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Methods
Simulations were performed by numerical integration of the differential rate equations 
according to rate-equation theory as applied to chemical kinetics (mean field 
assumption). The concentration units are mol L–1 and the different rate constants have the 
rate values in units of mol s–1. Numerical integration was performed with the 
Mathematica® program package. For a set of parameters corresponding to the system at, 
or very near to, the bifurcation point the numerical integration is highly sensitive to 
minute differences between the reaction parameters, so that the inherent numerical noise 
of the calculations suffices to bifurcate the system towards a chiral outcome or made 
insensitive to SMSB. In our simulations we have suppressed this computational noise, 
arising from round-off errors, by setting a high numerical precision of the input 
parameters (100 significant decimal digits and exact number representation of the 
reaction rates and the initial concentration values (for example “1 + 1·x 10–2” instead of 
“1.01” or “1. + 1 x 10–10” or “1 + 1. x 10–2”). Integration methods of "StiffnessSwitching" 
and “WorkingPrecision” of up to 50 were used in the present calculations. 

The ee is expressed in % by 100 x (([L] – [D])/ (([L] + [D])). The fluctuations of 
chirality able to take the system out from the racemic branch were simulated by using an 
initial ee of products/catalysts lower than that expected from the statistical fluctuations 
about the ideal racemic composition, i.e an initial ee (%) < 67.43 x (N–0.5), where N is the 
number of chiral molecule.S1 In the examples shown here the initial ee was an order of 
magnitude lower than that expected from the chiral statistical fluctuation. The numerical 
integration was run between 0 s to 1 x 1020 s. This limit of time, three orders of 
magnitude larger than the age of the universe, allows us to estimate the concentration 
value of the stationary state. In the simulations presented here SMSB occur between one 
day (of chemical significance in potential applied synthesis) and a few decades of years. 
The effect of an external chiral permanent perturbation of the transition states can be 
simulated taking kiD ≠ kiL. In this case values as low as kiD/kiL = 1 x 10–9 (transition free 
energy differences at room temperature in the order of mJ mol L–1) suffice to drive the 
systems at SMSB conditions from the racemic to the chiral state.

The search of the reaction parameters leading to SMSB was, in the case of the 
two-replicator system of Figs. 2, S3 and S4, previously estimated from the algebraic 
adimensional analysis conclusions (Fig. S2.). However, for the compartmentalized 
system at two temperatures and for hypercycle composed by several replicators the 
parameter region for SMSB was searched by trial and error of numerical simulations. A 
complex behavior was observed, for example in the chemical mass, that in simple Frank 
like systems represents a value below or above which SMSB can be obtained. In the 
systems studied here, we found regions of chiral solutions bounded by two critical values 
of the total chemical mass. 
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Stability studies

1   Single Chiral Replicator: Quadratic autocatalysis

We consider direct production of the replicator enantiomers (RL and RD) from an 
achiral source : A

                                                              k–0
A   RL(RD) [S1]

                                                             k0
and quadratic autocatalysis driven by constant concentration external reagents X,Y: 

      k–R
A + RL(RD) + X    2 RL(2 RD) + Y [S2]

       kR
 such that the number of “internal" molecules A+RL+RD is conserved. These correspond 
to the transformations [1] and [2] of Scheme 1 in the main text. The temporal  and T
spatial  physical dimensions of the reaction rate constants (indicated here by the V
brackets) 

[S3]
 and 

[S4]
 allow us to express the associated kinetic rate equations in terms of dimensionless rates 
and concentrations [1, 2]. Changing variables to   = RD+RL,  [S1,S2] then imply [see for 
example refs. S2 and S3 for more details].

[S5]

[S6]

 where  = k0t is dimensionless time,  the dimensionless 

concentrations, and 
[S7]

 Equations (S5,S6) admit one racemic and two chiral stationary solutions: 

[S8]

[S9]

 To assess dynamic stability, we linearize the rate equations [S5,S6] and consider 
arbitrary fluctuations around the stationary solutions. Their time dependence is 
determined by 

[S10]

 where 
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[S11]

 We evaluate the array  over one of the stationary solutions [S8,S9] (racemic or chiral) A
and compute the corresponding pair (1, 2) of eigenvalues. Doing so for the racemic 
solution we find: 

[S12]
 whereas for both the chiral solutions we find 

[S13]
 This establishes that quadratic autocatalysis together with direct production yields the 
racemic solution as the unique final stable state, despite the fact that the autocatalysis is 
driven by external reagents.

2   Single Chiral Replicator: Cubic autocatalysis

We consider direct production of the replicator enantiomers (RL and RD) from an 
achiral source : A

                                                              k–0
A   RL(RD) [S14]

                                                             k0 
and quadratic autocatalysis driven by constant concentration external reagents X,Y: 

      k–R
A + 2 RL(RD) + X    3 RL(RD) + Y [S15]

       kR
 such that the number of “internal" molecules A+RL+RD is conserved. These correspond 
to the transformations [1] and [2] of Scheme 1 in the main text. The temporal  and T
spatial  physical dimensions of the reaction rate constants (indicated here by the V
brackets) 

[S16]
 and 

[S17]
 allow us to express the associated kinetic rate equations in terms of dimensionless rates 
and concentrations [1, 2]. Changing variables to   = RD+RL,  [S14,S15] then imply [see 
for example refs.25,26 for more details]. 

[S18]

[S19]

 where  = k0t  is dimensionless time and 
[S20]

 The dimensionless concentrations appearing in [S18,S19] are obtained by rescaling their 
dimensionfull counterparts as follows .



5

2.1   No racemization  no SMSB

 If we omit the forward/reverse direct production steps [S14], then proceed with 
the non-dimensionalization, the stationary solution of the resultant [S18] is  

for y = 0 [and for which [S19] holds identically). The corresponding eigenvalues for 
time-depende fluctuations  and y around this racemic state are 

[S21]

[S22]

 Both  < 0, y are negative when evaluated on the above solution for , implying the 
stability of the mirror symmetric state. There is thus no SMSB in the absence of the direct 
production steps, regardless of the values of  and the total system concentration .g C

2.2   Racemization: Phase space for SMSB

 When the direct production steps are reinstated, when y = 0  we must solve the 
cubic equation 

[S23]

 for the positive solutions  > 0.
The pair of eigenvalues are given by 

[S24]

[S25]

 Now  can be positive on the positive solutions to [S23]. The phase space for SMSB is y
described by the three parameters u, g, C defined in [S20]. A representative region where 
mirror symmetry is broken (y > 0) is depicted in the phase diagram Fig. S1. 
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Figure S1. Effect of varying total system concentration C, the ratio  of the rates of u
inverse to direct production and the ratio  of the rates of inverse to forward cubic g
autocatalysis (driven by external reagents).  Left: the three dimensional region represents 
points (colored) for which the racemic state  y = 0 is unstable to small perturbations (y 
>0) and hence where SMSB results. Right: a transverse “slice" of this region at C =2.5 
indicting the nonlinear dependence of  on  and the maximum value of the former. g u
Left: That maximum increases with . For a given system concentration C > Cmin , there C
is a finite range in both  and  for which SMSB occurs. Now u  0  corresponds a u g
rapid racemization or direct production rate with respect to its inverse: k0 >> k–0. The 
finite upper bound on  corresponds to the opposite situation, namely when k–0 << k0 But u
the forward rate of direct production  cannot be too small, otherwise there is no SMSB. 0k
The limit g  0 corresponds to relative fast rates of the forward to reverse (driven) cubic 
catalysis. For a given , there is a finite upper bound on  indicating minimum values of u g
(driven) forward catalysis needed to set off SMSB. Note this range of minimal rates of 
forward (driven) catalysis is maximized for intermediate values of  (right hand side u
Fig.S1.). Increasing  widens both the range in  and the maximum value of  for C u g
which SMSB can occur.
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3   The Two Replicator Hypercycle: replicators aided by homochiral cross-catalysis

We start from the reactions [1] and [3] of Scheme 1 of the main article for two 
replicators and here consider a single achiral source A for both in the interest of 
mathematical simplicity. Introduce the dynamical variables [1] 

[S26]
[S27]

 From the temporal  and spatial  physical dimensions of the reaction rates T V
[S28]

 and 
[S29]

 we express the kinetic rate equations in dimensionless form [1, 2] 

[S30]

[S31]

 and 

[S32]

[S33]

 where dimensionless time-parameters are  = k0jt  for j = 1,2, and 
[S34]

 All the concentrations in the above rate equations are dimensionless. The relation 
between the dimensionless and dimensionfull concentrations (e.g., [A]) is given by 

[S35]

 The total system concentration  is conserved: C
[S36]

 The dynamics is thus described by the six independent dimensionless parameters in  
[S34,S36].

We seek stationary solutions (1), (2) corresponding to the global racemic state 
y(1) = y(2) = 0. In this configuration, the fluctuations in the net chiral mass in each species 
(1), (2) decouple from the chiral fluctuations about the racemic  and so the (2)(1) , yy 
4x4 Jacobian matrix decomposes into block-diagonal form with the two 2x2  sub-blocks: 
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 [S37]

 and 

[S38]

 The time dependence of the matter and chiral fluctuations about the global racemic 
obeys 

[S39]
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 We set y(1) = y(2) = 0 in [S31,S33] and solve this pair for the stationary solutions 
([S30,S32] hold identically). The ensuing pair of coupled cubic equations can have 
positive, negative, as well as complex solutions. Only the simultaneous real-valued and 
positive solutions (1) > 0, (2) = > 0  correspond to acceptable chemical concentrations. 
The signs of the eigenvalues of the 2x2  arrays  and  evaluated over these acceptable A B
solutions indicate whether the racemic solution is stable or not. If any one of the (four) 
eigenvalues is positive, the racemic state is unstable to arbitrary small perturbations 
which thus trigger the onset of SMSB. A parameter survey leads to the representative 
phase diagram discussed below.

4   Phase Space for SMSB:  = u, h = g, s = 1  and C

The full phase space of this two-replicator system is six-dimensional, 
nevertheless, we can obtain considerable insight into the roles played by the total system 
concentration, the racemization and the rates of the (driven) heterocatalyses by 
specializing to a three dimensional parameter space. To this end, we here set v = u, h = g, 
s =1 and then vary u, g, C. Note that  corresponds to the ratio of the rates of inverse to h
forward catalysis for the species R(2) when s =1, and in this limit is analogous to the 
parameter  for species R(2):  g
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[S41]

An illustrative region where mirror symmetry is broken is depicted in the phase diagram 
Fig. S2. This is qualitatively similar to the phase portrait for the single replicator case 
discussed above Fig. S1. A notable quantitative distinction is that the minimum value of 

 required for SMSB or two-replicators has increased with respect to the single C
replicator case. 

Figure S2. Effect of varying total system concentration C, versus the ratio u =   of the 
rates of inverse to direct production of both species R(1), R(2) and the ratio g = h  of the 
rates of reverse to forward autocatalysis of both species (driven by the external reagents). 
Here s =1. The three dimensional figure represents points for which the global racemic 
state y(1) = y(2) = 0 is unstable to small time-dependent perturbations. 
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Figures. S3 – S7: Examples of SMSB of chiral hypercyclic autocatalysis (comments 
in the main text)

Figure S3. SMSB in the system of Fig. 1 but in a reaction network including also the 
non-cross catalyzed autocatalysis (2) and the same achiral resource A for the two chiral 
replicators (1RD (1RL) and 2RD (2RL)). The autocatalysis (2) as well as (3) are driven by 
the reagent X/Y at constant concentrations. 
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Figure S4. SMSB for a similar reaction network and system as those of Fig. 1 but under 
reaction mechanisms implying only mono- and bimolecular order reactions. Initial 
concentrations: [X]constant = 0.01 mol L–1; [Y]constant = 1 x 10–6 mol L–1; [A]o = 0.05 mol L–

1; [B]o = 0.08 mol L–1; The initial concentration of the rest of compounds was 1 mmol L–1 
except for [LA]o = (1 x 10–3 + 1 x 10–23) mol L–1 (see Methods) The initial concentration 
of the rest of the species was set to zero. The same final state when starting from a 
different relationship of initial concentrations, i.e. the final species composition 
corresponds to a thermodynamically controlled  stationary state. 
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Figure S5. SMSB of a two replicator chiral hypercycle in a closed system with permanent non-
homogeneous temperature distribution: two compartments at different temperature exchanging the 
same volume of solution. For a more detailed decription of this type of systems see for details 
Astrobiology 2013, 13, 132-142. The change on equilibrium constants would agree with that 
expected for temperature differences as those of deep ocean hydrothermal wells (411° K and 275° K) 
and for an exothermic transformation showing negative entropy, as expected for replicator obtained 
by polymerizating reactions. 
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Figure S6. SMSB in a open flow reactor of the reaction network of a six hypercyclic 
chiral replicator of homochiral cross-catalysis with direct replicator synthesis and no 
replicator concentration for the initial conditions. A chiral fluctuation in any of the 
replicators leads to an ee near to the 100% value (chiral fluctuation simulated by an initial 
concentration of 1 x 10–25 mol L–1 in any of the L-enantiomers). 
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Figure S7. SMSB in an open flow reactor (1 L) for two homochiral cross-catalyzed 
enantioselective replicators fed by achiral resources (similar to the six-replicators of Fig. 
3 in the main text). The ee output value (given as L enantiomers excess value) is that of 
full homochirality. Reaction rate constants (kiR/k–iR): 1R: 1 x 104/10; 2R: 1 x 103/0.5. 
Initial resource concentrations in the reactor and in the constant input volume (0.1 µL s–
1): [A]o = 1 x 10–4 mol L–1; [B]o = 1.5 x 10–4 mol L–1. Initial replicator concentrations in 
the reactor were 1 x 10–6 mol L–1 and the initial chiral fluctuation was simulated by an 
additional concentration of 1x10–23 mol L–1 in the L enantiomers.


