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1 The Nyman Polymorph Library

We include here additional data that we hope will facilitate future computational
studies of polymorph differences.

We provide the optimised crystal structures at both 0 K and at the melting point
of each structure in the form of two crystallographic information files (.cif). Please
see the files NPL2016 0K.cif and NPL2016 Tm.cif for these structures. We
also provide a list of all Cambridge Structural Database (CSD) reference codes as
a txt/gcd. The gcd file can be opened in CSD software (Mercury or Conquest) to
view all of the structures.

Additional data is provided in the comma-separated value file (.csv)
NPL2016 data.csv. This is a text file that can be opened in any text editor or
spread sheet program. Each row contains the data for one crystal structure. The
data fields are:

• The CSD reference code

• The Standard IUPAC International Chemical Identifier, InChi.

• Z, the number of formula units (molecules) per unit cell

• Z′, the number of formula units per asymmetric unit

• The chemical formula of the molecule.

• The calculated unit cell volume of the 0 K optimised structure, in Å3

• Experimentally determined melting point temperature in K.

• Predicted melting point temperature in K.

• The thermal pressure at the melting point temperature, in GPa.

• The SMILES string of the molecule.

• The calculated bulk modulus at 0 K in GPa, from the Hill average of the Voigt
and Reuss averages over the elastic tensor.

• The calculated shear modulus at 0 K in GPa, from the Hill average of the Voigt
and Reuss averages over the elastic tensor.

• The calculated volumetric thermal expansion coefficient in 10−6 K−1.
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2 Lattice dynamics calculations

Harmonic approximation rigid-body lattice dynamics calculations were performed
in Dmacrys 2.0.4,1 using algorithms that have been described elsewhere.2–4 In-
tramolecular vibrations are not considered, and therefore we must limit our investi-
gation to polymorphs with molecules in the same conformation.

Because of the anisotropic phonon dispersion in molecular crystals, it is necessary
to consider phonon frequencies calculated at several k-points in the first Brillouin
zone. We have used our previously described co-prime split linear supercell method5

for sampling k-points, but with a modified co-prime splitting scheme (see ESI†). A
target k-point separation of 0.1 Å−1 was used, resulting in a median of 21 unique
k-points per structure.

The total number of non-zero phonon frequencies is n = 6ZNk − 3, where Z is
the number of molecules per unit cell and Nk the number of sampled k-points. To
improve the convergence of vibrational energies with respect to k-point sampling,
we approximate g(ω) with a Gaussian kernel density estimate (KDE) of the discrete
phonon frequencies ωi:

g(ω)

6Z
∼ KDE(ω) =

1
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2h2
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In other words, we assume a small dispersion around the sampled k-points and
replace each phonon frequency by a narrow Gaussian distribution.4,6 The kernel
bandwidth h determines the level of broadening around each calculated frequency,
and was set to 1/20 of the standard deviation of the phonon frequencies.

Full elastic tensors were calculated in Dmacrys.7 The elastic tensor allows us to
account for acoustic phonon dispersion near the Γ-point with Debye’s method. The
Debye frequency ωD was obtained from the elastic stiffness tensor via the Christoffel
equation and the Debye dispersion relation. The Debye frequency for each crystal
structure is calculated as the average frequency of acoustic phonons on the surface
of an ellipsoid around Γ that extends out to the nearest explicitly sampled k-points.

The vibrational contribution to the free energy Fvib(T ) for one unit cell with Z
rigid molecules can then be calculated from the phonon density of states g(ω) and
the Debye frequency ωD as:
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where D(x) is the Debye function

D(x) =
3

x3

∫ x

0

t3

exp (t)− 1
dt. (3)
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The vibrational energy consists of zero point energy ZPE, a thermal contribution
to the internal energy and an entropic contribution;

Fvib(T ) = ZPE +

∫ T

0

Cp(T ) dT − TSvib(T ) (4)

At non-zero temperatures we calculate the free energy in the harmonic approxi-
mation AHA(T ) as

AHA(T ) = Elatt + FHA
vib (T ) (5)

The thermal expansion caused by zero-point vibrations is implicitly included in the
empirical force field, which was parametrised to fit lattice energy minima to low
temperature crystal structures. Therefore, we calculate the harmonic (HA) and
quasi-harmonic (QHA) free energy at 0 K as:

AQHA(0) = AHA(0) = Elatt + ZPE (6)

The harmonic approximation is based on an assumption that phonon frequencies
and the crystal structure do not change with temperature. At temperatures near
the melting point this leads to unacceptable errors. We have previously described
our implementation of a quasi-harmonic method to account for thermal expansion
and the temperature-dependence of lattice vibrations.4

Thermal expansion and free energies in the quasi-harmonic approximation are
calculated using the thermal pressure method.8 Vibrational contributions to the
free energy Fvib are calculated for the (0 K) lattice-energy minimised unit cell, and
one additional unit cell slightly expanded in volume by the application of a negative
hydrostatic pressure. We use −300 MPa, which results in volume expansions of a
few percent. We prefer the application of a negative pressure over a direct scaling
of lattice parameters because the thermal expansion can be highly anisotropic and
because it allows us to calculate elastic tensors and apply the Debye method. A
thermal pressure Pth(T ) = −∂Fvib(T )/∂V is then calculated from a finite difference
between the two volumes at a given temperature.

Geometry optimisation in the rigid body approximation at −Pth results in a
thermally expanded crystal structure close to the free energy minimum at constant
pressure. The quasi-harmonic free energy AQHA can then be calculated for the
thermally expanded structure as

AQHA(T ) = Elatt(T ) + FQHA
vib (T ) (7)
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3 Included and excluded polymorphs

An alphabetically sorted list of CSD reference codes for all polymorphs included
in this study can be found in NPL2016.gcd. The file can be opened in CCDC’s
program Conquest, or as a text file.

The set of polymorphs in this study is based on our previous work, where packing
polymorphs were chosen from the ’best hydrogens list’ by van de Streek.9 Not all
structures in our previous list could be used however. Below we list some of the
reasons we had to exclude structures.

The structures HDXMOR/01, LEZJAB/01, DMANTL01/07 and IFOVOO/01
are conformational polymorphs or have different inter- or intramolecular hydrogen
bonding which are not modelled accurately using the methods used in this study,
since we neglect intramolecular vibrations.

DMFUSC/04, ACEMID01/03, CATCOL12/13, DMETSO05/06, GLURAC03/04,
and YOLDAF01/02 were excluded because they describe the same polymorph and
similarly AMBACO09, HACTPH15 and SALOXM05 were excluded because they
are re-determinations of AMBACO06, HACTPH11 and SALOXM03, respectively.
The high pressure polymorph BENZEN04 was also excluded, since we assume the
pressure is zero throughout this study.

The pairs ETDIAM11/16, MAQWIM01/03, PYRENE02/06, QUBPIN/02 and
YAMHID/03 are different polymorphs according to CSD data, but converged to the
same crystal structure in our geometry-optimisations. These were also excluded,
with the exception of ETDIAM11, which forms a pair with ETDIAM18, which is a
distinct polymorph.

Disordered structures (DOGWOL01) and structures with missing hydrogen atoms
(MEQVAG/01, AMYTAL10/11, PMAANO01/10, PTCDEC/01 and HUMTEP01)
were also excluded.

For the families MSULIN and HUPGOO the generated SMILES could not be
used in Mtbtnt, so no predicted melting points could be obtained.

During CrystalOptimizer calculations, structures of the families BDTOLE,
NUQXEC, BIRKIW, PEWXAQ, SAXJEG, UTORAX, YIVRIF, JEJSIA and FU-
GYAH had to be excluded because of convergence issues in calculating the molecular
Hessian matrix. The size or shape of some systems (BIPHME, MOHDET, HOF-
MAQ, UNOGIN, AWIFUI, DAVWAY, FIMNAQ, HPTHEL, MATDEQ, IDALEF
and YIHKAB) also made convergence difficult.

For extremely anisotropic unit cells, the method of k-point sampling in the lattice
dynamics calculations we use can be computationally cumbersome. The structures
BANHOO/01 and CBFBZF01 had to be excluded because we could not sample the
required k-points.
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4 Structures used in thermal expansion coefficient calcula-
tions

The following structures, referred to by their Cambridge Structural Database refer-
ence codes, were used for calculating the experimental values of volumetric thermal
expansion coefficients.

monoclinic MNPHOL: MNPHOL02; MNPHOL10; MNPHOL11; MNPHOL12;
MNPHOL13; MNPHOL14; MNPHOL15; MNPHOL16; MNPHOL17; MNPHOL26.

1,2-ethanediamine (ETDIAM) form I alpha; ETDIAM01; ETDIAM10; ETDIAM11;
ETDIAM12; ETDIAM13.

beta-sulfur (FURHUV): FURHUV03; FURHUV04; FURHUV05; FURHUV06;
FURHUV07; FURHUV08; FURHUV10.

glutaric acid (GLURAC) beta form: GLURAC07; GLURAC08; GLURAC09;
GLURAC10; GLURAC11; GLURAC12.

paracetamol (HXACAN) form I: HXACAN01; HXACAN02; HXACAN03; HXA-
CAN04; HXACAN05; HXACAN06; HXACAN07; HXACAN13; HXACAN14; HX-
ACAN15; HXACAN16; HXACAN17; HXACAN18; HXACAN19; HXACAN20; HX-
ACAN26; HXACAN27; HXACAN28; HXACAN30; HXACAN34.

adipic acid (ADIPAC) form I: ADIPAC; ADIPAC01; ADIPAC02; ADIPAC04;
ADIPAC06; ADIPAC07; ADIPAC08; ADIPAC09; ADIPAC11; ADIPAC13; ADI-
PAC14; ADIPAC15; ADIPAC16; ADIPAC17; ADIPAC18; ADIPAC19.

2,2’-Dipyridylamine (DPYRAM) monoclinic form: DPYRAM02 and DPYRAM03.
Pyrazinamide (PYRZIN) beta form: PYRZIN01; PYRZIN18 and PYRZIN23.
Structures whose temperature is reported as room temperature were treated as

293 K.
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5 Additional results

Below are figures with additional results that could not be included in the main
article.
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Figure S1: The correlation between the free energy difference in each polymorph pair at 0 K and
the free energy difference at the melting point in the harmonic approximation. The green triangle
marks the 17% of pairs that were re-ranked by vibrational energy. Green and red data points
represent experimentally determined and predicted melting points respectively.
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Figure S2: The harmonic approximation vibrational energy differences at the melting point relative
to the 0 K relative stability between pairs of polymorphs. The background colours indicate pairs
that have diverging (red) and converging (yellow and green) free energy curves, and which pairs are
re-ranked (green). Green and red data points represent experimentally determined and predicted
melting points respectively.
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Figure S3: The correlation between the 0 K lattice energy and the quasi-harmonic free energy
at the respective melting points. The correlation coefficient is 0.79, meaning that lattice energy
differences accounts for 79% of free energy differences at high temperatures. The fraction of pairs
that are re-ranked by free energy relative to the lattice energy ranking (green field) is 17%.
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Figure S4: Phonon densities of state at different temperatures for β-sulphur (FURHUV10).
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Figure S5: Phonon densities of state at different temperatures for 1,2-ethanediamine (ETDIAM11).
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Figure S6: Phonon densities of state at different temperatures for m-nitrophenol (MNPHOL02).

8



0 25 50 75 100 125 150 175

Frequency [cm−1]

0

50

100

150

200

250

300

350

Te
m

pe
ra

tu
re

[K
]

GLURAC β

Figure S7: Phonon densities of state at different temperatures for glutaric acid β (GLURAC03).
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Figure S8: Calculated thermal expansion (dashed line) of the β sulfur polymorph (FURHUV10)
compared to experimental data (solid line).
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Figure S9: Calculated thermal expansion (dashed line) of monoclinic m-nitrophenol (MNPHOL02)
compared to experimental data (solid line).
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Figure S10: Calculated thermal expansion (dashed line) of paracetamol form I (HXACAN12)
compared to experimental data (solid line).
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Figure S11: Calculated thermal expansion (dashed line) of the β glutaric acid polymorph (GLU-
RAC03) compared to experimental data (solid line).
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Figure S12: Calculated volumetric thermal expansion (dashed line) of the β glutaric acid poly-
morph (GLURAC03) compared to experimental data (solid line).
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Figure S13: Calculated thermal expansion (dashed line) of lattice vectors of the Iα 1,2-
ethanediamine polymorph (ETDIAM11) compared to experimental data (solid line).
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Figure S14: Calculated volumetric thermal expansion (dashed line) of the Iα 1,2-ethanediamine
polymorph (ETDIAM11) compared to experimental data (solid line).
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Figure S15: Calculated volumetric thermal expansion (dashed line) of monoclinic m-nitrophenol
(MNPHOL02) compared to experimental data (solid line).
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Figure S16: Calculated volumetric thermal expansion (dashed line) of β sulfur (FURHUV12)
compared to experimental data (solid line).

12



0 50 100 150 200 250 300 350 400
Temperature [K]

-140

-135

-130

-125

-120

-115

-110

-105

-100

Fr
ee

en
er

gy
[k

J
m

ol
−

1 ]

ADIPAC I
ADIPAC II
ADIPAC III

Figure S17: Quasi-harmonic free energy curves for polymorphs of adipic acid.

0 50 100 150 200 250 300 350 400
Temperature [K]

-1

0

1

2

3

4

5

∆
Fr

ee
en

er
gy

[k
J

m
ol
−

1 ]

ADIPAC I
ADIPAC II
ADIPAC III

Figure S18: Quasi-harmonic free energy difference curves for polymorphs of adipic acid.

Adipic acid (1,6-hexanedioic acid) has three experimentally known polymorphs.10,11

There is a phase transition between forms I and II at 130-136 K. It is first-order,
enantiotropic and reversible. Form I is thermodynamically stable at room temper-
ature, II is stable below 130 K. Computationally, form II became unstable at high
temperatures (Born instability). No transitions have been described in the triclinic
phase III and it appears to be monotropic relative to the other forms.

Our calculated free energy curves for adipic acid are shown in Figures S15 and
S16. We predict form III to be more stable than the others below 310 K, a possibility
which strictly is not ruled out by experimental data. The calculated free energy
curves are incorrect because of the 0 K lattice energy ordering of the polymorphs.
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Figure S19: Quasi-harmonic free energy curves for polymorphs of theophylline. Polymorph IV
changes structure slightly above 450 K, becoming less stable.
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Figure S20: Quasi-harmonic free energy difference curves for polymorphs of theophylline. Poly-
morph IV changes structure slightly above 450 K, becoming less stable.

Figures S19 and S20 show the relative stabilities of three polymorphs of theo-
phylline (CSD BAPLOT). Form I is a high-temperature polymorph and is enan-
tiotropically related to form II. Form II was believed to be the thermodynamically
most stable form at ambient conditions until form IV was discovered. There is a
(monotropic) transition from IV to II between 483 and 513 K.12 The structure of
form IV becomes unstable around 450 K in the quasi-harmonic approximation.

The experimental data suggests form IV is thermodynamically stable between
295 and 483 K. Form II is then the most stable between 513 and 536, and form I is
favoured up to the melting point. Our calculated free energy curves for theophylline
I, II and IV are shown in Figures S17 and S18. We correctly identify from IV as
the most stable at low temperatures, and that form I has a higher entropy than the
other structures. Form I is however incorrectly found to be monotropically related
to form II. Note the very small energy differences between these polymorphs, which
are smaller than the expected errors in the energy model.
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Figure S21: Quasi-harmonic free energy curves for polymorphs of 2,2′-dipyridylamine.
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Figure S22: Quasi-harmonic free energy difference curves for polymorphs of 2,2′-dipyridylamine.

The curves in Figures S21 and S22 show the calculate relative thermodynamic
relationships between the orthorhombic (DPYRAM), triclinic (DPYRAM01) and
monoclinic (DPYRAM02) polymorphs of 2,2′-dipyridylamine. These can be com-
pared to qualitative curves based on experimental data.13

The orthorhombic polymorph should be unstable at high temperatures, so the
fact that this is the least entropically stabilized form is correct. However, it should
be the most stable form below 263 K, indicating that our lattice energy ranking
of the polymorphs is incorrect. The stability reordering between the triclinic and
monoclinic forms at 310 K is not reproduced, because we incorrectly predict the
triclinic form to the thermodynamically stable form at room temperature, rather
than the monoclinic form. Thus, the relative entropies seem to be accurate, but the
static energy differences between the three polymorphs are in error.
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Figure S23: Quasi-harmonic free energy curves for polymorphs of pyrazine-2-carboxamide.
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Figure S24: Quasi-harmonic free energy difference curves for polymorphs of pyrazine-2-
carboxamide.

For pyrazine-2-carboxamide, (pyrazinamide, rifater) we have used three of the
known polymorphs. The different forms are denoted by Greek letters; α, β and δ
corresponding to CSD structures PYRZIN15, PYRZIN18 and PYRZIN16, respec-
tively.14

Experimental results indicate that the order of stability is δ < α < β at 0 K, with
δ being the most stable.15 At elevated temperatures, the order is α < δ < β.16 A
semi-quantitative free energy diagram has been constructed based on experimental
data.14 We correclty predict the δ form as the most stable, but the calculated 0 K
order of α and β forms is incorrect. The α is correctly predicted to approach δ with
increasing temperature, but the calculated free energy curves do not cross.
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Figure S25: Quasi-harmonic free energy curves for several polymorphs of acridine (ACRDIN).
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Figure S26: Quasi-harmonic free energy difference curves for several polymorphs of acridine, rela-
tive to polymorph IV

In acridine, the relative stabilities between the many known forms can be inferred
from melting points,17, slurry experiments18 and known phase transitions. Form II
was originally reported as the thermodynamically stable form at ambient condi-
tions,19 but slurry experiments suggest form III to be thermodynamically favoured
at 295 K, and that it converts to form II at 318 K.19 Forms II and IV can crystallize
concomitantly,17 yet form IV converts to II at 348 K.19 Phase II then converts enan-
tiotropically to form VIII at 374 K.17 The available data shows that all polymorphs
are very similar in enthalpy, but that possibly the following orders of stability can
be assigned at low temperatures, III>II>IV, and high, VIII>VII>VI>IV. The cal-
culated curves do not quantitatively agree with experimental data, see Figs S25 and
S26. The lattice energy ordering is incorrect and hence, the free energy curves are
necessarily also incorrect.
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We have previously published results on the thermodynamics of polymorphs at
room temperature,5 but elastic properties were not considered in that study. Since
the elastic properties are highly temperature dependent, we include here additional
results on the distributions of absolute and relative differences in shear and bulk
moduli at room temperature, see Figs S27 – S30. Results are presented for a subset
of 801 crystal structures with melting points above room temperature, resulting in
444 pairwise comparisons.
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Figure S27: The distribution of bulk moduli calculated at 298 K.
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Figure S28: The distribution of pairwise differences in bulk moduli between 444 polymorph pairs
calculated at 298 K.
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Figure S29: The distribution of shear moduli calculated at 298 K.
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Figure S30: The distribution of pairwise differences in shear moduli between 444 polymorph pairs
calculated at 298 K.

6 Flexibility rules

A python script was used to automatically select the most relevant flexible degrees
of freedom from the Z-matrix generated by CrystalOptimizer. The algorithm
used for constructing the Z-matrix is described in Appendix A of the PhD-thesis by
Kazantsev.20 Our script analyses the atomic connectivity in the molecule by means
of standard graph-theoretical algorithms21 and chooses degrees of freedom according
to these rules:

• Covalent bond lengths are optimised without considering packing forces;

• All angles and dihedrals containing a polar hydrogen atom (–OH, –NH, –SH1)
are optimised under the influence of packing forces;

• All exocyclic bonds are considered rotatable and are optimised under the in-
fluence of crystal packing forces;

• Dihedrals and angles in 3- and 4-membered rings are optimised without con-
sidering packing forces;

• Dihedrals and angles in 5- and 6-membered rings consisting of 3-coordinated
carbon atoms and nitrogen in any combination are unaffected by packing forces,
except dihedrals and angles that contain a polar hydrogen atom;

• Dihedrals and angles in 5-membered rings containing sulfur or oxygen2 atoms
bonded to two 3-coordinated carbon atoms are optimised without considering
packing forces;

• Any remaining dihedrals are optimised with respect to packing forces;

• Linear angles in –C≡N and –C≡C– groups are constrained to 179.99◦.

For completely rigid molecules we allow the first angle to be optimized with respect
to packing forces, since CrystalOptimizer needs at least one flexible degree of
freedom. We use CrystalOptimizer also on formally rigid molecules in order to
optimise them to the minimum DFT energy conformer. In particular this optimises
the hydrogen positions in a consistent way.

1There are no thiols in the structure set, as very few polymorphic thiol compounds are known. Also, the force
field used in this work does not contain parameters for thiol hydrogen atoms.

2Specifically furan, thiophene, 1,3-oxazole, 1,3-thiazole, 1,3,4-oxadiazole and 1,3,4-thiadiazole rings.
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7 Regression analysis for melting point vs. lattice energy

We expect the melting temperature to depend simply on the enthalpy/lattice en-
ergy. Since we have a good anisotropic model potential to calculate accurate lattice
energies, trying to predict melting points based on this lattice energy is attractive.
Here we have used only the intermolecular part of the lattice energy. Intramolecular
contributions arising from geometric distortions from the vacuum conformation are
not included here for simplicity.

To obtain an adequate regression model, it is necessary to perform a variance
stabilizing transformation. Assuming the data is Poisson-distributed, the variance
can be made homoscedastic with the Anscombe transform:

x 7→ 2
√
x+ 3/8 (8)

In this case the 3/8 term is small and simply taking the square root of the lattice
energies is adequate and gives virtually identical results.

We used Minitab 17 to perform the least squares regression. The full output
is provided below. The residuals for the resulting model (Fig. S32) have a stan-
dard deviation of 54.5 K, the residuals are normally distributed, independent and
homoscedastic, giving us confidence in the model.

Figure S31: Experimental melting points vs. intermolecular energies. Linear fit (red line) and the
non-linear regression (yellow line) use here.

Starting Values for Parameters

Parameter Value

Theta1 37

Theta2 0.5*

* Locked.

Equation

Tm = 38.9938 * ’Lattice energy’ ^ 0.5

Parameter Estimates
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Figure S32: Residual analysis for the regression model.

Parameter Estimate SE Estimate

Theta1 38.9938 0.339152

Theta2 0.5000 *

Tm = Theta1 * ’Lattice energy’ ^ Theta2

Lack of Fit

Source DF SS MS F P

Error 224 665027 2968.87

Lack of Fit 222 660987 2977.42 1.47 0.492

Pure Error 2 4040 2020.00

Summary

Iterations 2

Final SSE 665027

DFE 224

MSE 2968.87

S 54.4873
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8 Co-prime splitting of linear supercells.

The crystal unit cell is expanded into linear supercells expanded along a, b or
c only. The co-prime splitting used in this article differs from that used in our
previous paper5. We have changed the co-prime splitting for two reasons. Firstly,
we want to make the convergence less erratic and more monotonic. This is achieved
by making sure that as the target k-point distance decreases, the number of sampled
k-points increase strictly. Because of a minor error in our previous method, this was
not strictly guaranteed.

The co-prime splitting used in this article is as follows. If s < 6 the lattice
dynamic calculations is performed on the supercell as is. For s > 6 the supercell
is split into n smaller supercells (1x1xk, 1x1x`, 1x1xm ...) such that k, `,m... are
all mutually co-prime and k + ` + m − n > s. This ensures that at least the
same number of unique k-points are sampled. The phonons for k = 0 will be
calculated in each supercell, and we only include these phonons from one of the
split supercells. The long linear supercells are split into 2, 3 or 4 co-prime supercells
according to the scheme in Table S1. Note that this is by no means the only possible
choice, and we make no claim that this is the best or computationally most efficient
splitting. Splitting the supercells means that the sampled k-points will no longer
be equidistantly placed along the reciprocal axes, but this has a very small effect on
the results.

Table S1: Linear supercells were split into 2, 3 or 4 smaller supercells with mutually co-prime
expansion coefficients in this way.

2 → 2
3 → 3
4 → 4
5 → 5
6 → 3, 4
7 → 3, 5
8 → 4, 5
9 → 3, 4, 5
10 → 3, 4, 5
11 → 3, 4, 7
12 → 3, 4, 7
13 → 3, 5, 7
14 → 4, 5, 7
15 → 5, 6, 7
16 → 3, 4, 5, 7
17 → 5, 7, 8
18 → 5, 7, 8
19 → 3, 5, 7, 8
20 → 3, 5, 7, 8
21 → 4, 5, 7, 9
22 → 4, 5, 7, 9
23 → 4, 5, 7, 9
24 → 5, 7, 8, 9
25 → 5, 7, 8, 9
26 → 5, 7, 8, 9
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9 Model potential parameters for halogens

Halogen atoms tend to have an anisotropic van der Waals radius22. To account
for this, intermolecular potentials with an anisotropic repulsion term have been
developed1,23. A local unit vector ez is defined at each anisotropic site, parallel
to the covalent bond joining the halogen to its bonded atom, pointing away from
the bond. A second unit vector, eik, is the vector between the interacting atoms.
Dmacrys describes repulsion anisotropy using a modified exp-6 potential of the
form:

V = G exp (−Bικ(rij − ρικ(Ωik)))− Cικ/r6, (9)

where ρικ(Ωik) describes the anisotropy of repulsion, and is defined as:

ρικ(Ωik) = ρικ0 + ρι1(eiz · eik) + ρκ1(−ekz · eik) + ρι2(3[eiz · eik]2 − 1)/2

+ ρκ2(3[ekz · eik]2 − 1)/2 (10)

ρ0 describes the isotropic repulsion, ρ1 parameters describe a shift of the centre of
repulsion and ρ2 parameters describe a quadrupolar distortion of the atom. Parame-
ters for Cl and F were taken from Day’s specifically developed potential for molecule
XIII in the 4th blind test of crystal structure prediction.24 Halogen parameters were
empirically fitted to reproduce the crystal structures of a set of halogenated aro-
matic molecules. Details are available in the ESI to the 4th blind test paper. The
parameters, in input format for Dmacrys are provided below:

BUCK F_01 F_01

3761.006673 0.240385 7.144500 0.0 70.0

ANIS F_01 F_01

0 0 2 0 2 -0.035000

0 0 0 2 2 -0.035000

ENDS

BUCK Cl01 Cl01

5903.747391 0.299155 86.716330 0.0 70.0

ANIS Cl01 Cl01

0 0 2 0 2 -0.093860

0 0 0 2 2 -0.093860

ENDS

Heteroatomic interactions between sulfur, fluorine and chlorine and other atom types
are calculated using conventional arithmetic and geometric averages of the force field
parameters:

Aικ =
√
AιιAκκ (11)

Bικ =
BιιBκκ

2
(12)

Cικ =
√
CιιCκκ (13)
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[15] A. Borba, M. Albrecht, A. Gómez-Zavaglia, M. A. Suhm and R. Fausto, The
Journal of Physical Chemistry A, 2009, 114, 151–161.

[16] R. A. Castro, T. M. Maria, A. O. Évora, J. C. Feiteira, M. R. Silva, A. M.
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