Supplementary information of

Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: from mechanistic study to catalyst design

Zhao Li^{a,b}, Teng He^{*,a}, Lin Liu^a, Weidong Chen^{a,b}, Miao Zhang^{a,b}, Guotao Wu^a, Ping Chen^{a,c}

^aDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China ^bUniversity of the Chinese Academy of Sciences, Beijing 100049, China ^cState Key Laboratory of Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China

Corresponding Author

E-mail address: heteng@dicp.ac.cn

Figure S1. ¹¹B NMR spectra of the AB and NH₃BD₃ dissolving in D₂O and H₂O measured at different time.

Figure S2. XRD patterns of CTF-1, CNT, 5%Co/CTF-1, 5%Co/CNT, 5%Co/AC.

Table S1. The surface areas before and after loading (S_{BET}), Co contents determined by ICP, and average particle sizes of CTF-1, CNT and AC supported catalysts.

Catalysts and	Со	Average particle	S _{BET} Before	S _{BET} After
supports	contents	size(nm)	loading(m ² /g)	loading(m ² /g)
	(wt%)			
5%Co/CTF-1	4.48	3.3	947	726
5%Co/CNT	4.24	7.3	160	156
5%Co/AC	4.34	-	714	685
3%Co/CTF-1	2.83	-	-	-

Catalyst	n _{metal} /n _{AB}	TOF	E_a (kJ/mol)	Reference
10wt% Co/γ-Al ₂ O ₃	0.018	2.30	62	1
10 wt %Co/SiO ₂	0.018	2.3	-	1
10 wt % Co/C	0.018	2.92	-	1
Co/zeolite	0.02	5.36	56	2
PVP-Co	0.025	4.80	46	3
PSMA-Co	0.001	25.7	34.22	4
Co/graphene	0.05	13.8	32.75	5
G6-OH(Co ₆₀)	0.013	10	50.2	6
Ni/C	0.0425	8.8	28	7
5%Co/CTF-1	0.05	33.5	42.7	This study
3%Co/CTF-1	0.03	42.3	-	This study
5%Co/CNT	0.05	8.5	46.9	This study
5%Co/AC	0.05	5.8	47.2	This study
5%Ni/CTF-1	0.05	8.75	-	This study
5%Ni/CNT	0.05	5.4	-	This study
5%Ni/AC	0.05	2.6	-	This study
Au@Co	0.02	13.7	-	8
Co ₃₅ Pd ₆₅	0.024	22.7	27.5	9
Ag@CoNi/graphene	0.05	15.89	36.15	10
PEI-GO/Co	0.11	39.9	28.2	11
Ni ₂ P	0.054	40.4	44.6	12
Ni@MCS-30	0.016	30.7	-	13
Pt black	0.018	14	-	14
2 wt.% Pd/y-Al ₂ O ₃	0.018	1.3	-	14

Table S2. Selective activities in terms of TOF values (mol H₂·(mol catalyst)⁻¹·min⁻¹) and activation energy E_a (kJ/mol) of the non-noble metal catalysts tested in hydrogen generation from the hydrolysis of AB so far.

Figure S3. The Plots of volume of H_2 vs. time from AB hydrolysis catalyzed by the Co/CTF-1 catalyst at different catalyst (a) and AB concentrations (b) at T =298 K.

Figure S4. The plot of hydrogen generation rate versus the concentration of H_2O in natural logarithmic scale, $ln(rate) = 1.27 ln[H_2O] - 10.93$

Figure S5. Kinetic isotope effect of hydrolytic AB catalyzed by 5%Co/CTF-1 at room temperature with n_{C0} : n_{AB} =0.05:1 for NH₃BH₃ in D₂O (black), NH₃BD₃ in H₂O (blue) and NH₃BH₃ in H₂O (red).

Figure S6. TEM image and corresponding size histograms of Co/CTF-1 NPs after 5 recycle times.

Figure S7. Left. After hydrolysis reaction; Right. Separation of catalyst by magnet.

Figure S8. TEM images and corresponding size histograms of a. 5%Co/CNT, b. 3%Co/CNT, c. 1%Co/CNT. The average size is calculated from at least 100 NPs.

Figure S9. Plot of time vs volume of H₂ generated from AB hydrolysis catalyzed by 5%Co/CNT, 3%Co/CNT, 1%Co/CNT. ([AB] = 322 mM, 5ml, n_{metal}/n_{AB} =0.05)

Figure S10. XPS spectra of 5%Co/CTF, 5%Co/CNT, 5%Co/AC before Ar sputtering.

References:

- 1. Q. Xu and M. Chandra, J. Power Sources 2006, 163, 364-370.
- 2. M. Rakap and S. Özkar, Int. J. Hydrogen Energy 2010, 35, 3341-3346.
- 3. O. Metin and S. Ozkar, *Energy Fuels*, 2009, **23**, 3517-3526.
- 4. Ö. Metin and S. Özkar, *Int. J. Hydrogen Energy* 2011, **36**, 1424-1432.
- 5. L. Yang, N. Cao, C. Du, H. Dai, K. Hu, W. Luo and G. Cheng, *Mater. Lett.* , 2014, **115**, 113-116.

- 6. K. Aranishi, Q. L. Zhu and Q. Xu, *ChemCatChem*, 2014, 6, 1375-1379.
- 7. O. Metin, V. Mazumder, S. Ozkar and S. S. Sun, J. Am. Chem. Soc. , 2010, 132, 1468.
- J.-M. Yan, X.-B. Zhang, T. Akita, M. Haruta and Q. Xu, J. Am. Chem. Soc., 2010, 132, 5326-5327.
- 9. D. Sun, V. Mazumder, O. Metin and S. Sun, ACS Nano, 2011, 5, 6458-6464.
- 10. L. Yang, J. Su, X. Meng, W. Luo and G. Cheng, J. Mater. Chem. A, 2013, 1, 10016-10023.
- 11. J. Hu, Z. Chen, M. Li, X. Zhou and H. Lu, ACS Appl. Mat. Interfaces 2014, 6, 13191-13200.
- 12. C. Y. Peng, L. Kang, S. Cao, Y. Chen, Z. S. Lin and W. F. Fu, Angew. Chem. Int. Ed., 2015.
- 13. P.-Z. Li, A. Aijaz and Q. Xu, Angew. Chem. Int. Ed., 2012, 51, 6753-6756.
- 14. Q. Xu and M. Chandra, J. Alloys Compd., 2007, 446–447, 729-732.