SUPPLEMENTARY INFORMATION

High-throughput single-cell analysis for the proteomic dynamics study of the yeast osmotic stress response

Rongfei Zhang¹, Haiyu Yuan², Shujing Wang¹, Qi Ouyang^{1,2,3}, Yong Chen⁴, Nan Hao⁵, Chunxiong Luo^{1,2*} ¹Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China

²The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China

³Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China

⁴Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris, France

⁵Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, USA.

^{*}To whom correspondence should be addressed: ChunxiongLuo, Email: pkuluocx@pku.edu.cn, Tel.: +86-10-62754743

Supplementary Table S1 96 important proteins for the osmotic stimuli experiment
Supplementary Table S2 The functions of 40 proteins from the primary selected proteins

Supplementary Table S3 The M2 values of the 40 proteins.

Supplementary Fig. S1 The dynamic behaviors of SIP18 and PAI3 in different experiments (Test A and Test B). The stimuli (0.4 M KCl) are added at 180 min.

Supplementary Fig. S2 The dynamic behaviors of (**a**) TPS2, (**b**) GPP1, (**c**) GRE2, and (**d**) MDH1 with different stimuli levels. The stimuli are added at 180 min.

1	UBP3	25	DOG2	49	ALD3	73	SNF1
2	FIG4	26	HSP26	50	TKL2	74	GAL11
3	PPZ1	27	SOD2	51	RTN2	75	RIM15
4	GPH1	27		52	DDR2	76	MSN5
			YAR1				
5	GLC3	29	YPD1	53	HXK1	77	TPK2
6	TPS2	30	PAI3	54	SKN7	78	YAK1
7	RCK2	31	YJL144W	55	GPD1	79	GCN5
8	PGM2	32	SIP18	56	FPS1	80	GIS1
9	CTT1	33	MPC3	57	AQY2	81	PSR1
10	RVS167	34	TOS6	58	GON7	82	PSR2
11	РТС3	35	HSP12	59	GRE1	83	MSN4
12	MSC1	36	PAN1	60	HLR1	84	SNF2
13	ALD4	37	ANP1	61	OSM1	85	RIM11
14	DCS2	38	HXT6	62	PBS2	86	YGK3
15	COS8	39	GSP2	63	POR2	87	SRB10
16	YML131W	40	POR1	64	PPZ2	88	CYR1
17	YPR1	41	HXT7	65	SKO1	89	TOR2
18	GRE2	42	USV1	66	SMP1	90	CDC25
19	GRE3	43	YGP1	67	SSK2	91	EAF7
20	GLO1	44	YNL300W	68	STL1	92	RAS2
21	TDH1	45	MCR1	69	RPD3	93	MSN2
22	MDH1	46	DDR48	70	MCK1	94	HOG1
23	GPP1	47	MMF1	71	HDA3	95	MSN1
24	RVS161	48	RLB5	72	WHI2	96	WHI5

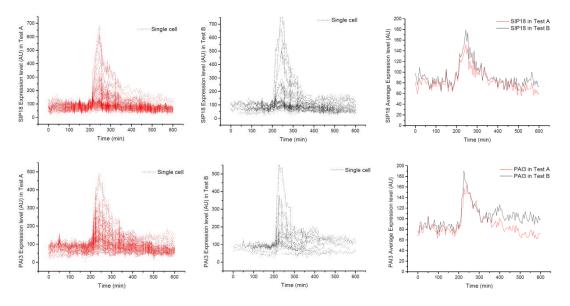
Supplementary Table S1 96 important proteins for the osmotic stimuli experiment

		Ubiquitin-specific protease involved in transport and osmotic response; negatively
1		regulates Ras/PKA signaling; interacts with Bre5p to coregulate anterograde,
	UBP3	retrograde transport between ER and Golgi; involved in transcription elongation in
	ODI 5	response to osmostress through. phosphorylation at Ser695 by Hog1p; inhibitor of
		gene silencing; role in ribophagy; cleaves ubiquitin fusions but not polyubiquitin;
		protein abundance increases in response to DNA replication stress.
		Phosphatidylinositol 3,5-bisphosphate (PtdIns[3,5]P) phosphatase; required for
0	5104	efficient mating and response to osmotic shock; physically associates with and
2	FIG4	regulated by Vac14p; contains a SAC1-like domain; homologous to human FIG4,
		which is associated with CMT4J, a form of Charcot-Marie-Tooth disorde .
		Serine/threonine protein phosphatase Z, isoform of Ppz2p; involved in regulation
3	PPZ1	of potassium transport, which affects osmotic stability, cell cycle progression, and
		halotolerance.
		Glycogen phosphorylase required for the mobilization of glycogen; non-essential;
4	GPH1	regulated by cyclic AMP-mediated phosphorylation; expression is regulated by
		stress-response elements and by the HOG MAP kinase pathway.
		Glycogen branching enzyme, involved in glycogen accumulation; green
		fluorescent protein (GFP)-fusion protein localizes to the cytoplasm in a punctate
5	GLC3	pattern; relocalizes from nucleus to cytoplasmic foci upon DNA replication stress;
		glycogen accumulation defect of the null mutant is functionally complemented by
		human GBE1, which is associated with glycogen storage disease.
		Phosphatase subunit of the trehalose-6-P synthase/phosphatase complex; involved
		in synthesis of the storage carbohydrate trehalose; expression is induced by stress
6	TPS2	conditions and repressed by the Ras-cAMP pathway; protein abundance increases
		in response to DNA replication stress.
		Protein kinase involved in response to oxidative and osmotic stress; identified as
		suppressor of S. pombe cell cycle checkpoint mutations; similar to CaM
7	RCK2	(calmodulin) kinases; RCK2 has a paralog, RCK1, that arose from the whole
		genome duplication.

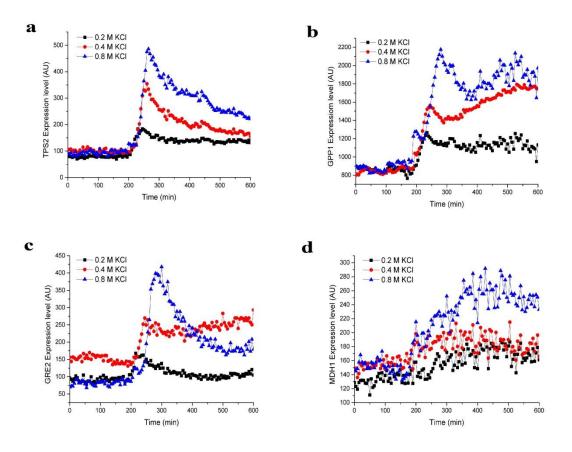
8	PGM2	Phosphoglucomutase; catalyzes the conversion from glucose-1-phosphate to glucose-6-phosphate, which is a key step in hexose metabolism; functions as the acceptor for a Glc-phosphotransferase; protein abundance increases in response to DNA replication stress; PGM2 has a paralog, PGM1, that arose from the whole genome duplication.		
9	CTT1	Cytosolic catalase T; has a role in protection from oxidative damage by hydro peroxide 3.		
10	RVS167	Actin-associated protein with roles in endocytosis and exocytosis; N-BAR domain protein that interacts with Rvs161p to regulate actin cytoskeleton, endocytosis, and viability following starvation or osmotic stress; recruited to bud tips by Gyl1p and Gyp5p during polarized growth; homolog of mammalian amphiphysin.		
11	PTC3	ype 2C protein phosphatase (PP2C); dephosphorylates Hog1p (see also Ptc2p) to limit maximal kinase activity induced by osmotic stress; dephosphorylates T169 phosphorylated Cdc28p (see also Ptc2p); role in DNA damage checkpoint inactivation; PTC3 has a paralog, PTC2, that arose from the whole genome duplication.		
12	MSC1	Protein of unknown function; mutant is defective in directing meiotic recombination events to homologous chromatids; the authentic, non-tagged protein is detected in highly purified mitochondria and is phosphorylated.		
13	ALD4	Mitochondrial aldehyde dehydrogenase; required for growth on ethanol and conversion of acetaldehyde to acetate; phosphorylated; activity is K+ dependent; utilizes NADP+ or NAD+ equally as coenzymes; expression is glucose repressed; can substitute for cytosolic NADP-dependent aldehyde dehydrogenase when directed to the cytosol; human homolog ALDH2 can complement yeast ald4 mutant.		
14	DCS2	m(7)GpppX pyrophosphatase regulator; non-essential, stress induced regulatory protein; modulates m7G-oligoribonucleotide metabolism; inhibits Dcs1p; regulated by Msn2p, Msn4p, and the Ras-cAMP-cAPK signaling pathway; mutant has increased aneuploidy tolerance; DCS2 has a paralog, DCS1, that arose from the whole genome duplication.		

15		Endosomal protein involved in turnover of plasma membrane proteins; member of
		the DUP380 subfamily of conserved, often subtelomeric COS genes; required for
	COS8	the multivesicular vesicle body sorting pathway that internalizes plasma
		membrane proteins for degradation; Cos proteins provide ubiquitin in trans for
		nonubiquitinated cargo proteins.
		Protein of unknown function; similar to medium chain dehydrogenase/reductases;
16	YML131₩	expression induced by stresses including osmotic shock, DNA damaging agents,
10	IMLIJIW	and other chemicals; GFP-fusion protein localizes to the cytoplasm; protein
		abundance increases in response to DNA replication stress.
		NADPH-dependent aldo-keto reductase; reduces multiple substrates including
		2-methylbutyraldehyde and D,L-glyceraldehyde, expression is induced by osmotic
17	VDD 1	and oxidative stress; functionally redundant with other aldo-keto reductases;
17	YPR1	protein abundance increases in response to DNA replication stress; YPR1 has a
		paralog, GCY1, that arose from the whole genome duplication; human homolog
		AKR1B1 can complement yeast null mutant.
		3-methylbutanal reductase and NADPH-dependent methylglyoxal reductase;
		stress induced (osmotic, ionic, oxidative, heat shock and heavy metals); regulated
18	GRE2	by the HOG pathway; restores resistance to glycolaldehyde by coupling reduction
10	GREZ	of glycolaldehyde to ethylene glycol and oxidation of NADPH to NADP+; protein
		abundance increases in response to DNA replication stress; methylglyoxal
		reductase (NADPH-dependent) is also known as D-lactaldehyde dehydrogenase.
		Aldose reductase; involved in methylglyoxal, d-xylose, arabinose, and galactose
19	GRE3	metabolism; stress induced (osmotic, ionic, oxidative, heat shock, starvation and
19	GRES	heavy metals); regulated by the HOG pathway; protein abundance increases in
		response to DNA replication stress.
		Monomeric glyoxalase I; catalyzes the detoxification of methylglyoxal (a
90	CI 01	by-product of glycolysis) via condensation with glutathione to produce
20	GL01	S-D-lactoylglutathione; expression regulated by methylglyoxal levels and osmotic
		stress.
<u> </u>		

		Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 1; involved in
		glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of
		glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the
21	TDH1	cytoplasm and cell wall; protein abundance increases in response to DNA
		replication stress; GAPDH-derived antimicrobial peptides secreted by S.
		cerevisiae are active against a wide variety of wine-related yeasts and bateria 1.
		Mitochondrial malate dehydrogenase; catalyzes interconversion of malate and
22	MDH1	oxaloacetate; involved in the tricarboxylic acid (TCA) cycle; phosphorylated.
		Constitutively expressed DL-glycerol-3-phosphate phosphatase; also known as
		glycerol-1-phosphatase; involved in glycerol biosynthesis, induced in response to
23	GPP1	both anaerobic and osmotic stress; GPP1 has a paralog, GPP2, that arose from the
		whole genome duplication.
		Amphiphysin-like lipid raft protein; N-BAR domain protein that interacts with
24	RVS161	Rvs167p and regulates polarization of the actin cytoskeleton, endocytosis, cell
		polarity, cell fusion and viability following starvation or osmotic stress.
		2-deoxyglucose-6-phosphate phosphatase; member of a family of low molecular
		weight phosphatases, induced by oxidative and osmotic stress, confers
25	DOG2	2-deoxyglucose resistance when overexpressed; DOG2 has a paralog, DOG1, that
		arose from a single-locus duplication; the last half of DOG1 and DOG2 are
		subject to gene conversions among S. cerevisiae, S. paradoxus, and S. mikatae.
		Small heat shock protein (sHSP) with chaperone activity; forms hollow,
		sphere-shaped oligomers that suppress unfolded proteins aggregation; long-lived
26	HSP26	protein that is preferentially retained in mother cells and forms cytoplasmic foci;
		oligomer activation requires heat-induced conformational change; also has mRNA
		binding activity 3.
27	SOD2	Mitochondrial manganese superoxide dismutase; protects cells against oxygen
21	2002	toxicity.
00	VAD1	Ankyrin-repeat containing, nucleocytoplasmic shuttling chaperone; prevents
28	YAR1	aggregation of Rps3p in the cytoplasm, associates with nascent Rps3p during its
l		


		translation in the cytoplasm and delivers it to the 90S in the nucleus; required for
		40S ribosomal subunit export, biogenesis and adaptation to osmotic and oxidative
		stress; expression repressed by heat shock.
		Osmotic stress-responsive phosphorelay intermediate sensor protein;
	YPD1	phosphorylated by the plasma membrane sensor Sln1p in response to osmotic
29		stress and then in turn phosphorylates the response regulators Ssk1p in the cytoso
		and Skn7p in the nucleus.
		Cytoplasmic proteinase A (Pep4p) inhibitor; dependent on Pbs2p and Hog1p
30	PAI3	protein kinases for osmotic induction; intrinsically unstructured, N-terminal half
		becomes ordered in the active site of proteinase A upon contact.
		Cytoplasmic hydrophilin essential in desiccation-rehydration process; expression
31	YJL144W	induced by osmotic stress, starvation and during stationary phase; protein
		abundance increases in response to DNA replication stress 1.
	SIP18	Phospholipid-binding hydrophilin; essential to overcome desiccation-rehydration
32		process; expression is induced by osmotic stress; SIP18 has a paralog, GRE1, that
		arose from the whole genome duplication.
		Highly conserved subunit of the mitochondrial pyruvate carrier (MPC); expressed
		during growth on nonfermentable carbon sources, and heterodimerizes with
	177.00	Mpc1p to form the respiratory isoform of MPC; MPC localizes to the
33	MPC3	mitochondrial inner membrane and mediates pyruvate uptake; MPC3 paralog,
		MPC2, heterodimerizes with Mpc1p to form the fermentative MPC isoform;
		protein abundance increases in response to DNA replication stress.
		Glycosylphosphatidylinositol-dependent cell wall protein; expression is periodic
34	TOS6	and decreases in respone to ergosterol perturbation or upon entry into stationary
		phase; depletion increases resistance to lactic acid.
		phase; depletion increases resistance to lactic acid. Plasma membrane protein involved in maintaining membrane organization;
		• •
35	HSP12	Plasma membrane protein involved in maintaining membrane organization;

		dietary restriction; regulated by the HOG and Ras-Pka pathways; required for dietary restriction-induced lifespan extension.
36	PAN1	Part of actin cytoskeleton-regulatory complex Pan1p-Sla1p-End3p; associates with actin patches on cell cortex; promotes protein-protein interactions essential for endocytosis; binds to and activates Arp2/3 complex in vitro; phosphorylation of Thr-1225 is regulated by MAPK Hog1p in response to osmotic stress; previously thought to be a subunit of poly(A) ribonuclease.
37	ANP1	Subunit of the alpha-1,6 mannosyltransferase complex; type II membrane protein; has a role in retention of glycosyltransferases in the Golgi; involved in osmotic sensitivity and resistance to aminonitrophenyl propanediol.
38	HXT6	High-affinity glucose transporter; member of the major facilitator superfamily, nearly identical to Hxt7p, expressed at high basal levels relative to other HXTs, repression of expression by high glucose requires SNF3; HXT6 has a paralog, HXT1, that arose from the whole genome duplication.
39	GSP2	 GTP binding protein (mammalian Ranp homolog); involved in the maintenance of nuclear organization, RNA processing and transport; interacts with Kap121p, Kap123p and Pdr6p (karyophilin betas); not required for viability; protein abundance increases in response to DNA replication stress; GSP2 has a paralog, GSP1, that arose from the whole genome duplication 1.
40	POR1	Mitochondrial porin (voltage-dependent anion channel); outer membrane protein required for maintenance of mitochondrial osmotic stability and mitochondrial membrane permeability; couples the glutathione pools of the intermembrane space (IMS) and the cytosol; interacts with Om45 and Om14 in the outer membrane; phosphorylated; protein abundance increases in response to DNA replication stress.


Supplementary Table S2 The functions of 40 proteins from the primary selected proteins

Gene	M2	Gene	M2
HSP12	0. 15312	GL01	0.050379
PGM2	0. 124257	YPR1	0.050098
GRE2	0. 123721	ANP1	0.049418
TDH1	0. 121697	RVS161	0.047604
GPH1	0.092405	PPZ1	0.047256
TPS2	0.08436	UBP3	0.046457
PAI3	0.072141	GRE3	0.045428
SIP18	0.069776	DCS2	0.044157
CTT1	0.067589	YPD1	0.042697
ALD4	0.061341	MPC3	0.041139
MDH1	0.060178	FIG4	0.039532
GSP2	0.055119	SOD2	0.039479
YML131W	0.054998	YJL144W	0.039278
TOS6	0.053963	POR1	0.038654
HSP26	0.053951	PTC3	0.037191
MSC1	0.053087	YAR1	0.03599
DOG2	0.052952	HXT6	0.035307
GPP1	0.052837	COS8	0.034797
PAN1	0.050747	RVS167	0.033569
GLC3	0.05074	RCK2	0.031353

Supplementary Table S3 The M2 values of the 40 proteins.

Supplementary Fig. S1 The dynamic behaviors of SIP18 and PAI3 in different experiments (Test A and Test B). The stimuli (0.4 M KCl) are added at 180 min.

Supplementary Fig. S2 The dynamic behaviors of (**a**) TPS2, (**b**) GPP1, (**c**) GRE2, and (**d**) MDH1 with different stimuli levels. The stimuli are added at 180 min.