
	
   1	
  

Supplementary data 
 
 
Using information of relatives in genomic prediction to apply effective 

stratified medicine 

 
S. Hong Lee, W.M. Shalanee P. Weerasinghe, Naomi R. Wray, Michael E. Goddard, 
and Julius H.J. van der Werf 
 
 
 
 



	
   2	
  

 
Supplementary Note 
 
Odds ratio in percentile analysis derived from truncated normal theory 
For a disease or disorder, it is assumed that there are normalised individual risk 
profile scores (u) for the sample that can be estimated from GBLUP1; 2. When 
selecting the top X proportion of the risk profile scores, the expectation and variance 
are3; 4 
 
E(u | top) = itop ⋅R  
Var(u | top) =σ top

2 = [1− itop ⋅ (itop − ttop )]⋅R
2  

 
where itop is the mean risk scores for the top selected group according to the risk 
profile score, R2 is the proportion of the total variance on the liability scale explained 
by the risk profile scores and ttop is the threshold on the normal distribution which 
truncates the proportion of the top risk group. Considering the vector of u, the 
probability density (z) is the height of the normal curve at the threshold, ttop.  If we 
define X = the proportion of the top risk group according to the risk profile score, itop 
= z / X. According to truncated normal distribution theory3; 4, the probability of being 
a case for the top risk group is 
 

P(case | top) ≈ 1−Φ (ttop − itop ⋅R) / σ top
2 + (1− R2 )%

&
'
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Similarly, the probability being a case for the bottom risk group is 
 

P(case | bottom) ≈ 1−Φ (tbottom − ibottom ⋅R) / σ top
2 + (1− R2 )%
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where ibottom is the mean risk scores for the bottom selected group and tbottom is the 
threshold on the normal distribution which truncates the proportion of the risk profile 
scores of the bottom risk group. Therefore, the odds ratio of expected case-control 
status by contrasting the top and bottom percentile (equation (4)) and the top and the 
normal population (equation (5)) can be obtained.  
  
 
Effective number of chromosome segments with a genomic length of L Morgan 
With an L Morgan region, the sum in equation (7) can be written as   
 

ri, j
2

j=1

M

∑
i=1

M

∑ M 2 = 1 [1+ 4Ne L(i / (M −1))]⋅2(1− i /M ) ⋅ (1 /M )
i=0

M−1

∑  

 
This can be transformed to a function of x with infinity data points ranging from 0 to 
1 as 
 
f (x) =1/[1+ 4NeL ⋅ x]⋅2(1− x) . 
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Integrating this function over x ranging from 0 to 1 gives the mean of the function, i.e. 

ri, j
2

j=1

M

∑
i=1

M

∑ M 2  can be obtained as  

 
f (x)dx

0

1
∫ = [ln(4NeL +1)+ 4NeL(ln(4NeL +1)−1)] / (8Ne

2L2 ).  

 
 
Me from the genomic relationship matrix 
Me can also be estimated from a genomic relationship matrix (GRM). In this 

derivation, the elements in the GRM are Aij = ximx jm
m=1

M

∑ /M

 

where xim and xjm are the 

standardised genotype coefficients (mean 0 and variance 1) for the ith and jth 
individuals at the mth locus. It is possible to construct a GRM for each locus, and the 
elements in the GRM at the mth locus are Aij (m) = ximx jm . Then, the variance of the 
mean of Aij (m)  across all the SNPs is  
 

var Aij (m) /M
m=1

M

∑
"

#
$

%

&
'=

1
M 2 cov(Aij (l ),Aij (m) )

l=1

M

∑
m=1

M

∑
(

)
*

+

,
-.     (13) 

 
When two loci are correlated such that the correlation between the mth and lth locus is 
cor(xim, xil ) = rml , the correlation between Aij (m)

 

and Aij (l )  is cor(Aij (m),Aij (l ) ) ≅ rml
2  when 

individuals i and j are randomly sampled from the population (i ≠ j). The derivation is 
in the following – the expectation of the relationship between the ith and jth 
individual at mth locus is  
 
E(Aij (m) ) = E(ximx jm )

=
x1m (x !1m +...+ x !Nm )+...+ xNm (x !1m +...+ x !Nm )

N !N

=
(x1m +...+ xNm )(x !1m +...+ x !Nm )

N !N
= E(xim )E(x jm )
= 0

 

 
while the variance of the relationship between the ith and jth individual at the mth 
locus is 
var(Aij (m) ) = var(ximx jm )

=
x1m
2 (x !1m

2 +...+ x !Nm
2 )+...+ xNm

2 (x !1m
2 +...+ x !Nm

2 )
N !N

=
(x1m

2 +...+ xNm
2 ) (x !1m

2 +...+ x !Nm
2 )

N !N
= var(xim )var(x jm )
=1
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and, the covariance of the pairwise relationship between the mth and lth loci is 
 
cov(Aij (m),Aij (l ) ) = cov(ximx jm, xil x jl )

=
x1mx1l (x !1mx !1 l +...+ x !Nmx !N l )+...+ xNmxNl (x !1mx !1 l +...+ x !Nmx !N l )

N !N

=
(x1mx1l +...+ xNmxNl )(x !1mx !1 l +...+ x !Nmx !N l )

N !N
= cov(xim, xil )cov(x jm, x jl )

= rml
2

.

 

 
Therefore, replacing cov(Aij (m),Aij (l ) )

 

with rml
2 , equation (13) is equivalent to the 

denominator in equation (7). Hence, Me can be approximated as 
  

Me =1 var Aij (m) /M
m=1

M

∑
"

#
$

%

&
' .   

 
This was also reported by Goddard et al. (2011)5 showing that the variance of the 
genomic relationships based on genome-wide SNPs is the mean of the r2 measure of 
LD.  
 
This same procedure can be applied to subsets of SNPs, e.g. SNPs grouped according 
to the chromosomes, and can be rewritten as  
 

Me =1 var Aij (k ) /M
k=1

Nchr

∑
"

#
$

%

&
'       

 
where Nchr is the number of chromosomes and Aij (k )  is the GRM estimated based on 
the SNPs located on the kth chromosome.   
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Supplementary Table 1. Comparison between observed Me (from equation (6) and 
(7)) and expected Me (from equation (8)) using the coalescence function, r2 = 1 / (1 + 
4Ne × c). 
 
Parameters	
   equation	
  6	
   equation	
  7	
   equation	
  8	
  

When	
  varying	
  the	
  effective	
  population	
  size,	
  L=1	
  and	
  M=10000	
  
Ne=50	
   23.57	
   23.1	
   23.1	
  
Ne=100	
   40.52	
   39.93	
   39.93	
  
Ne=200	
   71.02	
   70.24	
   70.25	
  
Ne=500	
   152.47	
   151.32	
   151.4	
  
Ne=1000	
   275.21	
   273.62	
   274.11	
  

When	
  varying	
  the	
  genomic	
  length,	
  Ne=500	
  and	
  M=10000	
  
L=0.3	
   55.46	
   55.43	
   56.11	
  
L=0.5	
   85.32	
   84.47	
   84.52	
  
L=1	
   152.47	
   151.32	
   151.4	
  
L=1.5	
   215.3	
   214	
   213.9	
  
L=2	
   275.6	
   273.98	
   274.11	
  

When	
  varying	
  the	
  number	
  of	
  SNPs,	
  Ne=500	
  and	
  L=1	
  
M=500	
   134.94	
   134.29	
   151.4	
  
M=1000	
   146.36	
   145.44	
   151.4	
  
M=2000	
   150.71	
   149.65	
   151.4	
  
M=5000	
   152.22	
   151.1	
   151.4	
  
M=10000	
   152.47	
   151.32	
   151.4	
  
	
  
Equation (6), (7) and (8) were confirmed with actual analyses (i.e. inverse and 
summation) of a squared correlation matrix among SNPs. The effective population 
size Ne = 50, 100, 200, 500 or 1000, the genomic length L = 0.3, 0.5, 1, 1.5 or 2 
Morgan, and the number of SNPs (equally) spanning the genomic region M = 500, 
1000, 2000, 5000 or 10000 were used. A squared correlation matrix was constructed 
for SNPs using the coalescence function, r2 = 1 / (1 + 4Ne × c)6 where Ne is known 
and c is the distance in Morgan between each pair of SNPs. Using the inverse and 
summation of the SNP squared correlation matrix, observed Me was obtained from 
equation (6) and (7). As well, equation (8) was used to obtain the expected Me given 
Ne and L. The observed and expected Me values were agreed very well with various 
values for Ne and Me. For a smaller M (< 1000), the observed and expected Me 
became different, which was expected because equation (8) was derived based on the 
assumption of the number of SNPs (M), being infinity.  
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Supplementary Table 2. Comparison between observed Me (from equation (6) and 
(7)) and expected Me (from equation (9)) using the alternative coalescence function, r2 
= 1 / (2 + 4Ne × c). 
 
Parameters	
   equation	
  6	
   equation	
  7	
   equation	
  9	
  

When	
  varying	
  the	
  effective	
  population	
  size,	
  L=1	
  and	
  M=10000	
  
Ne=50	
   28.07	
   27.31	
   27.31	
  
Ne=100	
   47.13	
   46.19	
   46.19	
  
Ne=200	
   81.05	
   79.85	
   79.86	
  
Ne=500	
   170.72	
   169.02	
   169.04	
  
Ne=1000	
   304.94	
   302.64	
   302.79	
  

When	
  varying	
  the	
  genomic	
  length,	
  Ne=500	
  and	
  M=10000	
  
L=0.3	
   64.53	
   63.47	
   63.48	
  
L=0.5	
   96.89	
   95.6	
   95.62	
  
L=1	
   170.72	
   169.02	
   169.04	
  
L=1.5	
   239.39	
   237.36	
   237.39	
  
L=2	
   305.07	
   302.75	
   302.79	
  

When	
  varying	
  the	
  number	
  of	
  SNPs,	
  Ne=500	
  and	
  L=1	
  
M=500	
   162.93	
   161.65	
   169.04	
  
M=1000	
   168.38	
   166.86	
   169.04	
  
M=2000	
   170.09	
   168.46	
   169.04	
  
M=5000	
   170.63	
   168.94	
   169.04	
  
M=10000	
   170.72	
   169.02	
   169.04	
  
	
  
Equations (6), (7) and (9) were confirmed with actual analyses (i.e. inverse and 
summation) of the squared correlation matrix among SNPs. The effective population 
size Ne = 50, 100, 200, 500 or 1000, the genomic length L = 0.3, 0.5, 1, 1.5 or 2 
Morgan, and the number of SNPs (equally) spanning the genomic region M = 500, 
1000, 2000, 5000 or 10000 were used. A squared correlation matrix was constructed 
for SNPs using the coalescence function, r2 = 1 / (2 + 4Ne × c)7 where Ne is known 
and c is the distance in Morgan between each pair of SNPs. Using the inverse and 
summation of the SNP squared correlation matrix, observed Me was obtained from 
equations (6) and (7). As well, equation (9) were used to obtain the expected Me given 
Ne and L. The observed and expected Me values were agreed very well with various 
values for Ne and Me. For a smaller M (< 1000), the observed and expected Me 
became different, which was expected because equation (9) was derived based on the 
assumption of the number of SNPs (M), being infinity.    
 
	
  



	
   7	
  

	
  
Supplementary Table 3. Comparison between expected Me from (equation (10) and 
(11)) in this study and those from previous studies. 
	
  
Ne	
   equation	
  10	
  

1/(1+4Ne*c)	
  
equation	
  11	
  
1/(2+4Ne*c)	
  

Goddard	
  
2009a	
  

Goddard	
  et	
  al.	
  
2011b	
  

Meuwissen	
  et	
  al.	
  
2013c	
  

	
   Nchr=1	
  and	
  L	
  =	
  1	
  (genomic	
  length	
  of	
  1	
  Morgan)	
  
50	
   23	
   27	
   	
  19	
  	
   26	
   22	
  
100	
   40	
   46	
   	
  33	
  	
   43	
   38	
  
200	
   70	
   80	
   	
  60	
  	
   75	
   67	
  
500	
   151	
   169	
   	
  132	
  	
   161	
   145	
  
1000	
   274	
   303	
   	
  241	
  	
   290	
   263	
  

	
   Nchr=5	
  and	
  L	
  =	
  1	
  (genomic	
  length	
  of	
  5	
  Morgan)	
  
50	
   71	
   79	
   94	
  	
   	
  128	
  	
   109	
  
100	
   130	
   143	
   167	
  	
   	
  217	
  	
   189	
  
200	
   239	
   261	
   299	
  	
   	
  377	
  	
   334	
  
500	
   539	
   583	
   658	
  	
   	
  805	
  	
   724	
  
1000	
   1004	
   1079	
   1206	
  	
   	
  1448	
  	
   1316	
  

	
   Nchr=30	
  and	
  L	
  =	
  1	
  (genomic	
  length	
  of	
  30	
  Morgan)	
  
50	
   127	
   130	
   566	
   767	
   651	
  
100	
   246	
   254	
   1001	
   1303	
   1132	
  
200	
   479	
   493	
   1795	
   2265	
   2003	
  
500	
   1157	
   1188	
   3947	
   4827	
   4343	
  
1000	
   2253	
   2313	
   7234	
   8686	
   7894	
  

 
aIn the derivation, r2 = 1 / (1 + 4Ne × c) was used. br2 = 1 / (2 + 4Ne × c) was used. 
cNot mentioned which function was used.   
 
In previous studies5; 8; 9, there is an inconsistency. In 20098, the derived formula was 
Me = 2NeLNchr /ln(4NeL) that was changed to Me = 2NeLNchr /ln(NeL) in 20115 and 
subsequently altered to Me = 2NeLNchr /ln(2Ne) in 20139. In supplementary Table 3 
above, there are differences among the values from the previous studies5; 8; 9. 
Compared to the values from equation (10) or (11) in this study, there is non-
negligible difference especially when using multiple chromosomes (Supplementary 
Table 3). Equation (10) and (11) in this study have been verified by an analytical 
approach (Supplementary Tables 1 and 2) and stochastic simulations (Supplementary 
Figures 1-3).  
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Supplementary Table 4. Expected prediction performance for case-control data when 
the number of records or true heritability varies. The effective population size was 
Ne=100, the length of the genome was 30 Morgan (30 chromosomes each with 1 
Morgan long), the population prevalence was K=0.1 and the proportion of cases in the 
sample was P=0.5. 	
  
	
  

	
   AUC	
   OR	
  contrasting	
  the	
  top	
  
and	
  bottom	
  20%	
  

OR	
  contrasting	
  the	
  top	
  1%	
  
and	
  normal	
  population	
  

When	
  varying	
  the	
  sample	
  size	
  in	
  validation	
  set	
  (with	
  h2=0.5)	
  
N=3000	
   0.85	
   131.99	
   23.01	
  
N=6000	
   0.86	
   190.88	
   27.51	
  
N=12000	
   0.87	
   237.15	
   30.53	
  
N=24000	
   0.88	
   267.00	
   32.32	
  

When	
  varying	
  the	
  heritability	
  (with	
  N=3000)	
  
h2=0.5	
   0.85	
   131.99	
   23.01	
  
h2=0.6	
   0.88	
   396.77	
   39.04	
  
h2=0.7	
   0.91	
   1513.75	
   74.14	
  
h2=0.8	
   0.93	
   8444.51	
   175.57	
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Supplementary Table 5. The expected accuracy or AUC of genomic prediction from a 
design with smaller or larger Ne values in the Framingham data when varying 
underlying true heritability.	
  
	
  

	
   Quantitative	
  traits	
   Case-­‐control	
  
	
   Expected	
  accuracy	
   Expected	
  AUC	
   Expected	
  ORa	
  
h2	
   Small	
  Ne	
  

(Me=4434)	
  
Large	
  Ne	
  

(Me=31080)	
  
Small	
  Ne	
  

(Me=3247)	
  
Large	
  Ne	
  

(Me=29480)	
  
Small	
  Ne	
  

(Me=3247)	
  
Large	
  Ne	
  

(Me=29480)	
  
0.1	
   0.084	
   0.033	
   0.524	
   0.508	
   1.27	
   1.08	
  
0.2	
   0.163	
   0.065	
   0.548	
   0.516	
   1.62	
   1.18	
  
0.3	
   0.237	
   0.098	
   0.571	
   0.524	
   2.05	
   1.27	
  
0.4	
   0.306	
   0.129	
   0.594	
   0.532	
   2.60	
   1.38	
  
0.5	
   0.372	
   0.161	
   0.617	
   0.540	
   3.30	
   1.50	
  
0.6	
   0.435	
   0.192	
   0.639	
   0.549	
   4.21	
   1.62	
  
0.7	
   0.494	
   0.223	
   0.660	
   0.557	
   5.39	
   1.76	
  
0.8	
   0.551	
   0.254	
   0.682	
   0.565	
   6.95	
   1.91	
  
0.9	
   0.606	
   0.284	
   0.702	
   0.573	
   9.04	
   2.07	
  

aThe odds ratio of case-control status comparing each 20 percentile to the bottom 20% 
of the ranked genetic profile scores 
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Supplementary Table 6. Based on the Framingham data, the accuracy of genomic 
prediction from a design with smaller or larger Ne values when using body mass index 
phenotypes.  
 

	
   Small	
  Ne	
   Large	
  Ne	
  
Quantitative	
  traits	
  (height)	
  -­‐	
  3394	
  discovery,	
  849	
  validation	
  	
  

Me	
   4434	
   31080	
  
Expected	
  accuracy	
   0.330a	
   0.046b	
  
Observed	
  accuracy	
   0.349	
  (0.027)	
   0.056	
  (0.0368)	
  

	
   	
   	
  
Case-­‐control	
  (10%	
  selection);	
  680	
  discovery,	
  170	
  validation	
  (K=0.1	
  and	
  P=0.5)	
  

Me	
   3247	
   29480	
  
Expected	
  AUC	
   0.608a	
   0.511b	
  
Observed	
  AUC	
   0.618	
  (0.041)	
   0.529	
  (0.033)	
  

 
aExpected accuracy from equation (2) using the value for Me and h2=0.4610; 11 that is 
from family studies. bExpected accuracy from equation (2) using the value for Me and 
h2=0.1412; 13 that is from population studies. SD over 100 cross-validation replicates is 
in the bracket.  
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A 

	
  
	
  
B	
  

	
  
 
Supplementary Figure 1. Observed Me (Obs) and expected Me from equation (10) 
and (11) (A) and the confidence interval of observed accuracy (Obs) and expected 
accuracy from the theory (B) when using a stochastic gene-dropping method across a 
single chromosome of L=1 Morgan with Ne = 500, 1000, 2000 and 4000 for 500, 
1000, 2000 and 4000 generations to generate 2000 individuals with genotype and 
phenotype data in the discovery data set. 
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B 

	
  
	
  
Supplementary Figure 2. Observed Me (Obs) and expected Me from equation (10) 
and (11) (A) and the confidence interval of observed accuracy (Obs) and expected 
accuracy from the theory (B) when using a stochastic gene-dropping method across a 
single chromosome of L=1 Morgan with Ne = 500, 1000, 2000 and 4000 for 500, 
1000, 2000 and 4000 generations to generate 5000 individuals with genotype and 
phenotype data in the discovery data set. 
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A 

 
 
B 

	
  
	
  
Supplementary Figure 3. Observed Me (Obs) and expected Me from equation (10) 
and (11) (A) and the confidence interval of observed accuracy (Obs) and expected 
accuracy from the theory (B) when using a stochastic gene-dropping method across 
five chromosome, each with L=1 Morgan with Ne = 500, 1000, 2000 and 4000 for 
500, 1000, 2000 and 4000 generations to generate 2000 individuals with genotype and 
phenotype data in the discovery data set. 
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Supplementary Figure 4. Observed AUC from simulated data using the same 
parameters to obtain the AUC values from the theory (Figure 2). The number of 
records (N) is 3000, the true heritability is 0.5 and a disease or disorder with 
population lifetime prevalence of K=0.1 and a proportion of cases in the sample of 
P=0.5 is used. The observed values are in excellent agreement with the expected 
values that are 0.85, 0.78, 0.69, 0.63 and 0.60 for the effective population size of 100, 
500, 2000, 5000 and 10000.  
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Supplementary Figure 5. Observed odd ratio contrasting the top and bottom 20% of 
the risk profile scores from simulated data using the same parameters to obtain the 
odds ratio from the theory (Figure 3). The number of records (N) is 3000, the true 
heritability is 0.5 and a disease or disorder with population lifetime prevalence of 
K=0.1 and a proportion of cases in the sample of P=0.5 is used. The observed values 
are in good agreement with the expected values that are 131.9, 31.0, 7.7, 3.9 and 2.7 
for the effective population size of 100, 500, 2000, 5000 and 10000.  
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Supplementary Figure 6. Observed odd ratio contrasting the top 1% of the risk profile 
scores and the general population from simulated data using the same parameters to 
obtain the odds ratio from the theory (Figure 4). The number of records (N) is 3000, 
the true heritability is 0.5 and a disease or disorder with population lifetime 
prevalence of K=0.1 and a proportion of cases in the sample of P=0.5 is used. The 
observed values are in good agreement with the expected values that are 23.0, 11.0, 
5.0, 3.1 and 2.4 for the effective population size of 100, 500, 2000, 5000 and 10000. 
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Supplementary Figure 7. Observed AUC from simulated data using the same 
parameters with a rare disease or disorder with population lifetime prevalence of 
K=0.01 and a proportion of cases in the sample of P=0.5. The number of records (N) 
is 3000 and the true heritability is 0.5. The observed values are in excellent agreement 
with the expected values that are 0.93, 0.89, 0.81, 0.73 and 0.68 for the effective 
population size of 100, 500, 2000, 5000 and 10000.. 
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Supplementary Figure 8. Observed odd ratio contrasting the top and bottom 20% of 
the risk profile scores from simulated data using the same parameters with a rare 
disease or disorder with population lifetime prevalence of K=0.01 and a proportion of 
cases in the sample of P=0.5. The number of records (N) is 3000 and the true 
heritability is 0.5. The observed values coincide with the expected values that are 
2000.6, 370.5, 43.3, 12.9 and 6.5 for the effective population size of 100, 500, 2000, 
5000 and 10000.  
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Supplementary Figure 9. Observed odd ratio contrasting the top 1% of the risk profile 
scores and the general population from simulated data using the same parameters with 
a rare disease or disorder with population lifetime prevalence of K=0.01 and a 
proportion of cases in the sample of P=0.5. The number of records (N) is 3000 and the 
true heritability is 0.5. The observed values are in good agreement with the expected 
values that are 32.5, 21.9, 10.9, 6.3 and 4.3 for the effective population size of 100, 
500, 2000, 5000 and 10000. 
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Supplementary Figure 10. The distribution of variance of relationships, paired with 
discovery individuals, calculated for each target individual from a design with smaller 
or larger Ne values in a Framingham data analysis. The inferred Me is ~ 4000 and 
30000 for the design with smaller and larger Ne, respectively.     
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Supplementary Figure 11. The distribution of variance of relationships, paired with 
discovery individuals, calculated for each target individual in a GERA data analysis. 
The right side from the vertical line is the variance for the top 25% of the target 
individuals. The inferred Me decreases from ~ 58000 for the entire sample to ~ 37000 
for the top 25%.   
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Supplementary Figure 12. The distribution of variance of relationships, paired with 
discovery individuals, calculated for each target individual from a design with all 
samples or that without relatedness > 0.025 in a GERA data analysis. The inferred Me 
is ~ 58000 and 67000 for the all sample and that without relatedness > 0.025, 
respectively.   
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Supplementary Figure 13. The prediction accuracy is increased when using the top 
25% of the target sample according to the variance of pair-wise relationships to the 
discovery sample. This is from a phenotypic simulation based on the real genotype 
data (GERA) with a heritability of 1 (the total variance fully explained by the SNPs) 
in order to support the result from the real data analysis (Figure 6) that the higher 
accuracy for the top 25% group was not due to non-genetic effects. The error bar 
shows the 95% confidence interval of the observed prediction accuracy over 100 
replicates.    
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Supplementary Figure 14. The prediction accuracy is significantly decreased when 
excluding higher relationships from the sample that results in increasing Me (from 
58000 to 67000) when using a phenotypic simulation based on the real genotype data 
(GERA) with a heritability of 1 (the total variance fully explained by the SNPs) in 
order to support the result from the real data analysis (Figure 7) in that the lower 
accuracy when excluding higher relatedness was not due to non-genetic effects. The 
same number of discovery and target sample is used for both tests. The error bar 
shows the 95% confidence interval of the observed prediction accuracy over 100 
replicates. 
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Supplementary Figure 15. The prediction accuracy is increased when using the top 
25% of the target sample according to the variance of pair-wise relationships to the 
discovery sample. This is from a phenotypic simulation based on the real genotype 
data (GERA) with a heritability of 0.25 (25% of the total variance explained by the 
SNPs) in order to support the result from the real data analysis (Figure 6) that the 
higher accuracy for the top 25% group was not due to non-genetic effects. The error 
bar shows the 95% confidence interval of the observed prediction accuracy over 100 
replicates.    
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Supplementary Figure 16. The prediction accuracy is significantly decreased when 
excluding higher relationships from the sample that results in increasing Me (from 
58000 to 67000) when using a phenotypic simulation based on the real genotype data 
(GERA) with a heritability of 0.25 (25% of the total variance explained by the SNPs) 
in order to support the result from the real data analysis (Figure 7) in that the lower 
accuracy when excluding higher relatedness was not due to non-genetic effects. The 
same number of discovery and target sample is used for both tests. The error bar 
shows the 95% confidence interval of the observed prediction accuracy over 100 
replicates.
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Supplementary Figure 17. The prediction accuracy is significantly increased when 
using the top 25% of the target sample according to the variance of pair-wise 
relationships with the discovery sample (therefore decreasing Me from 58000 to 
37000). GERA data with dyslipidemia phenotypes are used. The error bar shows the 
95% confidence interval of the observed prediction accuracy over 100 replicates. 
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Supplementary Figure 18. The prediction accuracy is decreased when excluding 
higher relationships from the sample that results in increasing Me (from 58000 to 
67000). GERA data with dyslipdemia phenotypes are used. The same number of 
discovery and target sample is used for both tests. The error bar shows the 95% 
confidence interval of the observed prediction accuracy over 100 replicates. 
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Supplementary Figure 19. The prediction accuracy is increased when additional 
information is used. It is assumed that the heritability of the trait is 0.5. A. Given that 
the discovery data have 10,000 individuals that are distantly related to the target 
sample, adding relatives (relationship of 0.125) increases the prediction accuracy. B. 
Given that the discovery data have 10 relatives (relationship of 0.125), adding more 
distantly related individuals (half of them have relationship of 0 and the other half 
have relationship of 0.01 with the target sample) improves the prediction accuracy. 
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