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1. Simulation study: comparison with other methods

Figure ?? shows boxplots of the selection performance values over the 30
replicated datasets with dispersion parameter ψ = 0.01. Our proposed
model either outperforms or is commensurate with the competing methods
on all metrics.
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Figure 1: Simulated data: Comparison results of selection performances.
DMBVS: Dirichlet–Multinomial Bayesian Variable Selection (our method),
C&L: Chen and Li, MAPGL: Maximum A Posteriori Bayesian Lasso,
CORTEST: Multiplicity Corrected Correlation Tests.
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2. Simulation study: sensitivity analysis

We report the ROC curves obtained when investigating how sensitive the
results are to varying values of the prior expected value of ppj , i.e. m ∈
{0.005, 0.01, 0.05} and the slab variance r2pj ∈ {1, 10, 100} in the variable
selection procedure. The ROC curves complement the information provided
by Table 2 in the main text.
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The results suggest that our procedure is quite robust to different spec-
ifications of relevant prior hyper-parameters.
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In the Table below we evaluate the performance of our model for varying
sample sizes n = {50, 100, 500} and for varying values of the over-dispersion
parameter ψ = {0.01, 0.1, 0.2}. Results are obtained with r2pj = 10 and
m = 0.01 and supplement the information contained in Table 2 in the main
text. Values are averages over 30 replicates. As expected, the results show
that improved performance is achieved for larger sample sizes and decreasing
overdispersion.

n = 50 n = 100 n = 500

ψ = 0.01

MCC 0.84 0.93 0.98
FPR 0.00 0.00 0.00
FNR 0.17 0.05 0.00
ACC 1.00 1.00 1.00

ψ = 0.1

MCC 0.54 0.73 0.92
FPR 0.00 0.00 0.00
FNR 0.57 0.37 0.09
ACC 0.99 0.96 1.00

ψ = 0.2

MCC 0.40 0.60 0.83
FPR 0.00 0.00 0.00
FNR 0.74 0.56 0.25
ACC 0.99 0.99 1.00
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