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Supplementary Note 
 
Odds ratio in percentile analysis derived from truncated normal theory 
For a disease or disorder, it is assumed that there are normalised individual risk 
profile scores (u) for the sample that can be estimated from GBLUP1; 2. When 
selecting the top X proportion of the risk profile scores, the expectation and variance 
are3; 4 
 
E(u | top) = itop ⋅R  
Var(u | top) =σ top

2 = [1− itop ⋅ (itop − ttop )]⋅R
2  

 
where itop is the mean risk scores for the top selected group according to the risk 
profile score, R2 is the proportion of the total variance on the liability scale explained 
by the risk profile scores and ttop is the threshold on the normal distribution which 
truncates the proportion of the top risk group. Considering the vector of u, the 
probability density (z) is the height of the normal curve at the threshold, ttop.  If we 
define X = the proportion of the top risk group according to the risk profile score, itop 
= z / X. According to truncated normal distribution theory3; 4, the probability of being 
a case for the top risk group is 
 

P(case | top) ≈ 1−Φ (ttop − itop ⋅R) / σ top
2 + (1− R2 )%
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Similarly, the probability being a case for the bottom risk group is 
 

P(case | bottom) ≈ 1−Φ (tbottom − ibottom ⋅R) / σ top
2 + (1− R2 )%
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where ibottom is the mean risk scores for the bottom selected group and tbottom is the 
threshold on the normal distribution which truncates the proportion of the risk profile 
scores of the bottom risk group. Therefore, the odds ratio of expected case-control 
status by contrasting the top and bottom percentile (equation (4)) and the top and the 
normal population (equation (5)) can be obtained.  
  
 
Effective number of chromosome segments with a genomic length of L Morgan 
With an L Morgan region, the sum in equation (7) can be written as   
 

ri, j
2

j=1

M

∑
i=1

M

∑ M 2 = 1 [1+ 4Ne L(i / (M −1))]⋅2(1− i /M ) ⋅ (1 /M )
i=0

M−1

∑  

 
This can be transformed to a function of x with infinity data points ranging from 0 to 
1 as 
 
f (x) =1/[1+ 4NeL ⋅ x]⋅2(1− x) . 
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Integrating this function over x ranging from 0 to 1 gives the mean of the function, i.e. 

ri, j
2

j=1

M

∑
i=1

M

∑ M 2  can be obtained as  

 
f (x)dx

0

1
∫ = [ln(4NeL +1)+ 4NeL(ln(4NeL +1)−1)] / (8Ne

2L2 ).  

 
 
Me from the genomic relationship matrix 
Me can also be estimated from a genomic relationship matrix (GRM). In this 

derivation, the elements in the GRM are Aij = ximx jm
m=1

M

∑ /M

 

where xim and xjm are the 

standardised genotype coefficients (mean 0 and variance 1) for the ith and jth 
individuals at the mth locus. It is possible to construct a GRM for each locus, and the 
elements in the GRM at the mth locus are Aij (m) = ximx jm . Then, the variance of the 
mean of Aij (m)  across all the SNPs is  
 

var Aij (m) /M
m=1

M

∑
"
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M 2 cov(Aij (l ),Aij (m) )
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M
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M
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When two loci are correlated such that the correlation between the mth and lth locus is 
cor(xim, xil ) = rml , the correlation between Aij (m)

 

and Aij (l )  is cor(Aij (m),Aij (l ) ) ≅ rml
2  when 

individuals i and j are randomly sampled from the population (i ≠ j). The derivation is 
in the following – the expectation of the relationship between the ith and jth 
individual at mth locus is  
 
E(Aij (m) ) = E(ximx jm )

=
x1m (x !1m +...+ x !Nm )+...+ xNm (x !1m +...+ x !Nm )

N !N

=
(x1m +...+ xNm )(x !1m +...+ x !Nm )

N !N
= E(xim )E(x jm )
= 0

 

 
while the variance of the relationship between the ith and jth individual at the mth 
locus is 
var(Aij (m) ) = var(ximx jm )

=
x1m
2 (x !1m

2 +...+ x !Nm
2 )+...+ xNm

2 (x !1m
2 +...+ x !Nm

2 )
N !N

=
(x1m

2 +...+ xNm
2 ) (x !1m

2 +...+ x !Nm
2 )

N !N
= var(xim )var(x jm )
=1
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and, the covariance of the pairwise relationship between the mth and lth loci is 
 
cov(Aij (m),Aij (l ) ) = cov(ximx jm, xil x jl )

=
x1mx1l (x !1mx !1 l +...+ x !Nmx !N l )+...+ xNmxNl (x !1mx !1 l +...+ x !Nmx !N l )

N !N

=
(x1mx1l +...+ xNmxNl )(x !1mx !1 l +...+ x !Nmx !N l )

N !N
= cov(xim, xil )cov(x jm, x jl )

= rml
2

.

 

 
Therefore, replacing cov(Aij (m),Aij (l ) )

 

with rml
2 , equation (13) is equivalent to the 

denominator in equation (7). Hence, Me can be approximated as 
  

Me =1 var Aij (m) /M
m=1

M

∑
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This was also reported by Goddard et al. (2011)5 showing that the variance of the 
genomic relationships based on genome-wide SNPs is the mean of the r2 measure of 
LD.  
 
This same procedure can be applied to subsets of SNPs, e.g. SNPs grouped according 
to the chromosomes, and can be rewritten as  
 

Me =1 var Aij (k ) /M
k=1

Nchr

∑
"

#
$

%

&
'       

 
where Nchr is the number of chromosomes and Aij (k )  is the GRM estimated based on 
the SNPs located on the kth chromosome.   
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Supplementary Table 1. Comparison between observed Me (from equation (6) and 
(7)) and expected Me (from equation (8)) using the coalescence function, r2 = 1 / (1 + 
4Ne × c). 
 
Parameters	   equation	  6	   equation	  7	   equation	  8	  

When	  varying	  the	  effective	  population	  size,	  L=1	  and	  M=10000	  
Ne=50	   23.57	   23.1	   23.1	  
Ne=100	   40.52	   39.93	   39.93	  
Ne=200	   71.02	   70.24	   70.25	  
Ne=500	   152.47	   151.32	   151.4	  
Ne=1000	   275.21	   273.62	   274.11	  

When	  varying	  the	  genomic	  length,	  Ne=500	  and	  M=10000	  
L=0.3	   55.46	   55.43	   56.11	  
L=0.5	   85.32	   84.47	   84.52	  
L=1	   152.47	   151.32	   151.4	  
L=1.5	   215.3	   214	   213.9	  
L=2	   275.6	   273.98	   274.11	  

When	  varying	  the	  number	  of	  SNPs,	  Ne=500	  and	  L=1	  
M=500	   134.94	   134.29	   151.4	  
M=1000	   146.36	   145.44	   151.4	  
M=2000	   150.71	   149.65	   151.4	  
M=5000	   152.22	   151.1	   151.4	  
M=10000	   152.47	   151.32	   151.4	  
	  
Equation (6), (7) and (8) were confirmed with actual analyses (i.e. inverse and 
summation) of a squared correlation matrix among SNPs. The effective population 
size Ne = 50, 100, 200, 500 or 1000, the genomic length L = 0.3, 0.5, 1, 1.5 or 2 
Morgan, and the number of SNPs (equally) spanning the genomic region M = 500, 
1000, 2000, 5000 or 10000 were used. A squared correlation matrix was constructed 
for SNPs using the coalescence function, r2 = 1 / (1 + 4Ne × c)6 where Ne is known 
and c is the distance in Morgan between each pair of SNPs. Using the inverse and 
summation of the SNP squared correlation matrix, observed Me was obtained from 
equation (6) and (7). As well, equation (8) was used to obtain the expected Me given 
Ne and L. The observed and expected Me values were agreed very well with various 
values for Ne and Me. For a smaller M (< 1000), the observed and expected Me 
became different, which was expected because equation (8) was derived based on the 
assumption of the number of SNPs (M), being infinity.  
 
	  
	  
	  



	   6	  

	  
Supplementary Table 2. Comparison between observed Me (from equation (6) and 
(7)) and expected Me (from equation (9)) using the alternative coalescence function, r2 
= 1 / (2 + 4Ne × c). 
 
Parameters	   equation	  6	   equation	  7	   equation	  9	  

When	  varying	  the	  effective	  population	  size,	  L=1	  and	  M=10000	  
Ne=50	   28.07	   27.31	   27.31	  
Ne=100	   47.13	   46.19	   46.19	  
Ne=200	   81.05	   79.85	   79.86	  
Ne=500	   170.72	   169.02	   169.04	  
Ne=1000	   304.94	   302.64	   302.79	  

When	  varying	  the	  genomic	  length,	  Ne=500	  and	  M=10000	  
L=0.3	   64.53	   63.47	   63.48	  
L=0.5	   96.89	   95.6	   95.62	  
L=1	   170.72	   169.02	   169.04	  
L=1.5	   239.39	   237.36	   237.39	  
L=2	   305.07	   302.75	   302.79	  

When	  varying	  the	  number	  of	  SNPs,	  Ne=500	  and	  L=1	  
M=500	   162.93	   161.65	   169.04	  
M=1000	   168.38	   166.86	   169.04	  
M=2000	   170.09	   168.46	   169.04	  
M=5000	   170.63	   168.94	   169.04	  
M=10000	   170.72	   169.02	   169.04	  
	  
Equations (6), (7) and (9) were confirmed with actual analyses (i.e. inverse and 
summation) of the squared correlation matrix among SNPs. The effective population 
size Ne = 50, 100, 200, 500 or 1000, the genomic length L = 0.3, 0.5, 1, 1.5 or 2 
Morgan, and the number of SNPs (equally) spanning the genomic region M = 500, 
1000, 2000, 5000 or 10000 were used. A squared correlation matrix was constructed 
for SNPs using the coalescence function, r2 = 1 / (2 + 4Ne × c)7 where Ne is known 
and c is the distance in Morgan between each pair of SNPs. Using the inverse and 
summation of the SNP squared correlation matrix, observed Me was obtained from 
equations (6) and (7). As well, equation (9) were used to obtain the expected Me given 
Ne and L. The observed and expected Me values were agreed very well with various 
values for Ne and Me. For a smaller M (< 1000), the observed and expected Me 
became different, which was expected because equation (9) was derived based on the 
assumption of the number of SNPs (M), being infinity.    
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Supplementary Table 3. Comparison between expected Me from (equation (10) and 
(11)) in this study and those from previous studies. 
	  
Ne	   equation	  10	  

1/(1+4Ne*c)	  
equation	  11	  
1/(2+4Ne*c)	  

Goddard	  
2009a	  

Goddard	  et	  al.	  
2011b	  

Meuwissen	  et	  al.	  
2013c	  

	   Nchr=1	  and	  L	  =	  1	  (genomic	  length	  of	  1	  Morgan)	  
50	   23	   27	   	  19	  	   26	   22	  
100	   40	   46	   	  33	  	   43	   38	  
200	   70	   80	   	  60	  	   75	   67	  
500	   151	   169	   	  132	  	   161	   145	  
1000	   274	   303	   	  241	  	   290	   263	  

	   Nchr=5	  and	  L	  =	  1	  (genomic	  length	  of	  5	  Morgan)	  
50	   71	   79	   94	  	   	  128	  	   109	  
100	   130	   143	   167	  	   	  217	  	   189	  
200	   239	   261	   299	  	   	  377	  	   334	  
500	   539	   583	   658	  	   	  805	  	   724	  
1000	   1004	   1079	   1206	  	   	  1448	  	   1316	  

	   Nchr=30	  and	  L	  =	  1	  (genomic	  length	  of	  30	  Morgan)	  
50	   127	   130	   566	   767	   651	  
100	   246	   254	   1001	   1303	   1132	  
200	   479	   493	   1795	   2265	   2003	  
500	   1157	   1188	   3947	   4827	   4343	  
1000	   2253	   2313	   7234	   8686	   7894	  

 
aIn the derivation, r2 = 1 / (1 + 4Ne × c) was used. br2 = 1 / (2 + 4Ne × c) was used. 
cNot mentioned which function was used.   
 
In previous studies5; 8; 9, there is an inconsistency. In 20098, the derived formula was 
Me = 2NeLNchr /ln(4NeL) that was changed to Me = 2NeLNchr /ln(NeL) in 20115 and 
subsequently altered to Me = 2NeLNchr /ln(2Ne) in 20139. In supplementary Table 3 
above, there are differences among the values from the previous studies5; 8; 9. 
Compared to the values from equation (10) or (11) in this study, there is non-
negligible difference especially when using multiple chromosomes (Supplementary 
Table 3). Equation (10) and (11) in this study have been verified by an analytical 
approach (Supplementary Tables 1 and 2) and stochastic simulations (Supplementary 
Figures 1-3).  
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Supplementary Table 4. Expected prediction performance for case-control data when 
the number of records or true heritability varies. The effective population size was 
Ne=100, the length of the genome was 30 Morgan (30 chromosomes each with 1 
Morgan long), the population prevalence was K=0.1 and the proportion of cases in the 
sample was P=0.5. 	  
	  

	   AUC	   OR	  contrasting	  the	  top	  
and	  bottom	  20%	  

OR	  contrasting	  the	  top	  1%	  
and	  normal	  population	  

When	  varying	  the	  sample	  size	  in	  validation	  set	  (with	  h2=0.5)	  
N=3000	   0.85	   131.99	   23.01	  
N=6000	   0.86	   190.88	   27.51	  
N=12000	   0.87	   237.15	   30.53	  
N=24000	   0.88	   267.00	   32.32	  

When	  varying	  the	  heritability	  (with	  N=3000)	  
h2=0.5	   0.85	   131.99	   23.01	  
h2=0.6	   0.88	   396.77	   39.04	  
h2=0.7	   0.91	   1513.75	   74.14	  
h2=0.8	   0.93	   8444.51	   175.57	  
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Supplementary Table 5. The expected accuracy or AUC of genomic prediction from a 
design with smaller or larger Ne values in the Framingham data when varying 
underlying true heritability.	  
	  

	   Quantitative	  traits	   Case-‐control	  
	   Expected	  accuracy	   Expected	  AUC	   Expected	  ORa	  
h2	   Small	  Ne	  

(Me=4434)	  
Large	  Ne	  

(Me=31080)	  
Small	  Ne	  

(Me=3247)	  
Large	  Ne	  

(Me=29480)	  
Small	  Ne	  

(Me=3247)	  
Large	  Ne	  

(Me=29480)	  
0.1	   0.084	   0.033	   0.524	   0.508	   1.27	   1.08	  
0.2	   0.163	   0.065	   0.548	   0.516	   1.62	   1.18	  
0.3	   0.237	   0.098	   0.571	   0.524	   2.05	   1.27	  
0.4	   0.306	   0.129	   0.594	   0.532	   2.60	   1.38	  
0.5	   0.372	   0.161	   0.617	   0.540	   3.30	   1.50	  
0.6	   0.435	   0.192	   0.639	   0.549	   4.21	   1.62	  
0.7	   0.494	   0.223	   0.660	   0.557	   5.39	   1.76	  
0.8	   0.551	   0.254	   0.682	   0.565	   6.95	   1.91	  
0.9	   0.606	   0.284	   0.702	   0.573	   9.04	   2.07	  

aThe odds ratio of case-control status comparing each 20 percentile to the bottom 20% 
of the ranked genetic profile scores 
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Supplementary Table 6. Based on the Framingham data, the accuracy of genomic 
prediction from a design with smaller or larger Ne values when using body mass index 
phenotypes.  
 

	   Small	  Ne	   Large	  Ne	  
Quantitative	  traits	  (height)	  -‐	  3394	  discovery,	  849	  validation	  	  

Me	   4434	   31080	  
Expected	  accuracy	   0.330a	   0.046b	  
Observed	  accuracy	   0.349	  (0.027)	   0.056	  (0.0368)	  

	   	   	  
Case-‐control	  (10%	  selection);	  680	  discovery,	  170	  validation	  (K=0.1	  and	  P=0.5)	  

Me	   3247	   29480	  
Expected	  AUC	   0.608a	   0.511b	  
Observed	  AUC	   0.618	  (0.041)	   0.529	  (0.033)	  

 
aExpected accuracy from equation (2) using the value for Me and h2=0.4610; 11 that is 
from family studies. bExpected accuracy from equation (2) using the value for Me and 
h2=0.1412; 13 that is from population studies. SD over 100 cross-validation replicates is 
in the bracket.  
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A 

	  
	  
B	  

	  
 
Supplementary Figure 1. Observed Me (Obs) and expected Me from equation (10) 
and (11) (A) and the confidence interval of observed accuracy (Obs) and expected 
accuracy from the theory (B) when using a stochastic gene-dropping method across a 
single chromosome of L=1 Morgan with Ne = 500, 1000, 2000 and 4000 for 500, 
1000, 2000 and 4000 generations to generate 2000 individuals with genotype and 
phenotype data in the discovery data set. 
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A 

	  
 
B 

	  
	  
Supplementary Figure 2. Observed Me (Obs) and expected Me from equation (10) 
and (11) (A) and the confidence interval of observed accuracy (Obs) and expected 
accuracy from the theory (B) when using a stochastic gene-dropping method across a 
single chromosome of L=1 Morgan with Ne = 500, 1000, 2000 and 4000 for 500, 
1000, 2000 and 4000 generations to generate 5000 individuals with genotype and 
phenotype data in the discovery data set. 
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A 

 
 
B 

	  
	  
Supplementary Figure 3. Observed Me (Obs) and expected Me from equation (10) 
and (11) (A) and the confidence interval of observed accuracy (Obs) and expected 
accuracy from the theory (B) when using a stochastic gene-dropping method across 
five chromosome, each with L=1 Morgan with Ne = 500, 1000, 2000 and 4000 for 
500, 1000, 2000 and 4000 generations to generate 2000 individuals with genotype and 
phenotype data in the discovery data set. 
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Supplementary Figure 4. Observed AUC from simulated data using the same 
parameters to obtain the AUC values from the theory (Figure 2). The number of 
records (N) is 3000, the true heritability is 0.5 and a disease or disorder with 
population lifetime prevalence of K=0.1 and a proportion of cases in the sample of 
P=0.5 is used. The observed values are in excellent agreement with the expected 
values that are 0.85, 0.78, 0.69, 0.63 and 0.60 for the effective population size of 100, 
500, 2000, 5000 and 10000.  
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Supplementary Figure 5. Observed odd ratio contrasting the top and bottom 20% of 
the risk profile scores from simulated data using the same parameters to obtain the 
odds ratio from the theory (Figure 3). The number of records (N) is 3000, the true 
heritability is 0.5 and a disease or disorder with population lifetime prevalence of 
K=0.1 and a proportion of cases in the sample of P=0.5 is used. The observed values 
are in good agreement with the expected values that are 131.9, 31.0, 7.7, 3.9 and 2.7 
for the effective population size of 100, 500, 2000, 5000 and 10000.  
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Supplementary Figure 6. Observed odd ratio contrasting the top 1% of the risk profile 
scores and the general population from simulated data using the same parameters to 
obtain the odds ratio from the theory (Figure 4). The number of records (N) is 3000, 
the true heritability is 0.5 and a disease or disorder with population lifetime 
prevalence of K=0.1 and a proportion of cases in the sample of P=0.5 is used. The 
observed values are in good agreement with the expected values that are 23.0, 11.0, 
5.0, 3.1 and 2.4 for the effective population size of 100, 500, 2000, 5000 and 10000. 
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Supplementary Figure 7. Observed AUC from simulated data using the same 
parameters with a rare disease or disorder with population lifetime prevalence of 
K=0.01 and a proportion of cases in the sample of P=0.5. The number of records (N) 
is 3000 and the true heritability is 0.5. The observed values are in excellent agreement 
with the expected values that are 0.93, 0.89, 0.81, 0.73 and 0.68 for the effective 
population size of 100, 500, 2000, 5000 and 10000.. 
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Supplementary Figure 8. Observed odd ratio contrasting the top and bottom 20% of 
the risk profile scores from simulated data using the same parameters with a rare 
disease or disorder with population lifetime prevalence of K=0.01 and a proportion of 
cases in the sample of P=0.5. The number of records (N) is 3000 and the true 
heritability is 0.5. The observed values coincide with the expected values that are 
2000.6, 370.5, 43.3, 12.9 and 6.5 for the effective population size of 100, 500, 2000, 
5000 and 10000.  
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Supplementary Figure 9. Observed odd ratio contrasting the top 1% of the risk profile 
scores and the general population from simulated data using the same parameters with 
a rare disease or disorder with population lifetime prevalence of K=0.01 and a 
proportion of cases in the sample of P=0.5. The number of records (N) is 3000 and the 
true heritability is 0.5. The observed values are in good agreement with the expected 
values that are 32.5, 21.9, 10.9, 6.3 and 4.3 for the effective population size of 100, 
500, 2000, 5000 and 10000. 
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Supplementary Figure 10. The distribution of variance of relationships, paired with 
discovery individuals, calculated for each target individual from a design with smaller 
or larger Ne values in a Framingham data analysis. The inferred Me is ~ 4000 and 
30000 for the design with smaller and larger Ne, respectively.     
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Supplementary Figure 11. The distribution of variance of relationships, paired with 
discovery individuals, calculated for each target individual in a GERA data analysis. 
The right side from the vertical line is the variance for the top 25% of the target 
individuals. The inferred Me decreases from ~ 58000 for the entire sample to ~ 37000 
for the top 25%.   
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Supplementary Figure 12. The distribution of variance of relationships, paired with 
discovery individuals, calculated for each target individual from a design with all 
samples or that without relatedness > 0.025 in a GERA data analysis. The inferred Me 
is ~ 58000 and 67000 for the all sample and that without relatedness > 0.025, 
respectively.   
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Supplementary Figure 13. The prediction accuracy is increased when using the top 
25% of the target sample according to the variance of pair-wise relationships to the 
discovery sample. This is from a phenotypic simulation based on the real genotype 
data (GERA) with a heritability of 1 (the total variance fully explained by the SNPs) 
in order to support the result from the real data analysis (Figure 6) that the higher 
accuracy for the top 25% group was not due to non-genetic effects. The error bar 
shows the 95% confidence interval of the observed prediction accuracy over 100 
replicates.    
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Supplementary Figure 14. The prediction accuracy is significantly decreased when 
excluding higher relationships from the sample that results in increasing Me (from 
58000 to 67000) when using a phenotypic simulation based on the real genotype data 
(GERA) with a heritability of 1 (the total variance fully explained by the SNPs) in 
order to support the result from the real data analysis (Figure 7) in that the lower 
accuracy when excluding higher relatedness was not due to non-genetic effects. The 
same number of discovery and target sample is used for both tests. The error bar 
shows the 95% confidence interval of the observed prediction accuracy over 100 
replicates. 
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Supplementary Figure 15. The prediction accuracy is increased when using the top 
25% of the target sample according to the variance of pair-wise relationships to the 
discovery sample. This is from a phenotypic simulation based on the real genotype 
data (GERA) with a heritability of 0.25 (25% of the total variance explained by the 
SNPs) in order to support the result from the real data analysis (Figure 6) that the 
higher accuracy for the top 25% group was not due to non-genetic effects. The error 
bar shows the 95% confidence interval of the observed prediction accuracy over 100 
replicates.    
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Supplementary Figure 16. The prediction accuracy is significantly decreased when 
excluding higher relationships from the sample that results in increasing Me (from 
58000 to 67000) when using a phenotypic simulation based on the real genotype data 
(GERA) with a heritability of 0.25 (25% of the total variance explained by the SNPs) 
in order to support the result from the real data analysis (Figure 7) in that the lower 
accuracy when excluding higher relatedness was not due to non-genetic effects. The 
same number of discovery and target sample is used for both tests. The error bar 
shows the 95% confidence interval of the observed prediction accuracy over 100 
replicates.
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Supplementary Figure 17. The prediction accuracy is significantly increased when 
using the top 25% of the target sample according to the variance of pair-wise 
relationships with the discovery sample (therefore decreasing Me from 58000 to 
37000). GERA data with dyslipidemia phenotypes are used. The error bar shows the 
95% confidence interval of the observed prediction accuracy over 100 replicates. 
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Supplementary Figure 18. The prediction accuracy is decreased when excluding 
higher relationships from the sample that results in increasing Me (from 58000 to 
67000). GERA data with dyslipdemia phenotypes are used. The same number of 
discovery and target sample is used for both tests. The error bar shows the 95% 
confidence interval of the observed prediction accuracy over 100 replicates. 
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Supplementary Figure 19. The prediction accuracy is increased when additional 
information is used. It is assumed that the heritability of the trait is 0.5. A. Given that 
the discovery data have 10,000 individuals that are distantly related to the target 
sample, adding relatives (relationship of 0.125) increases the prediction accuracy. B. 
Given that the discovery data have 10 relatives (relationship of 0.125), adding more 
distantly related individuals (half of them have relationship of 0 and the other half 
have relationship of 0.01 with the target sample) improves the prediction accuracy. 
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