment	
Aligning Group 1: Sequences: 2 Score:8022 Alignment Score 3278	

CLUSTAL-Alignment file created [clustalw.aln]

Figure C. Clustal W alignment of sequenced Hb- α PCR product. Hb- α (HBA1) sequence is having the accession number, NM_000518.4

clustalw.aln

CLUSTAL 2.1 multiple sequence alignment

gi VK2/E6E7cells _HBBmRNA gi ref NM_000518.4 _HBBmRNA	ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACC
gi VK2/E6E7cells _HBBmRNA	CTACGTTGCCGTCGGG
gi ref NM_000518.4 _HBBmRNA	ATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGG
gi VK2/E6E7cells _HBBmRNA	CAAGT GACGTGGATGA - GTTGGTGGTGAGGCCCTGGGCAGGCTGCTGG
gi ref NM_000518.4 _HBBmRNA	CAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGG
gi VK2/E6E7cells _HBBmRNA	TGGTCTACC-TTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCC
gi ref NM_000518.4 _HBBmRNA	TGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCC
gi VK2/E6E7cells _HBBmRNA	ACTCCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAA
gi ref NM_000518.4 _HBBmRNA	ACTCCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAA
gi VK2/E6E7cells _HBBmRNA	AGTGCTC6GTGCCTTTAGTGATGGCCTCTCCACCTGGACAACCTCAAGG
gi ref NM_000518.4 _HBBmRNA	AGTGCTC6GTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGG
gi VK2/E6E7cells _HBBmRNA	GCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
gi ref NM_000518.4 _HBBmRNA	GCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
gi VK2/E6E7cells _HBBmRNA	CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCA
gi ref NM_000518.4 _HBBmRNA	CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCCA
gi VK2/E6E7cells _HBBmRNA	TCACTTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAG
gi ref NM_000518.4 _HBBmRNA	TCACTTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAG
gi VK2/E6E7cells _HBBmRNA	TGGTGGCTGGTGTGGGCTAATGCCCTGGCCCACAAGTATCACTAAAGGCAC
gi ref NM_000518.4 _HBBmRNA	TGGTGGCTGGTGTGGGCTAATGCCCTGGCCCACAAGTATCACTAA
gi VK2/E6E7cells _HBBmRNA	C6AGCACTTTCTT6CCAT6AGCCTTCACCTTA666TT6CCCATA
gi ref NM_000518.4 _HBBmRNA	-6CTC6CTTTCTT6CCAT6TTCCATTTCTATTAAA6GTTCCTTT6TTCCCTA
gi VK2/E6E7cells _HB8mRNA	ACAGCATCAGGAGTGGACAGATCTTTAAAGGACTCAAAGAACCT
gi ref NM_000518.4 _HB8mRNA	AGTCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGA
gi VK2/E6E7cells _HBBmRNA	CTGGGTCCAAGGGTAGACCACCAGCAGCCTGCCC
gi ref NM_000518.4 _HBBmRNA	TTCTGCCTAATAAAAAACATTTATTTTCATTGC-

CLUSTAL 2.1 Multiple Sequence Alignments

Sequence type explicitly set to DNA Sequence format is Pearson Sequence 1: gl/VZ/S6E7Cells_HBB_mRNA 535 bp Sequence 2: gi/ref/NM_000518.4|_HBB_mRNA 626 bp Start of Pairwise alignments Aligning...

Sequences (1:2) Aligned. Score: 74.0187 Guide tree file created: [clustalw.dnd]

There are 1 groups Start of Multiple Alignment

Aligning... Group 1: Sequences: 2 Score:8561 Alignment Score 3174

CLUSTAL-Alignment file created [clustalw.aln]

Figure D. Clustal W alignment of sequenced Hb- β PCR product. Hb- β (HBB) sequence is having the accession number,

NM 000558.4

Figure E. TLR4 levels in untreated control, DMSO treated control, LPS stimulated and Bay 11 7082 treated hPVECs and VK2/E6E7 cells analysed by ELISA. Cells were seeded at a density of 10^{6} /well in a 24-well plate and induced with LPS ($10 \mu g/ml$ for 6 hrs) or Bay 11-0782 ($5\mu M$ for 24 hrs). Expression of TLR4 was up-regulated in LPS-induced cells. Bay 11-7082 treated cells induced with LPS, the levels of TLR4 were up-regulated. In cells treated with anti-TLR4 antibody, the levels of TLR4 were at par with the controls. Values represent the mean \pm SD of three experiments performed on different days. All the values are statistically significant (***p<0.001 over the controls).

Figure F. Schematic representation of the human Hb- α promoter upstream region (-210 to +540) (A). The -5' (A) and -3' (B) primers used for the Hb- α promoter amplification are shown. TSS, NF- κ B, TFIIB and ATG sites are indicated. (TSS: transcription start site, TFIIB: Transcription factor binding site, NF- κ B: Nuclear factor kappaB). NF- κ B primers used in ChIP assay are indicated (arrows).

Figure G. Western blot (Uncut Fig-4a)

Figure H. Western blot (Uncut Fig4b)

Figure I. Western blot (Uncut Fig4c)

Figure J. Western blot (Uncut Fig4d)

Figure K. Western blot (Uncut Fig7a)

Figure L. Western blot (Uncut Fig7b)

Figure M. Western blot (Uncut Fig7c)

Figure N. Western blot (Uncut Fig-9b, i)

Figure O. Western blot (Uncut Fig9b, ii)

Figure P. Western blot (Uncut Fig9b, iii)

Figure Q. Western blot (Uncut Fig9b, iv)

Table A. Densitometry values of Fig5B.

Parameter		hP	VECs (U	ntreate	d)			hP	VECs (LI	PS treat	ed)			VK	2/E6E7	Untreat	ted)			VK2	/E6E7 (LPS trea	ited)	
Hb-α	0.239	0.229	0.259	0.269	0.301	0.291	0.512	0.0.489	0.506	0.53	0.562	0.586	0.197	0.203	0.195	0.189	0.18	0.173	0.871	0.888	0.813	0.227	0.816	0.823
НЬ-β	0.707	0.663	0.745	0.759	0.83	0.716	0.888	0.912	0.967	0.943	1.04	0.944	0.218	0.224	0.217	0.209	0.273	0.265	0.96	0.86	0.947	0.938	0.97	982

Table B. Fold change values of Fig6.

Parameter		hP	VECs (U	ntreate	d)			hP	VECs (LI	PS treat	ed)			VK	2/E6E7 (Untrea	ted)			VK2	/E6E7 (I	LPS trea	ited)	
Hb-a	1	1	1	1	1	1	2.02	2.033	1.955	1.879	2.207	2.202	1	1	1	1	1	1	2.399	2.158	2.36	2.012	2.08	2.396
нь-в	1	1	1	1	1	1	2.206	2.166	2.201	2.339	2.541	2.171	1	1	1	1	1	1	2.49	2.127	2.319	2.142	2.598	2.31

Table C. Densitometry values of Fig7D.

Parameter		hP	VECs (U	ntreate	d)			hP	VECs (LI	PS treat	ed)			VK2	2/E6E7 (Untreat	ted)			VK2	/E6E7 (I	LPS trea	ited)	
Hb-α	0.132	0.148	0.21	0.2	0.24	0.28	0.71	0.82	0.761	0.839	0.81	0.88	0.148	0.132	0.21	0.19	0.25	0.27	0.88	0.68	0.7	0.71	0.89	0.77
Ηb-β	0.27	0.168	0.23	0.27	0.33	0.29	0.66	0.68	0.761	0.765	0.8	0.78	0.175	0.185	0.23	0.27	0.34	0.24	0.76	0.78	0.85	0.75	0.87	0.85

 Table D. ELISA values of Graph 9A.

Parameter			Control U	ntreated					LPS tr	eated					BAY tı	reated		
p65 NF-kB (hPVECs)	0.196	0.176	0.193	0.191	0.184	0.225	0.449	0.377	0.431	0.423	0.448	0.434	0.191	0.157	0.186	0.192	0.173	0.219
Total NF-kB (hPVECs)	0.222	251	0.222	0.262	0.259	0.25	0.427	0.436	0.445	0.443	0.453	0.451	0.202	0.233	0.189	0.25	0.227	0.237
p65 NF-kB (VK2/E6E7)	0.194	0.192	0.189	0.213	0.226	0.205	0.433	0.44	0.411	0.478	0.422	0.291	0.143	0,141	0.153	0.147	0.168	0.166
Total NF-kB (VK2/E6E7)	0.202	0.22	0.202	0.245	0.206	0.268	0.46	0.479	0.434	0.461	0.475	0.451	0.189	0.222	0.204	0.226	0.212	0/246

Table E. Densitometry values of Fig9C.

Cells			Untre	ated		_			LPS tr	eated	_				Bay tr	eated				E	ay + LP	S treate	d	
hPVECs	0.461	0.385	0.421	0.44	0.45	0.498	0.888	0.846	0.76	0.98	0.936	0.95	0.237	0.236	0.289	0.271	0.33	0.25	0.291	0.249	0.25	0.33	0.23	0.19
VK2/E6E7	0.33	0.27	0.257	0.383	0.269	0.411	0.81	0.83	0.91	0.87	0.88	0.76	0.12	0.1	0.21	0.17	0.137	0.123	0.112	0.116	0.174	0.188	0.137	0.127

Table F. Densitometry values of Fig10B

Cells			Untre	ated				Veh	icle Con	trol (DN	ASO)				Anti T	LR4 Ab					LPS ti	reated		
VK2/E6E7	0.051	0.059	0.055	0.065	0.047	0.037	0.067	0.055	0.051	0.059	0.075	0.067	0.061	0.77	0.071	0.072	0.066	0.09	0.37	0.398	0.371	0.421	0.381	0.399
hPVECs	0.117	0.103	0.116	0.12	0.112	0.13	0.117	0.113	0.102	0.136	0.118	0.128	0.132	0.16	0.154	0.172	0.152	0.15	0.44	0.448	0.44	0.466	0.252	0.472

Table G. ELISA values of Graph 11A.

Time (Hrs)		(Control	hPVECs					LPS h	PVECs				c	Control \	/K2/E6E	7			LPS	VK2/E6	E7		
6	212	264	251	235	301	267	333	321	389	413	477	473	222	214	243	257	281	321	381	371	421	447	503	481
12	211	207	250	248	265	313	499	467	570	556	666	620	169	149	267	265	370	376	497	505	572	582	650	658
24	202	242	231	249	302	270	331	355	420	402	483	475	162	174	244	238	304	324	347	341	401	445	479	525

Table H. ELISA values of Graph 11B.

Time (Hrs)		(Control	hPVECs					LPS h	PVECs				c	ontrol \	/K2/E6E	7				LPS VK	2/E6E7		
6	37	45	43	47	47	51	30	28	38	30	38	40	38	40	43	35	48	50	33	35	39	37	44	40
12	47	39	56	42	54	56	29	27	31	33	37	35	33	39	43	44	47	53	26	30	33	35	30	41
24	51	39	51	47	59	47	29	23	35	27	39	33	37	38	41	47	51	52	24	28	32	30	37	36

Table I. Densitometry values of Fig12B

Parameter		hP	VECs (U	ntreate	d)			hP	VECs (B	ay treat	ed)			VK	2/E6E7 (Untreat	ted)			VK2	/E6E7 (I	Bay trea	ted)	
Hb-a	0.423	0.401	0.42	0.442	0.451	0.457	0.137	0.151	0.165	0.181	0.206	0.208	0.524	0.526	539	0.523	0.538	0.554	0.223	0.227	0.257	0.249	0.281	0.289
НЬ-В	0.411	0.437	0.477	0.431	0.478	0.494	0.152	0.174	0.187	0.177	0.199	0.211	0.443	0.419	0.445	0.439	0.441	0.477	0.231	0.215	0.198	0.202	0.188	0.18

Table J. Densitometry values of Fig13B

Parameter		hP	VECs (U	ntreate	d)			hP	VECs (L	PS treat	ted)			VK	2/E6E7 (Untreat	ed)			VK2	/E6E7 (I	LPS trea	ited)	
hBD-1	0.44	0.38	0.42	0.44	0.49	0.43	0.93	0.79	0.87	0.95	0.95	0.93	0.31	0.3	0.35	0.33	0.37	0.35	0.81	0.75	0.78	0.82	0.84	0.82