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ABSTRACT The cellular cytoplasm is a complex, heterogeneous environment (both spatially and temporally) that exhibits
viscoelastic behavior. To further develop our quantitative insight into cellular transport, we analyze data sets of mRNAmolecules
fluorescently labeled with MS2-GFP tracked in real time in live Escherichia coli and Saccharomyces cerevisiae cells. As shown
previously, these RNA-protein particles exhibit subdiffusive behavior that is viscoelastic in its origin. Examining the ensemble of
particle displacements reveals a Laplace distribution at all observed timescales rather than the Gaussian distribution predicted
by the central limit theorem. This ensemble non-Gaussian behavior is caused by a combination of an exponential distribution in
the time-averaged diffusivities and non-Gaussian behavior of individual trajectories. We show that the non-Gaussian behavior is
a consequence of significant heterogeneity between trajectories and dynamic heterogeneity along single trajectories. Informed
by theory and simulation, our work provides an in-depth analysis of the complex diffusive behavior of RNA-protein particles in live
cells.
INTRODUCTION
The central limit theorem states that the mean of a large
number of independent identically distributed random vari-
ables with finite mean and variance will approximate a
Gaussian distribution. Furthermore, the random variables
need not be statistically identical if they satisfy certain con-
ditions (such as the Lyapunov or Lindeberg conditions) (1).
As a consequence of this theorem, random walk systems
whose discrete steps are defined by random variables with
finite mean and variance will exhibit a Gaussian distribution
in the limit of many such steps. In the context of single-par-
ticle tracking, the Gaussian distribution is thus defined by its
probability density function as

PGaussðDx;m; sÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp

"
� ðDx � mÞ2

2s2

#
; (1)

where Dx is the particle displacement in one dimension (1D)
and m and s are the displacement’s mean and standard devi-
ation values, respectively.

The classic works of Fick, Einstein, and Smulochowski
define a diffusion equation for particles in solution whose
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only free parameter is the diffusivity D ¼ kBT=x, which is
related to the solution temperature T by the Boltzmann con-
stant kB and the drag coefficient x of the particle (2–4). Thus,
diffusion of the particle is a consequence of random, ther-
mally driven collisions with the solvent molecules, resulting
in the particle displacement variance s2 ¼ 2DDt, where Dt
is the length of time over which the displacements Dx occur
(Eq. 1). Perrin (5) (and many others) experimentally
confirmed the validity of this framework by showing that
particle displacements in simple Newtonian solutions
indeed exhibit a Gaussian distribution.

Despite the implications of the central limit theorem,
there are many instances of experimental systems where
particle diffusion exhibits non-Gaussian displacement
behavior. In soft-matter systems, examples include beads
diffusing on lipid tubes (6), in actin and agarose networks
(6–10), in concentrated colloidal suspensions (11,12), and
in suspension with eukaryotic swimmers (13). For particles
inside living cells, examples include RNA-protein particles
and protein aggregates in Escherichia coli (14,15) and
Saccharomyces cerevisiae (16) and submicron colloidal
tracers in the cytoplasm of human cell lines (17,18). We sus-
pect that there are many more examples to be found in
biological systems, but studies involving single-particle
tracking experiments in biological systems frequently do
not report displacement distributions. The cause of the
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Non-Gaussian Subdiffusive Behavior In Vivo
non-Gaussian behavior is generally thought to be due to the
heterogeneity of the material’s environment and its fluctua-
tions, resulting in a wide distribution of diffusivities whose
behavior can span orders of magnitude of time (19).

In addition to the non-Gaussian behavior noted above, the
cellular cytoplasm often displays viscoelastic properties
(20). Particles moving passively in such an environment
frequently exhibit subdiffusive behavior, defined as a
mean-square displacement (MSD ¼ h½xðt þ DtÞ � xðtÞ�2i)
scaling as a power law ðDtÞa, where a< 1. Examples include
az0:7 for RNA-protein particles in E. coli (14,21) and
S. cerevisiae (22), az0:7 for lipid granules in fission yeast
(23), az0:5 for gold nanoparticles in several human and
mammalian cell lines (24), and az0:5� 0:8 for dextrans
in HeLa cells (25). Chromosomal loci also exhibit subdiffu-
sive behavior, with az0:4� 0:5 for E. coli (26,27),
az0:5� 0:7 in budding yeast (28,29), and az0:3 for
mammalian telomeres at timescales <10 s (30). Note that
subdiffusive behavior does not necessarily imply non-
Gaussian behavior, as models such as fractional Brownian
motion exhibit Gaussian, anticorrelated increments result-
ing in anomalous diffusion (31). Conversely, non-Gaussian
behavior can still exhibit normal diffusive dynamics (19).

In this study, we examine the trajectories of MS2-GFP
bound mRNA as effective tracer particles in the cytoplasm
of the bacterium E. coli and the eukaryote Saccharomyces
cerevisiae (budding yeast). We use this system to better un-
derstand the local heterogeneity of the cytoplasm. We find
non-Gaussian, subdiffusive behavior at all timescales
measured in both organisms. Using individual-trajectory an-
alyses, analytical theory, and simulation, we show that the
non-Gaussian behavior is due to a combination of a wide
distribution in the trajectory average diffusivities and local
spatiotemporal heterogeneities in the individual trajectories,
which are also non-Gaussian.
MATERIALS AND METHODS

Strains

The E. coli strain used (a gift from I. Golding) is DH5a-Z1 carrying two

plasmids, the first containing a GFP-MS2 protein fusion (pIG-K133) and

the second encoding an mRNA molecule with a 96-tandem repeat of bind-

ing sites for the RNA-binding protein MS2 (pIG-BAC2) (21). The

S. cerevisiae used was a haploid JCY66 strain (MATa ade2-1 trp1-1

can1-100 leu2-3,112 his3-11,15 ura3) with the sequence for 12 MS2 hair-

pins inserted at the ARG3 coding region as described in Thompson et al.

(32) and Haim-Vilmovsky and Gerst (33).
Growth conditions and microscopy

See Stylianidou et al. (14) for details of experimental methods and data

acquisition of the MS2-mRNA trajectories in E. coli cells. In short, over-

night cultures grown in Luria Broth media with Kanamycin and Chloram-

phenicol were diluted and grown to approximately midlog phase. The cells

were then induced with Isopropyl b-D-1-thiogalactopyranoside (1 mM) and

anhydrotetracycline (10 ng/mL) for 15 min at 30C. Cells were rinsed and
grown in fresh media for 1 h at 30�C. 2 mL of cells were spotted onto

2% wt/wt agarose pads with growth media and sealed with VALP. Time-

lapse phase-contrast and wide-field fluorescence microscopy images were

collected at 1 min or 1 s time intervals using a large-format sCMOS camera

(Andor Neo; Andor Technology/Oxford Instruments, Belfast, Northern

Ireland) attached to a TiE microscope (Nikon Instruments, Melville, NY)

with a 60� Plan-Apo oil immersion objective with a 1.4 numerical aperture

and equipped with an environmental chamber and controlled by NIS-Ele-

ments (Nikon Instruments). Mean localization precision of particles was

calculated to be ~57 nm. Trajectory data were analyzed using the custom

MATLAB software (The MathWorks, Natick, MA) SuperSegger (34).

See Thompson et al. (32) for details of experimental methods and data

acquisition of the MS2-mRNA trajectories in S. cerevisiae cells. In short,

overnight cultures were grown in synthetic complete (SC) his-media with

glucose (2% wt/vol) and adenine hemisulfate (40 mg/mL) to early log phase

and transferred into SC media without methionine for induction of MS2-

3xEGFP for 3 h at 30�C and then removed to SC media for 3 h. After

rinsing, roughly 2 mL of cells were spotted onto 1.5% wt/wt agarose pads

with SC media and sealed with paraffin wax. Fluorescence microscopy im-

ages were taken at 15 ms intervals using an iXonþ electron-multiplying

charge-coupled device camera (Andor Technology/Oxford Instruments)

attached to an inverted IX71 fluorescence microscope (Olympus, Melville,

NY) using a 100� oil immersion objective with a 1.4 numerical aperture

and fitted with a double helix point spread function (DH-PSF) image pro-

cessing section. The DH-PSF uses a spatial light modulator that transforms

a single fluorescent focus into two spots, angle of which between them, rela-

tive to the spatial light modulator, enables calculation of the focus z coor-

dinate (32,35–37). Mean localization precision of particles was calculated

to be ~25 and 28 nm in the x and y directions, respectively (the DH-SPF

is not symmetric to 90� rotations). Images of putative RNA-protein particles

were identified by hand and x,y,z coordinates were calculated according to

the DH-PSF using custom MATLAB software (32).
Trajectory analysis

RNA-protein particle trajectories were converted to tables of position coor-

dinates and analyzed using custom MATLAB software.
Trajectory simulations

Trajectories of simulated Brownian and fractional Brownian motion were

generated using the wfbm function in MATLAB, which uses the fractional

ARIMA process (38).
RESULTS AND DISCUSSION

RNA-protein particle tracking

We examine fluorescent RNA-protein particles that are
diffusing in the cytoplasm of E. coli and S. cerevisiae.
The E. coli data sets span 136 min with a time interval of
1 min between position measurements (14) and 100 s with
a time interval of 1 s (reported in this study), and the
S. cerevisiae data set spans 45 s with a time interval of
0.015 s (32). In the E. coli data sets, the RNA-protein parti-
cles consist of noncoding mRNAwith no ribosomal binding
site or degradation tag and a 96� repeat of the MS2 binding
sequence that binds an MS2-GFP fusion protein under
the control of the tetracycline promoter (39). In the
S. cerevisiae data set, the ARG3 mRNA was selected for
its low expression level and its lack of localization behavior
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and labeled using a 12� repeat of the MS2 binding sequence
that binds to an MS2 protein fused to three EGFPs (32). The
majority of trajectories analyzed in this study belong to cells
containing one particle (>95%). For cells containing two
particles whose paths could potentially cross, trajectories
from E. coli are only included if particles are at opposite
ends of the cell, and crossing was not observed in the
S. cerevisiae data set (32).

For E. coli, we analyze the particle trajectories in 1D
along the long axis of the cell, starting in the middle 95%
of the cell for the 1 s data set (1807 trajectories, average
of 97 data points per trajectory) and the middle 50% of
the cell for the 1 min data set (892 trajectories, average
of 45 data points per trajectory) to reduce the influence of
the confining cell edges in biasing the motion. The effects
of the confining cell wall can be included in analyzing
and modeling the motion of RNA-protein particles (14),
but in this work we are only interested in studying the
freely diffusing behavior. We include sample trajectories
in Fig. S1, a and b, in the Supporting Material. For
S. cerevisiae, we analyze particle dynamics in the x and y di-
rections (252 trajectories, average of 663 data points per tra-
jectory). Data for the z direction is also available, but not
included in this study due to less spatial resolution leading
to more uncertainty in the position relative to the x and y co-
ordinates (32). We include sample trajectories in the Sup-
porting Material placed arbitrarily in a circle with the
typical diameter of an S. cerevisiae cell (3 mm) to show
the comparison between the trajectory exploration area
and the size of the cell Fig. S1 c). We note that mRNA-pro-
tein particles are not free to move throughout the entire cell
volume. Particles in E. coli are generally excluded from the
a b

c d
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nucleoid, which biases their position to the cell center and
poles (14). In S. cerevisiae the nucleus and other organelles
can obstruct particle motion, which could cause the particles
to feel an effective confinement at shorter timescales.
RNA-protein particles exhibit subdiffusive motion

RNA-protein particles in the E. coli and S. cerevisiae cyto-
plasm exhibit ergodic subdiffusive behavior as both their

ensemble-averaged MSD (eMSD, h½xðt þ DtÞ � xðtÞ�2i)
and time-averaged MSD (tMSD,

�
½xðt þ DtÞ � xðtÞ�2

�
,

where the overbar denotes a time average over each trajec-
tory before taking the ensemble average) exhibit power-law
behavior MSD ~(Dt)a (Fig. 1). In the E. coli data sets, we
measure a ¼ 0.54 (standard error of 0.001) for Dt of
1–60 s and a ¼ 0.68 (standard error of 0.007) for Dt of
1–60 min using a simple power law fit to the ensemble-aver-
aged MSD (Fig. 1 a). We note that the MSD curves at the
shorter and longer timescales do not quite line up with
one another (Fig. 1 a), but it is common to see a slight
day-to-day variation in the mean diffusivity between exper-
iments even when using the same medium and strain of cells
(40). We note that the measurement of a ¼ 0.54 for Dt of
1–60 s is shallower than previous measurements. However,
the single effective power law behavior suggests that its
origin is not localization error (41) and analyzing trajec-
tories in the middle 50% of cell far away from the cell edges
results in a ¼ 0.56, eliminating weak confinement by the
cell edge as the cause. For particles in S. cerevisiae we
observe a shallower slope at short timescales, which is
FIGURE 1 RNA-protein particles exhibit ergodic

subdiffusive behavior. (a) eMSD and (c) tMSD of

RNA-protein particles in E. coli for particle position

measurements taken at 1 s intervals (blue circles)

and 1min intervals (red triangles (14)) and corrected

for drift due to cell growth using an affine expansion

model (14).Tenexample tMSDcurves for individual

trajectories are also shown (light-blue lines and

magenta lines). (b) eMSD and (d) tMSD of RNA-

protein particles in S. cerevisiae (32). Ten example

tMSD curves for individual trajectories are also

shown (light-blue lines).Error bars for standarderror

of themean are smaller than the symbol sizes. To see

this figure in color, go online.
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FIGURE 2 Displacement distributions of RNA-

protein particles in E. coli. (a) Ensemble of 1D

displacement (Dx) distributions over multiple time-

scales (d) along the long axis of E. coli. (b)

Ensemble of 1D displacement distributions (Dx

and Dy combined) over multiple timescales (d) in

the S. cerevisiae cytoplasm. (c and d) Same as (a)

and (b), but with each displacement distribution re-

scaled by its standard deviation sd for direct com-

parison to Laplace and Gaussian distributions.

Particle displacement measurements for E. coli

are from two different data sets spanning 1–100 s

used for d ¼ 1 s and 10 s (this study) and 1–

136 min used for d¼ 2 min and 17 min (from Styl-

ianidou et al. (14)). Particle displacement measure-

ments for S. cerevisiae are from a single data set

spanning 0.015–45 s (from Thompson et al. (32)).

To see this figure in color, go online.
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indicative of localization error (Fig. 2, b and d), and which
can be accounted for in the fitting of a by using the appro-
priate statistical model that corrects for localization error
(42). Using this correction, we measure a ¼ 0.75 (standard
error of 0.004) for Dt of 0.015–4.5 s (Fig. 1 b).

We observe negative correlation peaks in the velocity
autocorrelation function (Fig. S2), which along with the
ergodic MSD indicates that the particle dynamics are most
consistent with motion in a viscoelastic medium that is
described by fractional Brownian motion, as opposed to
other models such as the subdiffusive continuous time
random walk, scaled Brownian motion, or ergodicity
breaking heterogeneous diffusion models (43–46). In partic-
ular, the subdiffusive continuous time random walk and het-
erogeneous diffusion models often exhibit a wide spread in
the tMSD like that seen in Fig. 2, c and d (though with
a¼ 1) (47,48). We notice that there is a trend in the velocity
autocorrelation function where the correlation becomes
more positive for larger timescales of measurement
(Fig. S2, c and d), likely due to the bias in RNA-particle mo-
tion toward the cell poles at these longer timescales (14,49).

We note that the confinement imposed by the cell mem-
brane can have a strong effect on the tracer particle dynamics
at long enough timescales. The typical feature observed is a
plateau in the MSD, as has been previously shown for pro-
teins and chromosome loci in the E. coli cytoplasm (41,50)
and the fractional Brownian motion model (51). For the frac-
tional Brownian motion the approach to the plateau in the
MSD can be significantly delayed relative to the standard
Brownian motion due to the slower dynamics (48,51), while
a subdiffusive continuous time random walk would exhibit a
second, shallower slope on the tMSD (47,51). We do not see
the plateau signature in the MSD for the timescales and
cellular regions analyzed in this study (Fig. 1), therefore we
assume that the confinement does not have a strong effect
on our statistical analysis in the following sections.
RNA-protein particle displacements exhibit a
Laplace distribution

In Fig. 2, we plot the histograms of the 1D displacement dis-
tribution for the RNA-protein particles. Displacements are
defined as Dxd ¼ xðt þ dÞ � xðtÞ, where x(t) is the particle
position at time t and d is the time between particle position
measurements. For E. coli, we show displacements along
the cell’s long axis spanning d ¼ 1 s to 17 min (Fig. 2, a
and b). For S. cerevisiae, displacements in the x and y direc-
tions are treated independently and pooled together for
timescales of d ¼ 0.015–15 s (Fig. 2, c and d).

The ensemble of trajectory displacements exhibit non-
Gaussian behavior at all observed timescales and are well
predicted by a Laplace distribution (sometimes known as
a two-sided or double exponential distribution). The proba-
bility density function of the Laplace random variable is
defined as

PLaplaceðDx;m; sÞ ¼ 1

s
ffiffiffi
2

p exp

�
� jDx � m j ffiffiffi

2
p

s

�
: (2)

Fig. 2, c and d, further shows that the Laplace distribution
with mean m ¼ 0 describes the histogram shape that is
self-similar over three orders of magnitude of time when
displacements Dxd are normalized by their standard devia-

tion sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½Dxd � hDxdi�i2

q
. This is in stark contrast to

other soft-matter systems, whose particle displacements
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generally follow a Gaussian distribution at low displace-
ments and exhibit exponential tails at large displacements,
although often also in a self-similar manner (19). Given
the expectation that particle displacements should exhibit
at least partially Gaussian behavior at long enough
time intervals, we perform further analysis to investigate
the statistical and physical origins of the non-Gaussian
behavior.
On generating a Laplace distribution

It has been previously reported that particles diffusing in
agarose and actin networks and the S. cerevisiae cytoplasm
exhibited a non-Gaussian ensemble displacement distribu-
tion (8,16). However, further investigation revealed that
each particle trajectory exhibited a nearly Gaussian
displacement distribution, thought to be due to the probe
only sampling a local region during the timescale of
observation (8,16). Thus, a natural starting point for our
analysis is to assume that each particle assumes a Gaussian
displacement distribution from exploring a local region of
cytoplasm, and search for statistical relationships that can
generate a Laplace random variable starting from a
Gaussian random variable. From a statistical analysis, it
can be shown that

X¼d Z
ffiffiffiffiffi
W

p
; (3)

where the Laplace random variable X (mean of 0 and vari-

ance of 1) is the product of the Gaussian random variable
Z (mean of 0 and variance of 1) and the square root of the
exponential random variable W (mean of 1) and the ¼d nota-
tion indicates that the two sides are identically distributed
(52). The exponential distribution is defined by its probabil-
ity distribution function as

PExpðw; sÞ ¼ 1

s
exp
�
�w

s

�
(4)

for w R 0 and both a mean and standard deviation of s.

We note that there exist many other mathematical combi-

nations of random variables that can generate the Laplace
variable (52). The simple framework of Eq. 3 makes a test-
able prediction that the observed Laplace-distributed
displacement behavior could be generated by trajectories
exhibiting fractional Brownian motion whose diffusivity
parameter D is chosen from an exponential distribution.
Each trajectory then exhibits a time-averaged MSD
ðDtÞ ¼ 2dDDta, where d is the dimension of the random
walk and D has units of ½Length2=Timea�. The added
complexity of random diffusivities does not affect the sub-
diffusive behavior observed in the ensemble-averaged
MSD, which is then defined as MSD ðDtÞ ¼ 2dhDiDta,
where hDi is the mean of the trajectory diffusivities. We
check the prediction for the diffusivity distribution after
an exponential distribution by examining the individual tra-
536 Biophysical Journal 112, 532–542, February 7, 2017
jectory diffusivities and displacement distributions in the
subsequent sections.

An alternative strategy equivalent to Eq. 3 that gen-
erates a Laplace displacement distribution uses the prob-
ability distribution functions. Using PGaussðDx;m ¼ 0; sÞ,
PLaplaceðDx;m; sÞ, and PExpðD; hDiÞ as defined in Eqs. 1, 2,
and 4, the displacement distribution over the ensemble of
all trajectories can be described by integrating the Gaussian
probability density function weighted by the exponentially
distributed diffusivities over all possible values of the diffu-
sivity, D ˛½0;NÞ. The equation describing this integral for
s2 ¼ MSDðDtÞ can be solved asZ N

0

dD
h
PExpðD; hDiÞPGauss

�
Dx;m ¼ 0; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DDta

p �i

¼
Z N

0

dD

	
1

hDi exp
�
� D

hDi
�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDDta

p exp

�
� Dx2

4DDta

�


¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffihDiDtap exp

 
� jDx jffiffiffiffiffiffiffiffiffiffiffiffiffiffihDiDtap

!

¼ PLaplace

�
Dx;m ¼ 0; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hDiDta

p �
:

A similar derivation for s ¼ ffiffiffiffiffiffiffiffiffiffiffi
2hDitp

corresponding to Fick-
ian diffusion was shown in Chubynsky and Slater (53).

One potential alternative model for Laplacian displace-
ment distribution is the fractional Laplace motion, a process
that subordinates fractional-Brownian motion to a gamma
process (54). This process exhibits power law correlation
between steps like fractional Brownian motion but has a
Laplace displacement distribution instead of the Gaussian
distribution. However, fractional Laplace motion exhibits
self-similarity at random transformations of scale in time
defined by a stochastic process (54). This cannot explain
the self-similarity in time of the displacement distributions
in Fig. 2, which is done by dividing displacements by the
distribution’s standard deviation.
RNA-protein particle diffusivities exhibit an
exponential distribution

We extract the diffusivities from the time-averaged MSD of
individual RNA-particle trajectories using a two-parameter
fit to a power-law function. In Fig. 3, we show that the dis-
tribution of diffusivities of the E. coli and S. cerevisiae data
sets are well approximated by an exponential distribution
defined by

PExpðD; hDiÞ ¼ 1

hDi exp
�
� D

hDi
�

(5)

for D R 0 and both a mean and standard deviation of hDi.
This is consistent with the hypothesis we proposed for the
origin of the Laplace distribution in the previous section



FIGURE 3 Diffusivity distributions of RNA-protein particles. The prob-

ability distribution of diffusivities normalized by their mean for E. coli and

S. cerevisiae data sets. Diffusivities are calculated using a two-parameter fit

of the individual time-averagedMSDs to a power law function over the time

intervals indicated in the figure legend. To see this figure in color, go online.
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and generally consistent with the broader hypothesis that
non-Gaussian distributions in particle displacements are
caused by a broad spectrum of diffusivities (19).

It is important to note that the statistical effects of finite
track length can cause a broadening of the diffusivity distri-
bution, making this a critical feature for which to control. To
account for this, we performed fractional Brownian motion
simulations of varying track lengths and calculated their dif-
fusivities from the time-averaged MSD of individual trajec-
tories. We find that the observed distributions for D in the
RNA-protein particle data in Fig. 3 are significantly wider
than would be predicted simply due to the finite track length
effects (Fig. S3).

Another possible source of broadening of the diffusivity
distribution is variation in the number of MS2-GFP proteins
bound to the RNA, which would affect its size and effective
drag. We examine the mean fluorescence intensity during
single trajectories as a proxy for the particle’s effective
size and drag to investigate its potential to explain the
broader than expected distributions. In Fig. S4, we plot
each particle’s mean fluorescence intensity versus its
calculated diffusivity. Because the diffusivity should be
inversely related to the particle’s drag coefficient, we
attempt to fit a simple mathematical model where intensity
(I) and diffusivity exhibit an inverse relationship D ¼ A/I,
where A is a constant parameter fit to the data. Calculating
the Pearson correlation coefficient indicates that there is
generally a weak to moderate inverse relationship between
these variables (r ¼ �0.48 for E. coli 1 s, r ¼ �0.16 for
E. coli 1 min, and r ¼ �0.06 for S. cerevisiae; Fig. S4).
However, further analysis calculating R2 values (0.13 for
E. coli 1 s, �0.15 for E. coli 1 min, and �0.33 for
S. cerevisiae) indicates that the simple inverse model cannot
explain the large variation in the observed diffusivities
(Fig. S4). We further note that using fluorescence intensity
as a proxy for particle size and drag can be complicated
by the effects of photobleaching and the particle’s z position
relative to the focus plane (14,32). Even fluorescent cyto-
plasmic particles that have been rigorously examined to
control for size effects can exhibit behaviors with broader-
than-expected distributions (15).
Individual particle trajectories exhibit non-
Gaussian displacement distributions

The remaining prediction from our framework is that the in-
dividual trajectory displacement distributions should exhibit
a Gaussian distribution for timescales short enough that the
particle does not sample the spatial or temporal heterogene-
ity of its environment. This distribution is defined by

PGaussðDx;m ¼ 0; sÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp

�
� Dx2

2s2

�
; (6)

where Dx are the particle displacements in 1D, the mean
m ¼ 0, and the variance s2. Setting s2 ¼ 2dDDta results
in Eq. 6 becoming the propagator for fractional Brownian
motion (55,56).

To test our prediction that the trajectories are Gaussian,
we normalize the 1D displacements of each individual tra-
jectory by their standard deviation and then pool the
displacements into an ensemble distribution that is normal-
ized for a parameter-free comparison to the Gaussian
and Laplace distributions. In Fig. 4, we show that the distri-
bution for the normalized displacements, cd, are non-
Gaussian, falling between the Gaussian and Laplace
distributions. Each individual distribution exhibits a positive
excess kurtosis (narrower than Gaussian in the center and
wider than Gaussian at the tails).

The non-Gaussian behavior is commonly quantified
using the non-Gaussian parameter (NGP), which in 1D is
defined as

NGP ¼ hðDxÞi4

3
�ðDxÞ2�2 � 1: (7)

This parameter has a value of 0 for a Gaussian distribution
and a value of 1 for a Laplace distribution. The NGP for
the RNA-particle trajectories in E. coli is 0.32 for d ¼ 1 s
and 0.67 for d ¼ 1 min, indicating that the trajectories are
less Gaussian at larger timescales. The S. cerevisiae trajec-
tories exhibit NGP of 0.71 for d ¼ 1.5 s and 0.42 for
d ¼ 1.5 s, which indicates that the trajectories are actually
becoming more Gaussian at larger timescales, the opposite
of the trend in E. coli. Our hypothesis that the individual tra-
jectories would exhibit Gaussian behavior at some timescale
Biophysical Journal 112, 532–542, February 7, 2017 537
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FIGURE 4 Standard deviation normalized displacement distribution of

RNA-protein particles. (a and b) Displacement distributions over multiple

timescales along the long axis of (a) E. coli and the pooled x and y displace-

ments in (b) S. cerevisiae. Each individual trajectory is normalized by its

standard deviation before being pooled into the ensemble distribution.

Distributions are then made dimensionless by the overall standard deviation

to show the parameter-free comparison of the normalized displacement, cd,

to the Gaussian and Laplace distributions. To see this figure in color,

go online.
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is not observed, and likely indicates that in addition to a
broad distribution of diffusivities between different trajec-
tories, there may also be significant dynamic heterogeneity
experienced by individual particle trajectories at the
observed timescales. It was previously reported that RNA-
protein particles in the S. cerevisiae cytoplasm can exhibit
different dynamic regimes and transitions during single tra-
jectories, even including directed and confined motion
(32,57). The heterogeneity likely manifests for a very
wide range of timescales, yet nevertheless results in a self-
similar Laplace distribution for the combined ensemble of
particle displacements.
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Diffusivity autocorrelation function shows
correlated, heterogeneous behavior

To further understand why the heterogeneity between and
within trajectories results in non-Gaussian displacement
behavior, we examine the dynamic evolution of the single-
trajectory behavior. Toward this effort, we define a diffu-
sivity autocorrelation function that is similar to the
trajectory-amplitude autocorrelation function defined by
Duits et al. (58) and the square-displacement correlation
function defined by Cao (59). The diffusivity autocorrela-
tion function C

ðdÞ
D ðDtÞ is thus defined as

C
ðdÞ
D ðDtÞ ¼ C

ðd;mÞ
D ¼

D
C

ðd;m;iÞ
D

E
i
; (8)

where

C
ðd;m;iÞ
D ¼ DD

ðdÞ
i;j DD

ðdÞ
i;jþmd�

DD
ðdÞ
i;j

�2 ; (9)

with a relative diffusivity

DD
ðdÞ
i;j ¼ D

ðdÞ
i;j � D

ðdÞ
i;j (10)

and

D
ðdÞ
i;j ¼

�
Dx

ðdÞ
i;j � Dx

ðdÞ
i;j

�2
,

ð2dÞ: (11)

The overline Ai;j indicates a time average over the time in-

dex j for a given trajectory index i, while hBðd;m;iÞii indicates
an ensemble average over all trajectory indices i. We define

the diffusivity D
ðdÞ
i;j locally using the drift-corrected dis-

placements, with Dx
ðdÞ
i;j ¼ xi;dðjþ1Þ � xi;dj. This enables exam-

ination of the average dynamic correlation as a function of
Dt ¼ md (where m is an integer). This formulation of the
autocorrelation function employs a time average of each
trajectory before taking an ensemble average to normalize
each trajectory by the average amplitude of the fluctuations.
This step is essential to removing artifacts that are due to
different tracks having different average diffusivities (58).

In Fig. 5, we plot the diffusivity autocorrelation function
for several different values of time d of displacements.
A fractional Brownian motion in the limit of infinite track
length would exhibit a diffusivity correlation of 1.0 at
Dt ¼ 0.0 and be uncorrelated at all nonzero times. While
the steps are anticorrelated with one another at all time-
scales for this model, the diffusivity is a constant and thus
the relative diffusivity DD

ðdÞ
i;j cannot display any variation

or correlation on average. Furthermore, if other models or
the data contain variation in the diffusivity with heterogene-
ity that is temporally uncorrelated at certain timescales, we



b

a

FIGURE 5 Diffusivity autocorrelation function of RNA-protein parti-

cles. (a and b) Diffusivity autocorrelation function C
ðdÞ
D ðDtÞ for different

timescales of RNA-protein particle displacement measurements d for (a)

E. coli and (b) S. cerevisiae. To see this figure in color, go online.
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would also expect the correlation value to be zero. Thus, any
deviation from zero indicates the presence of correlated, dy-
namic heterogeneity in the local value of the particle diffu-
sivity that can lead to non-Gaussian displacement behavior.

One artifact to control for is that any trajectories analyzed
must have a finite track length, whose statistical noise intro-
duces a slight negative correlation at larger time separations
Dt (58). Negative correlations could also be interpreted as
the particle entering a new environment with, on average,
a different diffusivity value. In either case, a relative diffu-

sivity DD
ðdÞ
i;j1

calculated over a segment of time d will, on

average, have an opposite sign to a relative diffusivity

DD
ðdÞ
i;j2

calculated over another nonoverlapping segment.

We perform fractional Brownian motion simulations whose
track length and sparsity is determined by that of the exper-
imental data set for a direct comparison to examine the cor-
relation contribution from the statistical noise (Fig. S4).
These simulations show that the slight negative correlation
observed in Fig. 5 can be explained by the statistical noise
from the finite track length and data sparsity. Furthermore,
the degree of positive correlation observed at smaller values
of Dt is not predicted by the simulations, indicating the pres-
ence of temporal correlations in the diffusion heterogeneity
in both E. coli and S. cerevisiae (Figs. 5 and S4). This initial
positive correlation is seen over a full order of magnitude of
time for both E. coli and S. cerevisiae, decaying slightly as
d increases, and reveals that deviations from the average
diffusivity of the trajectory are correlated weakly and last
only a few seconds (Fig. 5).

We note that static and dynamic errors can introduce addi-
tional correlations such that anomalous behavior is observed
in statistics such as the MSD or the velocity autocorrelation
function (41,42,60). Likewise, static and dynamic errors
can introduce additional correlation into the diffusivity auto-
correlation function. However, because these errors are
generally uncorrelated with one another over time, they can
only affect the first datapoint Dt ¼ d, and thus these errors
cannot be responsible for the positive correlation beyond
the first datapoint of the lower values of d seen in Fig. 5.
CONCLUSIONS

In this article, we have shown that RNA-protein particles
in the cytoplasm of living cells exhibit non-Gaussian
displacement distributions due to a combination of hetero-
geneity between particle trajectories and dynamic heteroge-
neity within single trajectories. The RNA-protein particle
ensemble displacement distribution exhibits a Laplace dis-
tribution at all observed timescales, falling on a universal
curve when displacements are normalized by sd (Fig. 2).
Previous studies have reported particles in complex media
exhibiting exponential tails and self-similarity, but often
the center of the distribution would be more rounded or
Gaussian-like (19). We do not see relaxation, because no
relaxation regime is observed in the subdiffusive MSD
either (Fig. S1). Instead, it has been observed in bacteria
that the limiting regime of particle or chromosome locus dy-
namics at long timescales of Dt is the confinement imposed
by the cell membrane (14,41).

The distribution of particle diffusivities measured from
time-averaging single trajectories exhibits an exponential
distribution that is much broader than is predicted by
finite-track length effects (Figs. 3 and S3). The source of
the exponential distribution is currently unknown and is
an interesting avenue of future inquiry. The exponential
distribution is the maximal entropy distribution on the
positive support, D ˛½0;NÞ, although it is unclear if a prin-
ciple akin to a limit theorem is at work. Chubynsky and
Slater (53) developed a purely mathematical diffusing-
diffusivity model, where the diffusivity evolves according
to an advection-diffusion equation that results in an expo-
nential diffusivity distribution for certain conditions. Wide
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distributions in the diffusivities of probe trajectories have
been reported before for labeled cell-surface receptors
(45,61). In many studies, this broad spectrum of diffusivities
has been attributed to there being discrete states of mobility
sampled by the probe, examples of which are RNA polymer-
ases in E. coli (62), cell-surface receptors (45), and Cas9
proteins searching for a target site in the cell nucleus (63).
Other studies are unable to directly detect distinct states of
probe mobility, notably fluorescent tracer particles in
agarose and actin gels (8). Both distinct states and a
continuous spectrum of diffusivities can result in non-
Gaussian behavior in the single-trajectory displacement dis-
tribution (53,59).

The non-Gaussian dynamics and broad spectrum of dif-
fusivities may be a general feature of crowded macromo-
lecular systems, with similar results to ours recently
reported for the diffusion of membrane receptors in Xeno-
pus embryo muscle cells (64). Another example is a
colloidal fluid near its glass transition, which exhibits
a broad spectrum of particle dynamics resulting in a
stretched-exponential displacement distribution (11) and
positive values of the NGP (12). Recent articles simulating
the effects of crowding on the lateral motion of proteins in
cell membranes show subdiffusive and non-Gaussian
displacement behavior as well (65,66). Previous experi-
ments and simulations show that a high degree of macro-
molecular crowding is sufficient to result in viscoelastic
subdiffusive behavior (67,68).

Another aspect to consider is the active, nonequilibrium
dynamics of the cytoskeleton that would be relevant for
the S. cerevisiae cytoplasm. A recent article constructed a
model for active dynamics driven by cytoskeletal rearrange-
ment as a set of moving harmonic potentials undergoing
nonequilibrium rearrangement that results in a distribution
with exponential tails (17). It would be interesting to see
if versions of this model can account for other effects seen
in the S. cerevisiae cytoplasm, such as the ergodic, subdiffu-
sive MSD and the characteristic timescale-free negative
peak of the velocity autocorrelation function due to the
medium viscoelasticity.

In the majority of cases analyzed in this work, each RNA-
protein particle track is measured in the cytoplasm of a
different cell. Due to the small size of E. coli and
S. cerevisiae cells, it is difficult to resolve and measure mul-
tiple particles within the same cell. An open question re-
mains as to whether the heterogeneity between different
particle trajectories is due to heterogeneity of the cytoplasm
of a single cell (of which only a portion is sampled) or is
due to differences in the cytoplasmic properties between
different cells. In theory, performing particle tracking mea-
surements in a high enough number of cells should enable
probing of the full range of heterogeneous behavior,
assuming that such a distribution of cellular cytoplasm
states can be approximated by a distribution with finite
moments. Performing such measurements and analysis is
540 Biophysical Journal 112, 532–542, February 7, 2017
enabled by the growing power of high-throughput technolo-
gies for single cell analysis (69).

Previous studies describe the bacterial cytoplasm as
glassy (15) and the eukaryotic cytoplasm as an active gel
(17,70). However, in this study we see that the RNA-protein
particles exhibit very similar behavior in both E. coli and
S. cerevisiae cells. Perhaps the simplest reason for this
might be that the dynamics can be dependent on the probe
size (15). The size of the RNA-protein particle is between
the size of individual proteins, which exhibit nearly diffu-
sive behavior (71), and submicron colloidal beads, which
are large enough that they appear trapped in local, dynamic
cages formed by the cytoskeletal network (70). There may
be a contribution to the trajectory heterogeneity from the in-
ternal dynamics of the RNA-protein particle itself as
opposed to purely probing the physics of the cytoplasmic
medium. We note that similar non-Gaussian behavior is
seen for a different probe system (specifically, fluorescent
protein aggregates) in the E. coli and S. cerevisiae cyto-
plasm (15,16).

This work reveals that in vivo diffusive transport exhibits
characteristics of subdiffusive motion (attributed to visco-
elasticity) and heterogeneity (both spatial and temporal) in
the environmental diffusivity. These effects are obscured
when analyzing the average displacement alone (i.e.,
MSD), because the ensemble average merely averages the
diffusivity over its distribution. Thus, the analyses presented
in this work provide a wealth of information on cellular
transport and a procedure for deconvolving the physical
mechanism for transport from the considerable variability
inherent from cell-to-cell and within a single cell. Our study
complements well other work that uses several different sta-
tistics to analyze anomalous transport behaviors (58,64,72).
Cellular transport is involved in virtually all biological pro-
cesses. This work provides clear evidence for the mecha-
nism of transport within a cell and the impact of cellular
variability on the observed motion.
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FIG. 1: Representative trajectories of RNA-protein particles. (ab) Sample trajectories of RNA-protein particles
diffusing in the E. coli cytoplasm for (a) 1 s and (b) 1 min intervals between position measurements. (c) Sample trajectories
placed arbitrarily in a circle with a diameter of 3 µm (typical size of an S. cerevisiae cell).
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FIG. 2: RNA-protein particles exhibit viscoelastic behavior. (a-d) Velocity autocorrelation function of RNA-protein
particles in E. coli for particle position measurements taken at one second intervals (a,b) and one minute intervals (c,d) [1] and
corrected for drift due to cell growth. (e,f) Velocity autocorrelation function of RNA-protein particles in S. cerevisiae [2]. The

velocity autocorrelation function is defined as C
(δ)
v (∆t) = 〈vδ(∆t) · vδ(0)〉 where the velocity vδ(t) = [x(t+ δ)− x(t)]/δ for the

discrete time interval δ. (b), (d), and (f) are the same as (a), (c), and (e) respectively but with a differently scaled x-axis to
show that the negative correlation peak occurs at ∆t/δ = 1. The black lines in (b), (d), and (f) are theoretical predictions for
fractional Brownian motion with the measured values of α from the eMSD inserted into the equation [(η+1)α+|η−1|α−2ηα]/2,
where η = ∆t/δ [3].
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