SUPPORTING INFORMATION

Microsomal Metabolism of Prochiral Polychlorinated Biphenyls Results in the Enantioselective Formation of Chiral Metabolites

Eric Uwimana, Anna Maiers, Xueshu Li, Hans-Joachim Lehmler* Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA 52242

*Phone: (319) 335-4310, Fax: (319) 335-4290, e-mail: hans-joachim-lehmler@uiowa.edu, Mail: University of Iowa Research Park, #221 IREH, Iowa City, IA 52242-5000

Number of pages: 61

Number of tables: 4

Number of figures: 25

Table of Content

Figure S5B. Mass spectrum of methylated OH-PCB 51 (RT 5.79 min; RRT 0.665) obtained from incubations of PCB 51 with rat liver microsomes prepared from male isoniazid pretreated rats after derivatization. **S19**

Figure S6A. Representative gas chromatogram showing the formation of two metabolites, OH-PCB 51 (RT 5.84 min; RRT 0.662; *m/z* 321.9) and diOH-PCB 51 (RT 6.75 min; RRT 0.765; *m/z* 351.9), from prochiral PCB 51 in incubations with rat liver microsomes prepared from phenobarbital pretreated male rats (analyzed as the corresponding methylated derivative). **S20**

Figure S6B. Mass spectrum of methylated OH-PCB 51 (RT 5.84 min; RRT 0.662) obtained from incubations of PCB 51 with rat liver microsomes prepared from phenobarbital pretreated male rats after derivatization. **S21**

Figure S6C. Mass spectrum of diOH-PCB 51 (RT 6.75 min; RRT 0.765) obtained from incubations of PCB 51 with rat liver microsomes prepared from phenobarbital pretreated male rats after derivatization. **S22**

Figure S7A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.810; *m/z* 355.9) from prochiral PCB 102 in incubations with rat liver microsomes prepared from corn oil pretreated male rats (analyzed as the corresponding methylated derivative). **S23**

Figure S7B. Mass spectrum of methylated OH-PCB 102 (RT 7.05; RRT 0.810) obtained from incubations of PCB 102 with rat liver microsomes prepared from male corn oil pretreated rats after derivatization. **S24**

Figure S8. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.810; *m/z* 355.9) from prochiral PCB 102 in incubations with rat liver microsomes prepared from male β-naphthoflavone pretreated rats (analyzed as the corresponding methylated derivative). **S25**

Figure S9A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.810; *m/z* 355.9) from prochiral PCB 102 in incubations with rat liver microsomes prepared from male clofibric acid pretreated rats (analyzed as the corresponding methylated derivative). **S26**

Figure S9B. Mass spectrum of methylated OH-PCB 102 (RT 7.05 min; RRT 0.810) obtained from incubations of PCB 102 with rat liver microsomes prepared from male clofibric acid rats after derivatization. **S27**

Figure S10A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 6.85 min; RRT 0.815; *m/z* 355.9) from prochiral PCB 102 in incubations with rat liver microsomes prepared from male dexamethasone pretreated rats (analyzed as the corresponding methylated derivative). **S28**

Figure S10B. Mass spectrum of methylated OH-PCB 102 (RT 6.85 min; RRT 0.815) obtained from incubations of PCB 102 with rat liver microsomes prepared from male dexamethasone pretreated rats after derivatization. **S29**

Figure S11A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.04 min; RRT 0.808; *m/z* 355.9) from prochiral PCB 102 in incubations with rat liver microsomes prepared from male isoniazid pretreated rats (analyzed as the corresponding methylated derivative). **S30** **Figure S11B.** Mass spectrum of methylated OH-PCB 102 (RT 7.045 min; RRT 0.808) obtained from incubations of PCB 102 with rat liver microsomes prepared from male isoniazid pretreated rats after derivatization. **S31**

Figure S12A. Representative gas chromatogram showing the formation of two metabolites, OH-PCB 102 (RT 7.10 min; RRT 0.808; *m/z* 355.9) and diOH-PCB 102 (RT 8.40 min; RRT 0.956; *m/z* 385.9), from prochiral PCB 102 in incubations with rat liver microsomes prepared from male phenobarbital pretreated rats (analyzed as the corresponding methylated derivative). **S32**

Figure S12B. Mass spectrum of methylated OH-PCB 102 (RT 7.10 min; RRT 0.808) **S33** obtained from incubations of PCB 102 with rat liver microsomes prepared from male phenobarbital pretreated rats after derivatization.

Figure S12C. Mass spectrum of methylated diOH-PCB 102 (RT 8.40 min; RRT 0.9656) obtained from incubations of PCB 102 with rat liver microsomes prepared from male phenobarbital pretreated rats after derivatization. **S34**

Figure S13A. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; RRT 0.664; *m/z* 321.9) and two unknown metabolites, U1-PCB 51 (RT 5.13 min; RRT 0.558; *m/z* 321.9) and U2-PCB 51 (RT 5.64 min; RRT 0.646; *m/z* 321.9), from prochiral PCB 51 in incubations with female dog liver microsomes (analyzed as the corresponding methylated derivative). **S35**

Figure S13B. Mass spectrum of methylated OH-PCB 51 (RT 5.79 min; RRT 0.664) obtained from incubations of PCB 51 with female dog liver microsomes after derivatization. **S36**

Figure S13C. Mass spectrum of methylated U₁-PCB 51 (RT 5.13 min; RRT 0.588) obtained from incubations of PCB 51 with female dog liver microsomes after derivatization. **S37**

Figure S13D. Mass spectrum of methylated U₂-PCB 51 (RT 5.64 min; RRT 0.646) obtained from incubations of PCB 51 with female dog liver microsomes after derivatization. **S38**

Figure S14A. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; RRT 0.664; *m/z* 321.9) from prochiral PCB 51 in incubations with male Guinea pig liver microsomes (analyzed as the corresponding methylated derivative). **S39**

Figure S14B. Mass spectrum of methylated OH-PCB 51 (RT 5.79 min; RRT 0.664) obtained from incubations of PCB 51 with male Guinea pig liver microsomes after derivatization. **S40**

Figure S15A. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; RRT 0.66; *m/z* 321.9) from prochiral PCB 51 in incubations with male hamster liver microsomes (analyzed as the corresponding methylated derivative). **S41**

Figure S15B. Mass spectrum of methylated OH-PCB 51 (RT 5.79 min; RRT 0.666) obtained from incubations of PCB 51 with male hamster liver microsomes after derivatization. **S42** **Figure S16.** Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; RRT 0.665; m/z 321.9) and an unknown metabolite, U_2 -PCB 51 (RT 5.64 min; RRT 0.648; *m/z* 321.9), from prochiral PCB 51 in incubations with male monkey liver microsomes (analyzed as the corresponding methylated derivative). **S43**

Figure S17A. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; RRT 0.664; m/z 321.9) and an unknown metabolite, U_2 -PCB 51 (RT 5.64 min; RRT 0.647; *m/z* 321.9), from prochiral PCB 51 in incubations with male rabbit liver microsomes (analyzed as the corresponding methylated derivative). **S44**

Figure S17B. Mass spectrum of methylated OH-PCB 51 (RT 5.79 min; RRT 0.664) obtained from incubations of PCB 51 with male rabbit liver microsomes after derivatization. **S45**

Figure S18A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.810; *m/z* 355.9), diOH-PCB 102 (RT 8.34 min; RRT 0.959; m/z 385.9) and one unknown metabolite, U₁-PCB 102 (RT 6.84 min; RRT 0.786; *m/z* 355.9), formed from prochiral PCB 102 in incubations with female dog liver microsomes (analyzed as the corresponding methylated derivative). **S46**

Figure S18B. Mass spectrum of methylated OH-PCB 102 (RT 7.05 min; RRT 0.810) **S47** obtained from incubations of PCB 102 with female dog liver microsomes after derivatization.

Figure S18C. Mass spectrum of methylated U₁-PCB 102 (RT 6.84 min; RRT 0.786) obtained from incubations of PCB 102 with female dog liver microsomes after derivatization. **S48**

Figure S19. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.811; *m/z* 355.9) from prochiral PCB 102 in incubations with Guinea pig liver microsomes (analyzed as the corresponding methylated derivative). **S49**

Figure S20A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.810; *m/z* 355.9) and one unknown metabolite, U1-PCB 102 (RT 6.84 min; RRT 0.784; *m/z* 355.9), from prochiral PCB 102 in incubations with male hamster liver microsomes (analyzed as the corresponding methylated derivative). **S50**

Figure S20B. Mass spectrum of methylated OH-PCB 102 (RT 7.05 min; RRT 0.810) obtained from incubations of PCB 102 with male hamster liver microsomes after derivatization. **S51**

Figure S21A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.06 min; RRT 0.808; *m/z* 355.9) and an unknown metabolite, U1-PCB 102 (RT 6.86 min; RRT 0.785; *m/z* 355.9), from prochiral PCB 102 in incubations with male monkey liver microsomes (analyzed as the corresponding methylated derivative). **S52**

Figure S21B. Mass spectrum of methylated U₁-PCB 102 (RT 6.86 min; RRT 0.785) obtained from incubations of PCB 102 with male monkey liver microsomes after derivatization. **S53**

Abbreviations

Table S1. Sources of liver microsomes prepared from male Sprague Dawley rats pretreated with different inducers of specific cytochrome P450 isoforms.*

* The same microsomal preparations were used in our earlier study investigating the species-dependent metabolism of chiral PCB 136.¹

 s Microsomes prepared from corn oil treated male rats as reported previously.²

Liver microsomes were purchased from Xenotech (Lenexa, KS, USA).

nd: Not determined

Table S2. Sources of liver microsomes prepared from different species.*

 $*$ The same microsomal preparations were used in our earlier study investigating the species-dependent metabolism of chiral PCB 136.¹

^{\$} Microsomes prepared from corn oil treated male rats as reported previously.²

Liver microsomes were purchased from Xenotech (Lenexa, KS, USA).

nd: Not determined

Table S3A. The resolution of the major OH-PCB 51 atropisomers (analyzed as methylated derivative) improved with decreasing temperature on a gas chromatograph-electron capture detector (GC- μ ECD) equipped with a Chirasil-Dex (CD) column.^a

Temperature $(C)^{\#}$	Retention time (min)	Resolution 3	Enantiomeric Fraction
140	176.6	1.28	0.48
145	130.7	1.34	0.49
150	100.9	1.32	0.52
160	62.2	0.85	0.51
170	41.9	0.74	0.50
180	31.0	0.46	0.49
200	21.9	nr	nd

Carrier gas flow was at 3 mL/min to determine how temperature affects the enantioselective separation of the OH-PCB 51 metabolite. nr: not resolved, nd: not determined.

Temperature $(C)^{\#}$	Retention time (min)	Resolution ³	Enantiomeric Fraction
140	337.2	0.83	0.50
150	182.3	0.77	0.50
160	105.5	0.71	0.50
170	65.8	0.65	0.50
180	44.7	0.60	0.50
200	26.9	0.44	0.50

Table S3B. The resolution of the major OH-PCB 102 atropisomers (analyzed as methylated derivative) improved with decreasing temperature on a GC-µECD equipped with a CD column.^a

Carrier gas flow was at 3 mL/min to determine how temperature affects the enantioselective separation of the OH-PCB 102 metabolite.

^a Large scale incubations were performed with rat liver microsomes prepared from dexamethasone-pretreated rats and contained phosphate buffer (0.1 M, pH 7.4), liver microsomes (0.1 mg/mL) and NADPH (0.5 mM). The respective PCB congener in DMSO (0.5% of the incubation volume) was added to give a final concentration of 50 µM in a final volume of 16 mL as described in the Experimental Section. After extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the extracts were dried and racemized by heating of the residue at 300 °C for 2 hours. The resulting racemized sample was subject to enantioselective analyses using GC-µECD equipped with a CD capillary column (25 m length, 250 µm inner diameter, 0.25 µm film thickness; Agilent, Santa Clara, CA, USA).

Figure S1A. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; relative retention time (RRT) 0.665; *m/z* **321.9) from prochiral PCB 51 in incubations with rat liver microsomes prepared from male corn oil pretreated rats (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified as OH-PCB 51 based on its RRT and mass spectrum (Figure S1B). diOH-PCB 51, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE $(1:1, v/v)$ and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S1B. Mass spectrum of methylated OH-PCB 51 (RT 5.79 min; RRT 0.665) obtained from incubations of PCB 51 with rat liver microsomes prepared from male corn oil pretreated rats after derivatization. The accurate mass determination of the monoisotopic $[M]^+(m/z\,319.9319)$ versus the m/z calculated for $C_{13}H_8O^{35}Cl_4$ ($m/z\,319.9329$); the isotope pattern of the molecular ion (1:1.3:0.7) compared to the theoretical ratio (1:1.3:0.6); and the fragmentation pattern were consistent with a monohydroxylated tetrachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S2. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; *m/z* **321.9) from prochiral PCB 51 in incubations with rat liver microsomes prepared from male β-naphthoflavone pretreated rats (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified based on the retention time. diOH-PCB 51, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, v/v) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S3A. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; RRT 0.665; *m/z* **321.9) from prochiral PCB 51 in incubations with rat liver microsomes prepared from male clofibric acid pretreated rats (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified based on its RRT and mass spectrum (Figure S3B). In addition, diOH-PCB 51 (RT 6.68 min; RRT 0.767) was tentatively identified based on its RRT (data not shown). The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S3B. Mass spectrum of methylated OH-PCB 51 (RT 5.79 min; RRT 0.665) obtained from incubations of PCB 51 with rat liver microsomes prepared from male clofibric acid pretreated rats after derivatization. The accurate mass determination of the monoisotopic $[M]^+$ (*m/z* 319.9356) versus the *m/z* calculated for C₁₃H₈O³⁵Cl₄ (*m/z* 319.9329); the isotope pattern of the molecular ion (1:1.3:0.7) compared to the theoretical ratio (1:1.3:0.6); and the fragmentation pattern were consistent with a monohydroxylated tetrachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S4A. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.84 min; RRT 0.663; *m/z* **321.9) from prochiral PCB 51 in incubations with rat liver microsomes prepared from male dexamethasone pretreated rats (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified based on its RRT and mass spectrum (Figure S4B). diOH-PCB 51, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S4B. Mass spectrum of methylated OH-PCB 51 (RT 5.84; RRT 0.663) obtained from incubations of PCB 51 with rat liver microsomes prepared from male dexamethasone pretreated rats after derivatization. The accurate mass determination of the monoisotopic $[M]^+(m/z\,319.9355)$ versus the m/z calculated for $C_{13}H_8O^{35}Cl_4$ ($m/z\,319.9329$); the isotope pattern of the molecular ion (1:1.3:0.7) compared to the theoretical ratio (1:1.3:0.6); and the fragmentation pattern were consistent with a monohydroxylated tetrachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S5A. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; RRT 0.665; *m/z* **321.9) from prochiral PCB 51 in incubations with rat liver microsomes prepared from male isoniazid pretreated rats (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified based on its RRT and mass spectrum (Figure S5B). In addition, diOH-PCB 51 (RT 6.65 min; RRT 0.763) was tentatively identified based on its RRT (data not shown). The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S5B. Mass spectrum of methylated OH-PCB 51 (RT 5.79 min; RRT 0.665) obtained from incubations of PCB 51 with rat liver microsomes prepared from male isoniazid pretreated rats after derivatization. The accurate mass determination of the monoisotopic $[M]^+(m/z\,319.9346)$ versus the m/z calculated for $C_{13}H_8O^{35}Cl_4$ ($m/z\,319.9329$); the isotope pattern of the molecular ion (1:1.3:0.7) compared to the theoretical ratio (1:1.3:0.6); and the fragmentation pattern were consistent with a monohydroxylated tetrachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S6A. Representative gas chromatogram showing the formation of two metabolites, OH-PCB 51 (RT 5.84 min; RRT 0.662; *m/z* **321.9) and diOH-PCB 51 (RT 6.75 min; RRT 0.765;** *m/z* **351.9), from prochiral PCB 51 in incubations with rat liver microsomes prepared from phenobarbital pretreated male rats (analyzed as the corresponding methylated derivative).** The metabolites were tentatively identified based on their RRTs and mass spectra (Figures S6B and S6C, respectively). The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S6B. Mass spectrum of methylated OH-PCB 51 (RT 5.84 min; RRT 0.662) obtained from incubations of PCB 51 with rat liver microsomes prepared from phenobarbital pretreated male rats after derivatization. The accurate mass determination of the monoisotopic $[M]^+(m/z\ 319.9346)$ versus the m/z calculated for $C_{13}H_8O^{35}Cl_4$ ($m/z\ 319.9329$); the isotope pattern of the molecular ion (1:1.4:0.6) compared to the theoretical ratio (1:1.3:0.6); and the fragmentation pattern were consistent with a monohydroxylated tetrachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S6C. Mass spectrum of diOH-PCB 51 (RT 6.75 min; RRT 0.765) obtained from incubations of PCB 51 with rat liver microsomes prepared from phenobarbital pretreated male rats after derivatization. The accurate mass determination of the monoisotopic [M]⁺ (m/z 349.9455) versus the m/z calculated for $C_{14}H_{10}O_2^{35}Cl_4$ (m/z 349.9435); the isotope pattern of the molecular ion (1:1.3:0.6) compared to the theoretical ratio (1:1.3:0.6); and the fragmentation pattern were consistent with a dihydroxylated tetrachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S7A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.810; *m/z* **355.9) from prochiral PCB 102 in incubations with rat liver microsomes prepared from corn oil pretreated male rats (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified based on its RRT and mass spectrum (Figure S7B). In addition, methylated diOH-PCB 102 (RT 8.36 min; RRT 0.961) was tentatively identified based on its RRT (data not shown). The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, v/v) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S7B. Mass spectrum of methylated OH-PCB 102 (RT 7.05; RRT 0.810) obtained from incubations of PCB 102 with rat liver microsomes prepared from male corn oil pretreated rats after derivatization. The accurate mass determination of the monoisotopic $[M]^+$ (*m/z* 353.8947) versus the *m/z* calculated for C₁₃H₇O₁³⁵Cl₅ (*m/z* 353.8940); the isotope pattern of the molecular ion (1:1.7:1.1:0.3) compared to the theoretical ratio (1:1.6:1:0.3); and the fragmentation pattern were consistent with a monohydroxylated pentachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S8. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.810; *m/z* **355.9) from prochiral PCB 102 in incubations with rat liver microsomes prepared from male β-naphthoflavone pretreated rats (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified based on its RRT. diOH-PCB 102, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S9A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.810; *m/z* **355.9) from prochiral PCB 102 in incubations with rat liver microsomes prepared from male clofibric acid pretreated rats (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified based on its RRT and mass spectrum (Figure S9B). In addition, diOH-PCB 102 (RT 8.36 min; RRT 0.960), as dimethylated derivative, was tentatively identified based on its RRT (data not shown). The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S9B. Mass spectrum of methylated OH-PCB 102 (RT 7.05 min; RRT 0.810) obtained from incubations of PCB 102 with rat liver microsomes prepared from male clofibric acid rats after derivatization. The accurate mass determination of the monoisotopic $[M]^+(m/z\,353.8933)$ versus the m/z calculated for $C_{13}H_7O_1^{35}Cl_5(m/z\,353.8940)$; the isotope pattern of the molecular ion (1:1.6:1.1:0.4) compared to the theoretical ratio (1:1.6:1:0.3); and the fragmentation pattern were consistent with a monohydroxylated pentachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S10A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 6.85 min; RRT 0.815; *m/z* **355.9) from prochiral PCB 102 in incubations with rat liver microsomes prepared from male dexamethasone pretreated rats (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified based on its mass spectrum (Figure S10B); however, its RRT was slightly higher than the average RRT of OH-PCB 102, possibly because the sample was not analyzed in the same sequence as all other samples. diOH-PCB 102, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S10B. Mass spectrum of methylated OH-PCB 102 (RT 6.85 min; RRT 0.815) obtained from incubations of PCB 102 with rat liver microsomes prepared from male dexamethasone pretreated rats after derivatization. The accurate mass determination of the monoisotopic $[M]^+$ (*m/z* 353.8957) versus the *m/z* calculated for C₁₃H₇O₁³⁵Cl₅ (*m/z* 353.8940); the isotope pattern of the molecular ion (1:1.4:0.9:0.3) compared to the theoretical ratio (1:1.6:1:0.3); and the fragmentation pattern were consistent with a monohydroxylated pentachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S11A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.04 min; RRT 0.808; *m/z* **355.9) from prochiral PCB 102 in incubations with rat liver microsomes prepared from male isoniazid pretreated rats (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified based on its RRT and mass spectrum (Figure S11B). In addition, diOH-PCB 102 (RT 8.35 min; RRT 0.96), as dimethylated derivative, was tentatively identified based on its RRT (data not shown). The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE $(1:1, v/v)$ and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S11B. Mass spectrum of methylated OH-PCB 102 (RT 7.045 min; RRT 0.808) obtained from incubations of PCB 102 with rat liver microsomes prepared from male isoniazid pretreated rats after derivatization. The accurate mass determination of the monoisotopic $[M]^+$ (m/z 353.8960 versus the m/z calculated for $C_{13}H_7O_1^{35}Cl_5$ (m/z 353.8940); the isotope pattern of the molecular ion (1:1.6:1:0.3) compared to the theoretical ratio (1:1.6:1:0.3); and the fragmentation pattern were consistent with a monohydroxylated pentachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S12A. Representative gas chromatogram showing the formation of two metabolites, OH-PCB 102 (RT 7.10 min; RRT 0.808; *m/z* **355.9) and diOH-PCB 102 (RT 8.40 min; RRT 0.956;** *m/z* **385.9), from prochiral PCB 102 in incubations with rat liver microsomes prepared from male phenobarbital pretreated rats (analyzed as the corresponding methylated derivative).** The metabolites were tentatively identified based on their RRTs and mass spectra (Figures S12B and S12C, respectively). The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S12B. Mass spectrum of methylated OH-PCB 102 (RT 7.10 min; RRT 0.808) obtained from incubations of PCB 102 with rat liver microsomes prepared from male phenobarbital pretreated rats after derivatization. The accurate mass determination of the monoisotopic $[M]^+$ (*m/z* 353.8912) versus the *m/z* calculated for C₁₃H₇O₁³⁵Cl₅ (*m/z* 353.8940); the isotope pattern of the molecular ion (1:1.4:1:0.3) compared to the theoretical ratio (1:1.6:1:0.3); and the fragmentation pattern were consistent with a monohydroxylated pentachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S12C. Mass spectrum of methylated diOH-PCB 102 (RT 8.40 min; RRT 0.9656) obtained from incubations of PCB 102 with rat liver microsomes prepared from male phenobarbital pretreated rats after derivatization. The accurate mass determination of the monoisotopic [M]⁺ (*m/z* 383.8984) did not match the *m/z* calculated for C₁₄H₉O₂³⁵Cl₅ (*m/z* 383.9045) due to a co-eluting impurity; however, the isotope pattern of the molecular ion (1:1.7:1.1:0.4) compared to the theoretical ratio (1:1.6:1:0.3) and the fragmentation pattern were consistent with a dihydroxylated pentachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S13A. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; RRT 0.664; *m/z* **321.9) and two unknown metabolites, U1-PCB 51 (RT 5.13 min; RRT 0.558;** *m/z* **321.9) and U2-PCB 51 (RT 5.64 min; RRT 0.646;** *m/z* **321.9), from prochiral PCB 51 in incubations with female dog liver microsomes (analyzed as the corresponding methylated derivative).** The methylated derivative of OH-PCB 51 was tentatively identified based on its RRT and mass spectrum (Figure S13B). The mass spectra of U_1 -PCB 51 and methylated U_2 -PCB 51, both as methylated derivatives, are shown in Figures S13C and S13D, respectively. diOH-PCB 51, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S13B. Mass spectrum of methylated OH-PCB 51 (RT 5.79 min; RRT 0.664) obtained from incubations of PCB 51 with female dog liver microsomes after derivatization. The accurate mass determination of the monoisotopic $[M]^+(m/z\,319.9331)$ versus the m/z alculated for $C_{13}H_8O^{35}Cl_4$ (m/z 319.9329); the isotope pattern of the molecular ion (1:1.3:0.7) compared to the theoretical ratio (1:1.3:0.6); and the fragmentation pattern were consistent with a monohydroxylated tetrachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S13C. Mass spectrum of methylated U1-PCB 51 (RT 5.13 min; RRT 0.588) obtained from incubations of PCB 51 with female dog liver microsomes after derivatization. The accurate mass determination of the monoisotopic [M]⁺ (m/z 319.9316) was consistent with m/z calculated for $C_{13}H_8O^{35}Cl_4$ (m/z 319.9329); however, the isotope pattern of the molecular ion $(1:1:0.5)$ did not match to the theoretical ratio $(1:1.3:0.6)$ because of the low levels of this metabolite. Interestingly, the mass spectrum of this minor metabolite shows a distinct $[M-50]^+$ fragment. This fragment is characteristic of a dibenzofuran daughter ion formed from the loss of CH3 from an *ortho* methoxy group in one phenyl ring and an *ortho* chlorine in the other phenyl ring,4-6 thus suggesting the formation of an *ortho* monohydroxylated metabolite of PCB 51. Similarly, earlier studies demonstrate the formation of *ortho* hydroxylated PCB metabolite in incubations of 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) with dog liver microsomes⁷ or in incubations of $2,2^{\prime},3,3^{\prime},6,6^{\prime}$ -hexachlorobiphenyl (PCB 136) with recombinant dog CYP2B11.⁸ Additional studies are needed to confirm the formation and structure of this minor metabolite.

Figure S13D. Mass spectrum of methylated U2-PCB 51 (RT 5.64 min; RRT 0.646) obtained from incubations of PCB 51 with female dog liver microsomes after derivatization. The accurate mass determination of the monoisotopic [M]⁺ (m/z 319.9316) versus the m/z calculated for $C_{13}H_8O^{35}Cl_4$ (m/z 319.9329); the isotope pattern of the molecular ion (1:1.4:0.6) compared to the theoretical ratio (1:1.3:0.6); and the recognizable fragmentation pattern were consistent with a monohydroxylated tetrachlorobiphenyl (as the corresponding methylated derivative).

Figure S14A. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; RRT 0.664; *m/z* **321.9) from prochiral PCB 51 in incubations with male Guinea pig liver microsomes (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified based on its RRT and mass spectrum (Figure S14B). diOH-PCB 51, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE $(1:1, v/v)$ and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S14B. Mass spectrum of methylated OH-PCB 51 (RT 5.79 min; RRT 0.664) obtained from incubations of PCB 51 with male Guinea pig liver microsomes after derivatization. The accurate mass determination of the monoisotopic [M]⁺ (*m/z* 319.9367) did not match the m/z 319.9329 (calculated for $C_{13}H_8O^{35}Cl_4$) due to a co-eluting impurity; however, the isotope pattern of the molecular ion (1:1.3:0.7) compared to the theoretical ratio (1:1.3:0.6) and the fragmentation pattern were consistent with a monohydroxylated tetrachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S15A. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; RRT 0.66; *m/z* **321.9) from prochiral PCB 51 in incubations with male hamster liver microsomes (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified based on its RRT and mass spectrum (Figure S15B). diOH-PCB 51, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE $(1:1, v/v)$ and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S15B. Mass spectrum of methylated OH-PCB 51 (RT 5.79 min; RRT 0.666) obtained from incubations of PCB 51 with male hamster liver microsomes after derivatization. The accurate mass determination of the monoisotopic [M]⁺ (*m/z* 319.9317) versus the m/z calculated for $C_{13}H_8O^{35}Cl_4$ (m/z 319.9329); the isotope pattern of the molecular ion (1:1.3:0.7) compared to the theoretical ratio (1:1.3:0.6); and the fragmentation pattern were consistent with a monohydroxylated tetrachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S16. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; RRT 0.665; *m/z* **321.9) and an unknown metabolite, U2-PCB 51 (RT 5.64 min; RRT 0.648;** *m/z* **321.9), from prochiral PCB 51 in incubations with male monkey liver microsomes (analyzed as the corresponding methylated derivative).** Both metabolites were tentatively identified based on their RRT. diOH-PCB 51, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S17A. Representative gas chromatogram showing the formation of OH-PCB 51 (RT 5.79 min; RRT 0.664; *m/z* **321.9) and an unknown metabolite, U2-PCB 51 (RT 5.64 min; RRT 0.647;** *m/z* **321.9), from prochiral PCB 51 in incubations with male rabbit liver microsomes (analyzed as the corresponding methylated derivative).** OH-PCB 51, as methylated derivative, was tentatively identified based on its RRT and mass spectrum (Figure S17B). A peak with a RRT corresponding to U_2 -PCB 51 was observed. diOH-PCB 51, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE $(1:1, v/v)$ and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S17B. Mass spectrum of methylated OH-PCB 51 (RT 5.79 min; RRT 0.664) obtained from incubations of PCB 51 with male rabbit liver microsomes after derivatization. The accurate mass determination of the monoisotopic $[M]^+(m/z\,319.9333)$ versus the m/z calculated for $C_{13}H_8O^{35}Cl_4$ (m/z 319.9329); the isotope pattern of the molecular ion (1:1.3:0.6) compared to the theoretical ratio (1:1.3:0.6); and the fragmentation pattern were consistent with a monohydroxylated tetrachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S18A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.810; *m/z* **355.9), diOH-PCB 102 (RT 8.34 min; RRT 0.959;** *m/z* **385.9) and one unknown metabolite, U1-PCB 102 (RT 6.84 min; RRT 0.786;** *m/z* **355.9), formed from prochiral PCB 102 in incubations with female dog liver microsomes (analyzed as the corresponding methylated derivative).** The methylated derivative of OH-PCB 102 was tentatively identified based on its RRT and mass spectrum (Figures S18B). diOH-PCB 102, as dimethylated derivative, was tentatively identified based on its RRT. The mass spectrum of the unidentified metabolite U_1 -PCB 102, a monohydroxylated pentachlorobiphenyl (as methylated derivative), is shown in Figure S18C. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatographmass spectrometer as described in the Experimental Section.

Figure S18B. Mass spectrum of methylated OH-PCB 102 (RT 7.05 min; RRT 0.810) obtained from incubations of PCB 102 with female dog liver microsomes after derivatization. The accurate mass determination of the monoisotopic $[M]^+(m/z\,353.8937)$ versus the m/z calculated for $C_{13}H_7O_1^{35}Cl_5 (m/z 353.8940)$; the isotope pattern of the molecular ion (1:1.6:1:0.3) compared to the theoretical ratio (1:1.6:1:0.3); and the fragmentation pattern were consistent with a monohydroxylated pentachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S18C. Mass spectrum of methylated U1-PCB 102 (RT 6.84 min; RRT 0.786) obtained from incubations of PCB 102 with female dog liver microsomes after derivatization. The accurate mass determination of the monoisotopic $[M]^+(m/z\,353.8953)$ versus the m/z calculated for $C_{13}H_7O_1^{35}Cl_5 (m/z 353.8940)$; the isotope pattern of the molecular ion (1:1.6:1.1:0.3) compared to the theoretical ratio (1:1.6:1:0.3); and the fragmentation pattern were consistent with a monohydroxylated pentachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S19. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.811; *m/z* **355.9) from prochiral PCB 102 in incubations with Guinea pig liver microsomes (analyzed as the corresponding methylated derivative).** The metabolite was tentatively identified based on its RRT. diOH-PCB 102, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S20A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.810; *m/z* **355.9) and one unknown metabolite, U1-PCB 102 (RT 6.84 min; RRT 0.784;** *m/z* **355.9), from prochiral PCB 102 in incubations with male hamster liver microsomes (analyzed as the corresponding methylated derivative).** The methylated derivative of OH-PCB 102 was tentatively identified based on its RRT and mass spectrum (Figure S20B). U1-PCB 102 was tentatively identified based on its RRT. In addition, diOH-PCB 102 (RT 8.34 min; RRT 0.958), as dimethylated derivative, was tentatively identified based on its RRT (data not shown). The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S20B. Mass spectrum of methylated OH-PCB 102 (RT 7.05 min; RRT 0.810) obtained from incubations of PCB 102 with male hamster liver microsomes after derivatization. The accurate mass determination of the monoisotopic $[M]^+(m/z\,353.8945)$ versus the m/z calculated for $C_{13}H_7O_1^{35}Cl_5$ (m/z 353.8940); the isotope pattern of the molecular ion (1:1.7:1.1:0.3) compared to the theoretical ratio (1:1.6:1:0.3); and the fragmentation pattern were consistent with a monohydroxylated pentachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S21A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.06 min; RRT 0.808; *m/z* **355.9) and an unknown metabolite, U1-PCB 102 (RT 6.86 min; RRT 0.785;** *m/z* **355.9), from prochiral PCB 102 in incubations with male monkey liver microsomes (analyzed as the corresponding methylated derivative).** The methylated derivative of OH-PCB 102 was tentatively identified based on its RRT. The mass spectrum of the unidentified metabolite U_1 -PCB 102, a monohydroxylated pentachlorobiphenyl (as methylated derivative), is shown in Figure S21B. diOH-PCB 102, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE (1:1, *v/v*) and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatographmass spectrometer as described in the Experimental Section.

Figure S21B. Mass spectrum of methylated U1-PCB 102 (RT 6.86 min; RRT 0.785) obtained from incubations of PCB 102 with male monkey liver microsomes after derivatization. The accurate mass determination of the monoisotopic [M]⁺ (*m/z* 353.8969) versus the m/z calculated for $C_{13}H_7O_1^{35}Cl_5$ (m/z 353.8940); the isotope pattern of the molecular ion (1:1.7:1.1:0.4) compared to the theoretical ratio (1:1.6:1:0.3); and the fragmentation pattern were consistent with a monohydroxylated pentachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S22A. Representative gas chromatogram showing the formation of OH-PCB 102 (RT 7.05 min; RRT 0.809; *m/z* **355.9) and an unknown metabolite, U1-PCB 102 (RT 6.85 min; RRT 0.786;** *m/z* **355.9), from prochiral PCB 102 in incubations with male rabbit liver microsomes (analyzed as the corresponding methylated derivative).** The methylated derivative of OH-PCB 102 was tentatively identified based on its RRT and mass spectrum (Figure S22B). U1-PCB 102 was tentatively identified based on its RRT. diOH-PCB 102, a metabolite observed in microsomal incubations with other rat liver microsomes or liver microsomes prepared from other mammalian species, was not detected. The incubation was performed in a shaking water bath at 37 °C for 2 hours and, after extraction with hexane-MTBE $(1:1, v/v)$ and derivatization with diazomethane, the organic extract was analyzed on a Waters GCT Premier gas chromatograph-mass spectrometer as described in the Experimental Section.

Figure S22B. Mass spectrum of methylated OH-PCB 102 (RT 7.05 min; RRT 0.809) obtained from incubations of PCB 102 with male rabbit liver microsomes after derivatization. The accurate mass determination of the monoisotopic [M]⁺ (*m/z* 353.8958) versus the m/z calculated for $C_{13}H_7O_1^{35}Cl_5 (m/z 353.8940)$; the isotope pattern of the molecular ion (1:1.6:1:0.3) compared to the theoretical ratio (1:1.6:1:0.3); and the fragmentation pattern were consistent with a monohydroxylated pentachlorobiphenyl (as the corresponding methylated derivative). See the manuscript for a discussion of the chemical structure of this metabolite.

Figure S23A. Representative gas chromatogram showing traces of an underivatized, monohydroxylated metabolite (RT 5.20 min; RRT 0.596; *m/z* **307.9) present in extracts from incubations of PCB 51 with male rabbit liver microsomes.** The metabolite was tentatively identified as underivatized OH-PCB 51 based on its mass spectrum (Figure S23B). The presence of this monohydroxylated PCB 51 may be due to incomplete derivatization of OH-PCB 51 or could be a formed during the sulfuric acid clean-up step from an epoxide metabolite of PCB 51.9

Figure S23B. Mass spectrum of an underivatized, monohydroxylated PCB 51 metabolite (RT 5.20 min; RRT 0.596) present in extracts from incubations of PCB 51 with male rabbit liver microsomes. The isotope pattern of the molecular ion and the fragmentation pattern are consistent with a monohydroxylated tetrachlorobiphenyl.

Figure S24A. Representative gas chromatogram showing traces of an underivatized, monohydroxylated metabolite (RT 6.23 min; RRT 0.714; *m/z* **341.9) present in extracts from incubations of PCB 102 with male rabbit liver microsomes.** The metabolite was tentatively identified as underivatized OH-PCB 102 based on its mass spectrum (Figure S24B). The presence of this monohydroxylated PCB 102 may be due to incomplete derivatization of OH-PCB 102 or could be a formed during the sulfuric acid clean-up step from an epoxide metabolite of PCB 102.9

Figure S24B. Mass spectrum of an underivatized, monohydroxylated PCB 102 metabolite (RT 6.23 min; RRT 0.714) present in extracts from incubations of PCB 102 with male rabbit liver microsomes. The isotope pattern of the molecular ion and the fragmentation pattern are consistent with monohydroxylated pentachlorobiphenyl.

Figure S25. Representative gas chromatogram showing the separation of the atropisomers of (A) OH-PCB 51 and (B) OH-PCB 102 formed in incubation of the respective prochiral PCBs with microsomes prepared from male dexamethasone pretreated rats (analyzed as the corresponding methylated derivative). Large-scale incubations were performed with rat liver microsomes prepared from dexamethasone-pretreated rats and contained phosphate buffer $(0.1 \text{ M}, \text{pH } 7.4)$, liver microsomes (0.1 mg/mL) and NADPH (0.5 mM) . PCB 51 or PCB 102 in DMSO (0.5% of the incubation volume) was added to give a final concentration of 50 μ M in a 16 mL incubation as described in the Experimental Section. After extraction with hexane-MTBE $(1:1, v/v)$ and derivatization with diazomethane, the organic extract was analyzed on a GC-MS equipped with a BDM capillary column $(30 \text{ m length}, 250 \text{ µm inner diameter}, 0.12 \text{ µm film thickness};$ Supelco, St Louis, MO, USA) at 130 **°**C or 140 **°**C for OH-PCB 51 or OH-PCB 102, respectively. The helium flow rate was 3 mL/min. The injector temperature was 280 °C and the temperatures of the mass selective detector were as follow: transfer line, 280 °C; source, 230 °C; and quadrupole, 150 °C. Ions were created by negative electron impact ionization. Data were acquired in the selected ion monitoring (SIM) mode for *m/z* 320, 322 (for methylated OH-PCB 51) and *m/z* 356, 358 (for methylated OH-PCB 102).

References

- (1) Wu, X.; Kammerer, A.; Lehmler, H. J. Microsomal oxidation of 2,2',3,3',6,6' hexachlorobiphenyl (PCB 136) results in species-dependent chiral signatures of the hydroxylated metabolites. *Environ. Sci. Technol.* **2014**, *48*, 2436-2444.
- (2) Wu, X.; Pramanik, A.; Duffel, M. W.; Hrycay, E. G.; Bandiera, S. M.; Lehmler, H. J.; Kania-Korwel, I. 2,2',3,3',6,6'-Hexachlorobiphenyl (PCB 136) is enantioselectively oxidized to hydroxylated metabolites by rat liver microsomes. *Chem. Res. Toxicol.* **2011**, *24*, 2249-2257.
- (3) Kania-Korwel, I.; Vyas, S. M.; Song, Y.; Lehmler, H.-J. Gas chromatographic separation of methoxylated polychlorinated biphenyl atropisomers. *J. Chromatogr. A* **2008**, *1207*, 146-154.
- (4) Bergman, Å.; Klasson Wehler, E.; Kuroki, H.; Nilsson, A. Synthesis and mass spectrometry of some methoxylated PCB. *Chemosphere* **1995**, *30*, 1921-1938.
- (5) Jansson, B.; Sundström, G. Mass spectrometry of the methyl ethers of isomeric hydroxychlorobiphenyls—potential metabolites of chlorobiphenyls. *Biol. Mass Spectrom.* **1974**, *1*, 386-392.
- (6) Li, X.; Robertson, L. W.; Lehmler, H. J. Electron ionization mass spectral fragmentation study of sulfation derivatives of polychlorinated biphenyls. *Chem. Cent. J.* **2009**, *3*, 5.
- (7) Ariyoshi, N.; Koga, N.; Oguri, K.; Yoshimura, H. Metabolism of 2, 4, 5, 2', 4', 5' hexachlorobiphenyl with liver microsomes of phenobarbital-treated dog; the possible formation of PCB 2, 3-arene oxide intermediate. *Xenobiotica* **1992**, *22*, 1275-1290.
- (8) Hasler, J. A.; Harlow, G. R.; Szklarz, G. D.; John, G. H.; Kedzie, K. M.; Burnett, V. L.; He, Y. A.; Kaminsky, L. S.; Halpert, J. R. Site-directed mutagenesis of putative substrate recognition sites in cytochrome P450 2B11: importance of amino acid residues 114, 290, and 363 for substrate specificity. *Mol. Pharmacol.* **1994**, *46*, 338-345.
- (9) Lu, Z.; Kania-Korwel, I.; Lehmler, H. J.; Wong, C. S. Stereoselective formation of monoand dihydroxylated polychlorinated biphenyls by rat cytochrome P450 2B1. *Environ. Sci. Technol.* **2013**, *47*, 12184-12192.