Supplementary information

Structural and Functional insights into the catalytic mechanism of the Type II NADH:quinone oxidoreductase family

Bruno C. Marreiros¹, Filipa V. Sena¹, Filipe M. Sousa¹, A. Sofia F. Oliveira¹, Cláudio M. Soares¹, Ana P. Batista^{1,2} and Manuela M. Pereira^{1*}

1- Instituto de Tecnologia Química e Biológica – António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal

2- Current address: iBET, Instituto de Biologia Experimental e Tecnológica, apartado 12, 2780-901 Oeiras, Portugal

*Corresponding author. Telephone: +351-214469312. Fax: +351-214469314; E-mail: mpereira@itqb.unl.pt.

Supplementary Table 1: Simulated pH titrations of NDH-2 from *S. aureus*. Calculated protonated fractions for the different amino acid residues of NDH-2 from *S. aureus* at different pHs for: A) oxidized state of the protein (FAD); B) reduced state of the protein (FADH₂); C) Variation of the protonated fraction between FAD and FADH₂ states for each amino acid residue. For the first two panels the blue-red scale represents the protonated fraction from 0 % (blue) to 100 % (red). For panel C) blue represents a negative variation and red a positive variation of the protonated fraction between FAD and FADH₂ states. At pH 7, the three residues that appear to suffer the highest variation upon FAD reduction and protonation are E_{172} (25 %), E_{176} (-12 %) and H₅₁ (3 %).

Supplementary Table 2: Distances between the amino acid residues composing the proton pathway in the second dinucleotide binding domain present in the three NDH-2s with known structures: A) *S. aureus***; B)** *S. cerevisiae***; C)** *C. thermarum***.** Analyzing the X-ray crystallographic structures available of the three NDH-2s , we have observed the following combinations: in *S. aureus* (PDB:4XDB), E_{183} to D₁₇₉ (6.2 Å, at the surface), D₁₇₉ to backbone of S₃₅₈ (3.3 Å), backbone of S₃₅₈ to E₁₇₆ (4.1 Å), E₁₇₆ to S₃₅₅ (3.5 Å), S₃₅₅ to H₅₁ (2.2 Å) and H₅₁ to E₁₇₂ (3.7 Å); in *C. thermarum* (PDB:4NWX), E₁₈₀ to D₁₇₆ (9.6 Å, at the surface), D₁₇₆ to E₁₇₃ (5.4 Å), E₁₇₃ to R₃₅₅ (1.8 Å), R₃₅₅ to H₄₉ (3.1 Å) and H_{49} to E_{169} (3.8 Å); and in S. cerevisiae (PDB: 4G73), D₂₅₄ to R₅₀₇ (2.0 Å, at the surface), R₅₀₇ to D₂₄₉ (3.8 Å) and D₂₄₉ to Y₄₄₉ (2.4 Å). Y₄₄₉ is at 5.2 Å from E₂₄₆ and at 9.4 Å from E242, and may work as the functional replacement for X51, since in NDH-2 from *S. cerevisiae* (and most of eukaryotic NDH-2s) an equivalent to H⁵¹ is not present to connect the last two glutamate residues (E₂₄₂ and E₂₄₆). This connection could be hypothesized to be performed under a rotamer change state of Y₄₄₉ (corresponding to S₃₅₅ in S. $aureus$; or conformational changes at S₉₆ (corresponding to E₅₂ in S. aureus) since there are two proline residues before that could unwound α -helix 2 and move S₉₆ closer to E₂₄₂; or by the presence of a structural water molecule, which curiously is observed between P_{95,} E₂₄₂ and E₂₄₆ residues in both NDH-2 structures of *S. cerevisiae* ¹⁻².

Supplementary Table 3: Simulated pH titrations of NDH-2 from *S. cerevisiae***.** Calculated protonated fractions for the different amino acid residues from NDH-2 from *S. cerevisiae* at different pHs for: A) oxidized state of the protein (FAD); B) reduced state of the protein (FADH₂); C) Variation of the protonated fraction between FAD and FADH₂ states for each amino acid residue; D) oxidized state of the protein (FAD); E) reduced state of the protein with bound NAD⁺ (FADH₂-NAD⁺); F) Variation of the protonated fraction between FAD and FADH₂-NAD⁺ states for each amino acid residue. For panels A), B), D) and E) blue-red scale represents the protonated fraction from 0 % (blue) to 100 % (red). For panels C) and F) blue represents a negative variation and red a positive variation of the protonated fraction between FAD and FADH₂ states and FAD and FADH₂-NAD⁺ respectively. At pH 5, the three residues that appear to suffer the highest variation upon FAD reduction and protonation (with bound NAD⁺) are E₂₄₂ (34%) , E₂₄₆ (-2 %) and D₃₈₃ (-31 %).

4

 $\boldsymbol{\mathsf{A}}$

 \mathbf{D}

 $\, {\bf B}$

 $\mathbf c$

 $\mathsf F$

pH $\overline{4}$ $\overline{}$ $\overline{6}$ $\overline{\mathbf{8}}$ $\overline{9}$ Amino acid FAD FAD FAD FAD FAD FAD Y169 YD $\begin{array}{r} 12\% \\ 38\% \\ \hline 35\% \end{array}$ $\frac{0\%}{7\%}$ D170 2% 0% $\overline{0\%}$ 39% GD D383 20% 1% 0% 65 E242 55% 12% $3%$ 0% 0% Proton occupancy (%) E246 29% 18% 6% $2%$ 0% 0% 2nd Proton conductive D249 0% 0% 0% 0% 0% 0% pathway D254 10% $\overline{2\%}$ $\overline{0\%}$ 0% 0% $\overline{0\%}$ Y449 100 $\frac{60%}{0%}$ $\frac{32\%}{0\%}$ $H71$ 10% $2%$ $0%$ D73 $\frac{1}{0\%}$ $0%$ 0% 0% 18% 1st Proton conductive H397 47% $3%$ 0% pathway E401 $5%$ $1%$ 0% 0% 0% 0% K405 100^{o} 100 **QQ** RA D408 1% $\overline{0\%}$ -9% 0% -0% -0% Y482 connection 100% 100% 100% $-78%$ QBS E399 91% $57%$ $22%$ $0%$ -3%

 $\mathsf E$

Supplementary Figure 1: Distribution of the three amino acid residues involved in proton transfer from the 2nd dinucleotide binding domain to the quinone. Neighbor-joining dendrogram of NDH-2s family was obtained using 2567 sequences from NDH-2s and sequences from SQRs/FCCDs to define the outer group, midpoint root, 1000 replicates of bootstrap, 999 generated seeds³. Branches are colored according to the three domains of life from which the organism containing the respective NDH-2 originates: green corresponds to organisms from Eukarya, red from Bacteria and blue from Archaea. The external ring of the dendrogram, in the region of NDH-2s, indicates the distribution of three amino acid residues proposed to be involved in proton transfer (X_{51}, X_{379}) and X_{383}). Color code for amino acid residues is indicated in the figure.

Supplementary Figure 2: Role of glutamate residue (E¹⁷² in *S. aureus***) in the catalytic mechanism.** Cartoon representation of the X-ray crystal structure of NDH-2 from A) *S. aureus* (PDB:4XDB, ⁴), B) *C. thermarum* (PDB:4NWZ, ⁵) and C) *S. cerevisiae* (PDB:4G73, ²). Dashed lines show possible hydrogen bonds established by the glutamate residue. A1) E₁₇₂ in *S. aureus* may interact with H₅₁, S₃₅₅ or K₃₇₉ when FAD is oxidized. B1) E₁₆₉ in *C. thermarum* may establish interactions with H₄₉, S₃₅₂ or K₃₇₆ when FAD is oxidized. C1) E₂₄₂ in *S. cerevisiae* may interact with Y₄₄₉, W₄₇₈ or Y₄₈₂ when FAD is oxidized. A2, B2, and C2) Upon binding of NADH, FADH₂-NAD⁺ complex is established and possibly a new hydrogen bond with NH₂ from NADH is formed (red dash lines) and others disrupted (black dash line).

Supplementary Figure 3: Comparison of the 2nd dinucleotide binding domain proton pathway **in NDH-2s and SQRs:** Cartoon representation of the X-ray crystal structures of A) NDH-2 from S. aureus (PDB:4XDB, ⁴) and B) SQR from *Aquifex aeolicus* (PDB:3HYW, ⁶) (RMSD=3.2 Å). Residues E_{162} , H₄₇ and K₃₈₂ occupy the same structural place in SQR as E_{172} , H₅₁ and K₃₇₉ in NDH-2. Moreover, K382 at X_{379} equivalent position was suggested to be a proton donor to the quinone ${}^{6-7}$. We observe that this lysine residue is at least 62 % conserved among SQRs 3 .

Supplementary Figure 4: Proton conducting elements from NADH binding domain, X¹⁷² (E172) to the quinone binding pocket. Cartoon representation of the X-ray crystal structure of NDH-2 from A) *S. aureus* (PDB:4XDB, 4), B) *C. thermarum* (PDB:4NWZ, ⁵) and C) *S. cerevisiae* (PDB:4G73, ²). Red dash lines represent direct proton transfer to X_{379} / X_{383} . Black dash lines schematize alternative proton transfer to X₃₇₉/ X₃₈₃ trough X₅₁. A) In NDH-2 from *S. aureus,* E₁₇₂ could release a proton to K_{379} or a proton could be transferred to the quinone binding pocket through H₅₁ to E₅₂ (~3.3 Å), E₅₂ to K₄₀₁ (~2.8 Å) and K₄₀₁ to D₃₈₃ (~2.4 Å). The latter seems to be stabilized by K₃₇₉ (~2.8 Å) and W₄₉ (~3.5 Å). B) In the case of NDH-2 from *C. thermarum*, H₄₉ (X₅₁) can be linked via Q_{50} (~3.9 Å), Q_{50} to E₄₇ (~2.5 Å) and E₄₇ to D₃₈₀ (~3.8 Å). D₃₈₀ may be stabilized by K₃₇₆ at ~3.7 Å. C) For NDH-2 from *S. cerevisiae*, a proline is present at X₅₁, and therefore we observed only one possible pathway through a hydrogen bond between E_{242} and Y_{482} .

Supplementary Figure 5: Schematic representation of residues which side chains may occupy the same structurally position of H₃₉₇ (X₃₂₃) side chain. The positions are: X₁₉ (S. aureus), located after the first conserved $G_{12}xGxxG_{17}$ motif and which can be occupied by a lysine (3 %), an arginine (9 %), a tyrosine (14 %) or a glutamate (18 %); X₃₂₃ (S. aureus) which is a lysine (6 %), glutamate (8 %) or an histidine (17 %); X₃₈₆ or X₃₈₉, which are located at the end of the first amphipathic α -helix (Figure 1C) and may be occupied by a lysine residue (X_{389} corresponding to K₃₈₉ in *S. aureus*, Figure 7A1) and a tyrosine (X₃₈₆, corresponding to Y₃₈₃ in *C. thermarum*) (Figure 7B). We observed that 7 % of the NDH-2s have a lysine, an arginine, a histidine or a tyrosine residue at X_{389} , but 58 % NDH-2s have these residues at X_{386} .

Supplementary Figure 6: Schematic representation of the catalytic site indicating possible proton transfer in the presence of substrates. Some of the residues involved in the stabilization of FAD (yellow), where dashed lines represent hydrogen bonds: backbone of X_{301} (Glycine) interacts with X₃₂₅ (E/Q/H in *S. cerevisiae, S. aureus, C. thermarum*, respectively); X₃₀₂ (Aspartate) interacts with O3* from FAD; backbones of X_{319} and X_{320} interact with N1 and O2 from FAD isoalloxazine ring; X₃₇₉/X₃₈₃ (X₃₇₉ is a K in *S. aureus* and *C. thermarum* and X₃₈₃ is a Y in *S. cerevisiae*) interact with O4 from FAD isoalloxazine ring. Schemes based on the NDH-2 cocrystalized with NADH and quinone from *S. cerevisiae* (PDB:4G73²). X₃₂₅ may be considered as a critical residue in the propagation of the conformational changes from the GD motif to the QBS motif (caused by the FAD reduction, hence its bending), possibly necessary for the quinone protonation.

References

- 1 Iwata, M. *et al.* The structure of the yeast NADH dehydrogenase (Ndi1) reveals overlapping binding sites for water- and lipid-soluble substrates. *Proceedings of the National Academy of Sciences of the United States of America* **109**, 15247-15252, doi:10.1073/pnas.1210059109 (2012).
- 2 Feng, Y. *et al.* Structural insight into the type-II mitochondrial NADH dehydrogenases. *Nature* **491**, 478-482, doi:10.1038/nature11541 (2012).
- 3 Marreiros, B. C., Sena, F. V., Sousa, F. M., Batista, A. P. & Pereira, M. M. Type II NADH:Quinone oxidoreductase family: Phylogenetic distribution, Structural diversity and Evolutionary divergences. *Environmental microbiology*, doi:10.1111/1462-2920.13352 (2016).
- 4 Sena, F. V. *et al.* Type-II NADH:quinone oxidoreductase from Staphylococcus aureus has two distinct binding sites and is rate limited by quinone reduction. *Molecular microbiology* **98**, 272- 288, doi:10.1111/mmi.13120 (2015).
- 5 Heikal, A. *et al.* Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. *Molecular microbiology* **91**, 950-964, doi:10.1111/mmi.12507 (2014).
- 6 Marcia, M., Ermler, U., Peng, G. & Michel, H. The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration. *Proceedings of the National Academy of Sciences of the United States of America* **106**, 9625-9630, doi:10.1073/pnas.0904165106 (2009).
- 7 Cherney, M. M., Zhang, Y., Solomonson, M., Weiner, J. H. & James, M. N. Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans: insights into sulfidotrophic respiration and detoxification. *Journal of molecular biology* **398**, 292-305, doi:10.1016/j.jmb.2010.03.018 (2010).