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ABSTRACT Sequences that influence nucleosome positioning in promoter regions, and their relation to gene regulation,
have been the topic of much research over the last decade. In yeast, significant nucleosome-depleted regions are found,
which facilitate transcription. With the arrival of nucleosome positioning maps for the human genome, it was discovered
that in our genome, unlike in that of yeast, promoters encode for high nucleosome occupancy. In this work, we look at
the genomes of a range of different organisms, to provide a catalog of nucleosome positioning signals in promoters across
the tree of life. We utilize a computational model of the nucleosome, based on crystallographic analyses of the structure and
elasticity of the nucleosome, to predict the nucleosome positioning signals in promoter regions. To be able to apply our
model to large genomic datasets, we introduce an approximative scheme that makes use of the limited range of correlations
in nucleosomal sequence preferences to create a computationally efficient approximation of the full biophysical model.
Our predictions show that a clear distinction between unicellular and multicellular life is visible in the intrinsically encoded
nucleosome affinity. Furthermore, the strength of the nucleosome positioning signals correlates with the complexity of the
organism. We conclude that encoding for high nucleosome occupancy, as in the human genome, is in fact a universal
feature of multicellular life.
INTRODUCTION
Nucleosomes are the fundamental packaging units of
DNA that eukaryotic organisms employ to render their
genomes compact enough to fit inside a cell, consisting
of ~147 basepairs worth of DNA wrapped around a his-
tone core. This packaging also restricts access to the
genome: DNA bound to histones is unavailable for
coupling to many other DNA-binding complexes, such
as the transcriptional machinery. Therefore, the posi-
tioning of nucleosomes along the genome interacts with
gene expression, as was already realized some three
decades ago (1).

This interplay suggests that nucleosomes may play a
role in gene regulation, and nucleosomes are in fact
actively displaced to regulate gene expression (2,3).
Genomic sequences may also have evolved to position
nucleosomes in specific, beneficial locations. This possi-
bility is suggested both by the fact that the degeneracy
of the genetic code, in principle, allows for multiplexing
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of such positioning signals with genetic information
(4), and by the observation that the mutation patterns of
DNA bound to histones differ from those of linker
DNA (5).

Research into such nucleosome positioning signals,
hardcoded into eukaryotic genomes, has veritably
exploded over the last decade, primarily due to the devel-
opment of experimental methods that allow for efficient
genomewide nucleosome mapping (6). This research
has provided insight into the importance of nucleosomal
sequence preferences for chromatin organization (7), and
has allowed for the creation, refinement, and testing of
many models for predicting nucleosome positioning
along genomes (8,9). The intrinsic nucleosome-DNA af-
finity of genomic sequences appears to play a significant
role in vivo in positioning nucleosomes in certain regions
of the genome, such as transcription start sites (TSSs)
and origins of replication (7), alongside other effects
like the presence of proteins that compete for the same
DNA stretch or the action of chromatin remodelers
(10,11).

Around the TSS of Saccharomyces cerevisiae
(baker’s yeast), nucleosomes have been found to be
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depleted on average, both in vitro and in vivo (12–18).
The persistence of this depletion in vitro, in the
absence of active remodeling, identifies the sequence
preferences of nucleosomes as the dominant cause.
Those preferences have been measured and utilized in
various models to explain the observed nucleosome
depletion (15,16,18–20). These nucleosome-depleted re-
gions (NDRs) in gene promoters are thought to be en-
coded into the genomic sequence to allow RNA
polymerases more ready access to the TSS, thereby
facilitating transcription (13).

Since the earliest studies on baker’s yeast, inquiries into
nucleosome positioning have been extended to the ge-
nomes of many other organisms, such as Schizosaccharo-
myces pombe (21) and various other species of yeast (22),
Caenorhabditis elegans (23,24), Plasmodium falciparum
(25), flies (26), zebrafish (27), Arabidopsis thaliana (28),
mice (29,30), and humans (30–35). Most of these studies
were conducted in vivo, and therefore do not allow for
isolation of effects encoded into the genomic sequences.
This body of research shows, however, that sequence ef-
fects alone are not generally sufficient to explain in vivo
observations (11). An important role is also played by
the active regulation of transcription. In yeast, the pro-
moters of actively transcribed genes show much more pro-
nounced nucleosome depletion than those of inactive
genes (21).

In human cells, as in yeast, NDRs were found in vivo
only for actively expressed genes (31). However, in vitro
nucleosome mapping reveals that the human genome
does not share yeast’s strategy of depletion-by-default.
Instead, it was found that promoter regions in the human
genome showed enhanced nucleosome occupancy. One
interpretation is that this reflects the differentiated nature
of human cells: it may be more beneficial to keep genes
relatively inaccessible by default, and to actively open
the promoter region only when needed (33,34). This idea
seems to be countered by newer results, however, which
find stronger intrinsic nucleosome-attracting regions
(NARs) for housekeeping genes than for tissue-specific
genes, directly opposite of what one would expect (36).
Those results indicate that the function of the NARs in
the human genome may be to retain nucleosomes in sperm
cells (in which most nucleosomes are removed from the
chromatin) and so pass on epigenetic information to the
next generation.

Whichever is the case, these ideas raise the question
whether the presence of an NDR in yeast versus that of an
NAR in humans might be a general distinguishing feature
between unicellular and multicellular life. To answer this
question, we utilize a purely mechanics-based model for
the sequence-dependent DNA-nucleosome affinity to pre-
dict in vitro nucleosome positioning signals, and compare
the signals encoded into the promoter regions of a wide
range of genomes.
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MATERIALS AND METHODS

Data acquisition

All genomic sequences and gene (cDNA) data were downloaded from

ensemblgenomes.org, release 31 (37). The in vitro nucleosome map pro-

duced by Kaplan et al. (18) was retrieved from GEO accession number

GEO: GSE13622. The map from Valouev et al. (34) was downloaded

from ccg.vital-it.ch/mga/hg18/valouev11/valouev11.html. The map from

Locke et al. (38) was downloaded from http://nucleosome.rutgers.edu/

nucenergen/celegansnuc/. The data from Ercan et al. (24) was taken directly

from Fig. 1 C in that reference. TSS locations in S. cerevisiae were derived

from David et al. (39) in the manner described in Vaillant et al. (40).
Model

Weemployed a statisticalmodel inspiredby that of Segal et al. (13), Field et al.

(16), and Kaplan et al. (18). However, whereas their models are trained on

experimental data,we employed this typeofmodel to create a computationally

inexpensive approximation to the theoretical nucleosomemodel recently pub-

lished in Eslami-Mossallam et al. (4). The predictiveness of the Eslami-Mos-

sallam nucleosomemodel has been examined in Eslami-Mossallam et al. (4),

where it was found to outperform the experimentally informed models

mentioned above, and in deBruin et al. (41),where it is shown to be applicable

not only to predictions for nucleosome positioning along a genome, but also

the sequence-dependent response of nucleosomes to external forces.

We employed an extended version of the model presented in Segal et al.

(13), which is informed by trinucleotide distributions, rather than dinucle-

otide distributions, because we found that this trinucleotide model leads to a

more accurate approximation (see the Supporting Material and Fig. S1 for

more information).

The model of Segal et al. (13) requires as input position-dependent (di)

nucleotide probabilities for the nucleosome. These can be derived from suit-

able sequence ensembles, as done in their article and its followupwork. Such

ensembles can also be generated in silico using the mutation Monte Carlo

method of Eslami-Mossallam et al. (4)We applied themutationMonte Carlo

method to generate an ensemble of 107 high-affinity nucleosome sequences,

from which we calculated the necessary di- and trinucleotide probability

distributions. We found that the bioinformatical model approximated the

full biophysical model with a root mean square deviation of 0.85 kT.

For this work, the parameterization of the nucleosome model was

changed from the hybrid parameterization described in Eslami-Mossallam

et al. (4), to a parameterization informed solely by crystallography data.

We found that this improves its applicability to long-range effects. See

the Supporting Material for more information.
Sequence analysis

For every genome analyzed, we calculated the averaged signal as follows.

For every annotated gene, we looked up the location of the TSS, and ex-

tracted the 1146 bp before and after. For each of the resulting sequences,

we calculated a probability landscape for nucleosome positioning using

the trinucleotide model mentioned above. We would like to calculate occu-

pancies from these landscapes and average over all genes. Unfortunately,

because the probabilities vary over several orders of magnitude, the number

of genes is generally not large enough to provide a meaningful average; it

tends to be dominated by the highest probabilities. Therefore, we instead

consider the average energy landscape for a given organism.

From the predicted probabilities, an energy landscape can be calculated up

to a constant shift, because such a probability is the normalized Boltzmann

weight of a state. We took the average of the energy landscapes of all the se-

quences as a representative energy landscape for a given organism. For each

basepair (�1000 to þ1000), we then calculated the nucleosome occupancy

by summing the Boltzmann probabilities of all 147 nucleosome positions

http://ensemblgenomes.org
http://ccg.vital-it.ch/mga/hg18/valouev11/valouev11.html
http://nucleosome.rutgers.edu/nucenergen/celegansnuc/
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FIGURE 1 Comparison of predicted and measured intrinsic nucleosome positioning signals in promoter regions. The quantities plotted are the natural

logarithms of the occupancies and the signals have been normalized such that they average to zero. (Solid blue curves) Our predictions in the limit of

low nucleosome density, which give an account of the strength of the signals intrinsically encoded; (dashed green curves) in vitro measurements; (dotted

black curves) predictions taking into account the steric interactions. Using the same treatment as in Chevereau et al. (44), these curves have a free parameter

~m ¼ m� hEi, i.e., the difference between the chemical potential and the average energy of the landscape, which we determined to be �8.5 kT for yeast

(curves not shown due to similarity with the low-density limit), �5.7 kT for C. elegans, and �1.38 kT for humans. (A and B) S. cerevisiae, average nucle-

osome occupancy centered on the TSS and start codons, respectively. Data from Kaplan et al. (18). (C) Like (A), for Homo sapiens. The in vitro data is from

Valouev et al. (34). Additionally shown is the nucleosome retention signal fromVavouri and Lehner (36). (D) Like (A), forC. elegans. The in vivo data is from

Ercan et al. (24); the in vitro data is from Locke et al. (38). To see this figure in color, go online.
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that lead to that basepair being covered by the nucleosome. This gives us a

prediction of the intrinsic nucleosome affinity encoded in the genomic

sequences.
RESULTS AND DISCUSSION

Opposing nucleosome occupancy signals in
yeast and human genomes

The high-coverage S. cerevisiae nucleosome maps pro-
vide the standard testing ground for any model designed
to predict nucleosome occupancy. Applying our nucleosome
affinity model (see Materials and Methods), we find we
can correctly predict NDRs in the promoter regions of
S. cerevisiae. The comparisons, for regions centered on
the TSSs and on the start codons, are shown in Fig. 1, A
and B, respectively.

For the human genome, a map of in vitro nucleosome oc-
cupancy has been published by Valouev et al. (34), and, as
predicted by Tillo et al. (33), it reveals occupancy signals
opposite to that of yeast: human promoters seem to encode
Biophysical Journal 112, 505–511, February 7, 2017 507
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for high, rather than low, nucleosome occupancy. Vavouri
and Lehner (36) similarly find an increased retention of nu-
cleosomes when nucleosomes are depleted in human sperm
cells. Correspondingly, when applying our model to the pro-
moter regions of the human genome, we find a very strong
NAR around the TSS, as can be seen in Fig. 1 C.

Initially surprisingly, the signal found by Valouev et al.
(34) is an order-of-magnitude smaller than that predicted
by our model and that found by Vavouri and Lehner (36).
This discrepancy can be explained when we consider that
the nucleosome density cannot exceed 1 per 147 bp due to
excluded volume. The experiment attempts to measure
enrichment of nucleosomes in the promoter regions relative
to the average density of nucleosomes. Unlike in experi-
ments that look at nucleosome depletion or retention, the
excluded volume between nucleosomes puts a limit on
how strong the enrichment can be in practice.

This is the reason for the discrepancy between the in vitro
results of Valouev et al. (34) and ours and those of Vavouri
and Lehner (36). To approximate the effects of steric inter-
actions, we applied Percus’ equation (42) to our average en-
ergy landscapes, and solved it as described in Vanderlick
et al. (43). The solution depends on the chemical potential
of the nucleosomes binding to the DNA (see also Chevereau
et al. (44)), which we adjust to get a good fit with the in vitro
data. We see that steric interactions can indeed explain the
very weak signal for humans (dotted black curve in Fig. 1
C) as well as the apparent overshoot of our prediction for
C. elegans (same in Fig. 1 D).

This means that at physiological conditions, the nucleo-
some density will be saturated at much smaller values due
to steric interactions. However, we stress that independent
of this saturation effect, a nucleosome at the peak of the
nucleosome occupancy signal will be strongly energetically
bound, and so hinder transcription if it is not actively
removed, as well as be more stable under a nucleosome-
depleting force.

The results of Vavouri and Lehner (36) when examining
where nucleosomes are retained when they are depleted
from chromatin in human sperm are more in line with
our predictions, as can also be seen in Fig. 1 C. When
depleting nucleosomes, excluded-volume interactions are
not a constraint and our predictions can be probed.
Although these authors studied a special in vivo situation,
the nucleosome retention signals were found to correlate
strongly with DNA sequence. Because the depletion of nu-
cleosomes in sperm is an out-of-equilibrium process, and
our model therefore does not make direct numerical pre-
dictions for this situation, we note the similarity between
our predictions and the in vivo nucleosome retention
signal.

We thus have interesting observations and predictions on
two ends of a spectrum. Avery simple, unicellular eukaryote
shows nucleosome depletion as its most prominent, intrinsi-
cally encoded nucleosome positioning feature. A complex
508 Biophysical Journal 112, 505–511, February 7, 2017
multicellular one shows high nucleosome occupancy
instead. What happens in between these two extremes?

In Fig. 1 D we present a comparison between our pre-
dicted signal for C. elegans and the signals found in vitro
by Locke et al. (38) and in vivo by Ercan et al. (24). We
find remarkable agreement in the shape of the signal, indi-
cating that the data is indeed indicative of intrinsically en-
coded nucleosome positioning. Somewhat surprisingly, the
in vitro and in vivo signals are similar to each other, which
is not as strongly the case for yeast, and even less so for hu-
mans (see e.g., Fig. 3 in Vavouri and Lehner (36)). It has
been noted that an in vivo nucleosome occupancy map of
the nematode C. elegans lacks many of the features that
distinguish in vivo maps from in vitro maps of yeast, such
as strongly phased nucleosomes. Valouev et al. (23) find
much flexibility in nucleosome positions in C. elegans.
Such variability may average out some of the effects of
active remodeling, rendering the two maps similar.

C. elegans seems to show a nucleosome positioning
signal that is a hybrid of the signals found in the yeast and
human genomes. It has an NDR upstream of the TSS, like
yeast, but it also shows a significant NAR just after the TSS.
Intrinsic nucleosome positioning signals are
indicative of multicellularity

The hybrid behavior in C. elegans may be hypothetically
explained. As suggested by Tillo et al. (33), organisms
may wish to tune their genomic sequences to intrinsically
deactivate genes that are active only in some cell types,
while intrinsically activating those that are common to all
of its cells. In unicellular life, most genes will not be
permanently silenced, leading to an overall average deple-
tion signal. In complex multicellular life, the signal may be
dominated by the many genes that are intrinsically deacti-
vated, leading to an overall attractive signal. C. elegans
may then represent a range of organisms where the two
contributions are more equal, leading to both a depleted re-
gion just before the start codon (where it is also observed in
yeast) and an attractive region just after (the peak in occu-
pancy in the human genome is also skewed toward the
right).

The results of Vavouri and Lehner (36), however, suggest
that, at least in the human genome, the hypothesis of Tillo
et al. (33) does not hold, and the function of the NARs is
to retain nucleosomes in sperm cells. The hybrid signal
we find in C. elegans may in this case similarly play a
dual role of facilitating initiation of transcription, but at
the same time assist in nucleosome retention.

We can extend our observation of these signals to other
genomes using our model. We mapped the nucleosome posi-
tioning signals for promoters in genomes across the tree of
life and discovered organisms that have intrinsically en-
coded NDRs and NARs, as well as many that fall into the
hybrid category.



FIGURE 2 A representative selection of nucleosome positioning signals

from various genomes. As a visual aid, the signals have been shifted verti-

cally such that the logarithmic nucleosome occupancy at position �1000 is

0. The signals clearly fall into two distinct classes, based on whether the or-

ganism is unicellular or multicellular. To see this figure in color, go online.
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Most archaea (14 genomes analyzed) show a signal
similar to that of yeast, in that a nucleosome-depleted region
is the most prominent feature (Fig. S2). Archaea are unicel-
lular organisms that do not have histone octamers, but
employ only tetramers of (archaeal) histones to compactify
their DNA. We expect these tetramers to obey positioning
rules similar enough to nucleosomes that our model is pre-
dictive of their occupancy. We therefore analyzed the oc-
tamer affinity landscapes, for the sake of comparison to
eukaryotes, even though archaea do not possess them. The
signals show that these simple unicellular organisms almost
all fall into the depletion-by-default category.

Fungi (seven genomes analyzed) show somewhat more
diverse signals, Fig. S3. While S. cerevisiae has a prominent
NDR, many of the other fungi analyzed lack both a localized
depleted region and a localized attractive region, but retain a
step-function signal centered on the TSS. Fungal cells are
not highly differentiated, but some fungi are dimorphic
(they switch between unicellular and filamentous states),
possibly causing these more hybridlike signals.

Plants (four genomes analyzed) come in many forms,
from unicellular algae to complex multicellular life. As ex-
pected, we see various signals (Fig. S4). The genome of
Chlamydomonas reinhardtii, a unicellular alga, shows an
NDR. Among the multicellular plants, we see two signals
with a strong NAR, and one with hybrid behavior.

Among animals (24 genomes analyzed) we also find
various signals. In worms, like C. elegans, we find both
hybrid signals and more NAR-like signals (Fig. S5).
Drosophila melanogaster and other members of its genus
show strong hybrid signals, with a swift rise in nucleosome
occupancy at the TSS (Fig. S6). Finally, the zebrafish
genome and all mammalian genomes analyzed (human,
chimpanzee, and mouse) have strong NARs (Fig. S7).

We see a clear separation between unicellular and multi-
cellular organisms. Although some signals from unicellular
lifeforms show some hybrid characteristics, the dominant
feature is generally an NDR. All multicellular genomes,
on the other hand, either encode for high nucleosome occu-
pancy in the promoter region, or show hybrid signals. This
distinction persists across the eukaryotic phylogenetic tree
and is clearly visible in Fig. 2, where we have plotted a
representative set of signals, divided into unicellular and
multicellular classes. We finally note that these signals qual-
itatively correlate well with GC content (Fig. S8), suggest-
ing that GC content is a prominent factor in shaping
mechanical signals in promoter regions.
Intrinsic nucleosome positioning signals
correlate with complexity

One proposed measure for organism complexity is the num-
ber of different cell types an organism possesses (45), and
the ideas presented here clearly have a link to this measure.
Unfortunately, numerical data describing the numbers of
cell types does not appear to be readily available in the liter-
ature, so we were unable to define a numerical measure of
complexity. Therefore, we have restricted ourselves to
ordering the organisms, by making assumptions about the
cell type numbers. From simple to complex, we list:
archaea, unicellular eukaryotes, filamentous and dimorphic
fungi, multicellular plants, nematodes, Drosophila flies,
zebrafish, and mammals.

We then considered the strength and direction of the
NDR/NAR signals. To quantify this, we calculated the
maximum and minimum of the signal and took the differ-
ence with the signal value at position �1000 relative to
the start codon. We then took the largest of these two values
(in the absolute sense) and designated this value as the sig-
nal’s strength (not in the absolute sense; a dominant NDR
gives a negative signal strength).

The signal strength as thus defined clearly distin-
guishes unicellular and multicellular lifeforms (Welch’s t
(39.051) ¼ 10.5512, p-value 5.4 � 10�13) and the signals
for multicellular organisms show correlation with our
complexity ordering (Spearman rs ¼ 0.52, p-value 82.3 �
10�3), as shown in Fig. 3. The ordering of the organisms
is almost certainly imperfect, for example because all multi-
cellular plants have been lumped together; without more ac-
curate knowledge of the cell type numbers, there is no way
to place them more realistically. However, the NDR/NAR
strengths show a tentative trend. All unicellular eukaryotes
have a negative signal strength, indicating an NDR, as noted
in the previous section. All multicellular eukaryotes (with
one exception, D. melanogaster) have a stronger NAR
than NDR, and the strength of this NAR roughly increases
with complexity. This observation concurs with the hypoth-
esis of Tillo et al. (33). Our expectation based on that hy-
pothesis would be that a more differentiated organism will
have more genes that are nucleosome-occupied by default,
leading to a higher NAR signal. It is not clear what purpose
Biophysical Journal 112, 505–511, February 7, 2017 509



FIGURE 3 Promoter nucleosome positioning signal strength grouped by

a heuristic measure of complexity of the organisms. The numbers in paren-

theses indicate how many genomes fall in each category. To see this figure

in color, go online.
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this correlation might serve in the context of nucleosome
retention in the germline.
CONCLUSIONS

We found that the recently discovered fact that the human
genome, unlike the yeast genome, encodes (on average)
for an NAR rather than an NDR in the promoter region, is
in fact a universal feature of multicellular life. The hypoth-
esis put forth by Tillo et al. (33) is that this NAR suppresses
gene transcription and that this suppression helps an organ-
ism with differentiated cell types manage its gene expres-
sion. Genes that are not needed in every cell type are
suppressed by default, and only activated in those cells
where they are necessary. In unicellular lifeforms, however,
most genes will be in constant use, and keeping those genes
easily accessible is more favorable.

On the other hand, Vavouri and Lehner (36) have found
that the NARs found in humans in fact serve a different pur-
pose, namely the retention of certain nucleosomes in sperm
cells, and their study of the signals found for housekeeping
genes versus tissue-specific genes directly contradicts the
hypothesis of Tillo et al. (33). The NARs we find in multi-
cellular life may therefore instead be indicative of the
need to retain nucleosomes in the germ cells of multicellular
organisms.

NARs are common to complex multicellular lifeforms,
while almost all unicellular lifeforms we analyzed have
NDRs. In-between there is a range of organisms with hybrid
positioning signals. In almost all of these signals, however,
the NAR is a more prominent feature than the NDR. This
leads to a clear distinction between uni- and multicellular
life based on the type of nucleosome positioning signals
found in the promoter regions.

Furthermore, the strength of the NAR appears to increase
with organism complexity. This fits the hypothesis of Tillo
510 Biophysical Journal 112, 505–511, February 7, 2017
et al. (33), because organisms with more cell differentiation
will have more genes suppressed by an NAR (and possibly
by stronger ones). If the purpose of the NARs is solely
to retain nucleosomes in the germline, it seems that more
complex life cares more strongly about retaining its
nucleosomes and passing on epigenetic information. More
research will be needed to explore this idea.

Given the presence of hybrid signals, we speculate that
the encoding of NARs versus NDRs in promoter regions
is not an all-or-nothing choice for organisms. Whether the
NARs serve to close off genes by default, or to retain nucle-
osomes in the germline, they compete with an apparent need
to create an NDR to facilitate the initiation of transcription.
The organisms showing hybrid signals seem to strike a
balance between the two.
Outlook

We hope that our results will motivate the experimental
community to expand the available catalog of in vitro nucle-
osome maps to a greater number and variation of organisms.
This will help not only verify our findings but also be of
great service to any followup inquiries into the deeper
nature and meaning of the signals we have found. We also
suggest that nucleosome maps be generated at lower nucle-
osome densities, because steric hindrance will hide strong
enrichment signals.

We also hope to encourage further examination of house-
keeping versus tissue-specific genes in other organisms to
further test the hypothesis of Tillo et al. (33), and an expan-
sion of the results of Vavouri and Lehner (36) to other organ-
isms, to test whether nucleosome retention in the germline is
a goal served by the mechanical signals we find in the ge-
nomes of other complex organisms. If so, our results raise
an intriguing question: why do more complex organisms
tend to favor stronger nucleosome retention?
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Supplementary Methods

Model: The model used in this work to predict nucleosome affinity is based on that of Segal et al.
(1), which is a model for the thermodynamic probabilities for 147-base-pair sequences to reside in a
nucleosome. That is, it provides a method to calculate the probability P(S) of a sequence S related to
the energy cost E of using a DNA molecule with this sequence to form a nucleosome:

(1)

This probability depends on every one of the nucleotides that make up the sequence S. If we define
S as a set of Si with i an index running from 1 to 147, we can write

(2)

Using the chain rule of probabilities, this can be rewritten as

(3)

This equation expresses the probability of the whole sequence as simply the product of all  the
separate base pairs  in the sequence.  The catch is  that the probabilities of the base pairs  are all
interdependent; the probability for Sn depends on the values of S1 through Sn-1. 

The way the model of Segal et al. is obtained is by assuming that long-range correlations between
base pairs can be neglected in the expression above. Specifically, they assume that the probability
distribution of Sn depends only on the value of  Sn-1 and not on any base pairs further away, so that

(4)

If we apply this assumption, we obtain the model of Segal et al.

For the model to make predictions, it needs to be parameterized. Segal  et al. and follow-up work
(1–3) produced  experimental  thermodynamic  ensembles  of  sequences  with  high  affinity  for
nucleosomes. The probability of a given sequence in such an ensemble should be described by the
model above, so one counts the prevalences of the dinucleotides and mononucleotides at  every
nucleosomal position in this average to produce the probability distributions needed to inform the
model.

We here repurpose this model for a somewhat different endeavor. Another common approach to
investigating nucleosome affinity is to model the energetics of the nucleosome directly. This can be
done with a  DNA model  such as  the  Rigid  Base  Pair  model  (4) and a  suitable  model  for  the
nucleosome. We have made use here of the nucleosome model presented in (5). This model can also
be used to predict  nucleosome affinity,  based on the local  elastic properties of base pair  steps.
Unfortunately, this model is computationally very expensive and cannot be used to analyze large
numbers of sequences, such as entire genomes.
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Such  a  model  can,  however,  in  a  reasonable  amount  of  time,  be  used  to  generate  sequence
ensembles of the same kind as employed to parameterize the Segal  et al. model and follow-ups.
Using a recently published computational method (Mutation Monte Carlo,  (5)) we were able to
generate ensembles large enough that probability distributions of mono-, di- and even trinucleotides
could be calculated. When we plug those distributions into the Segal et al. model, we find that we
have a  good approximation  of  the predictions  made by the full  underlying  nucleosome model,
which is computationally far less expensive and allows us to analyze whole genomes.

We finally note that we used not the dinucleotide-based model of Segal et al., but we have extended
it to trinucleotides:

(5)

In this case, we make the assumption that the probability of  Sn depends on the values of Sn-1 and Sn-2.
This assumption on the correlations between base pairs is less stringent than that of the dinucleotide
model  and should  therefore  provide  a  better  approximation.  The  downside  is  that  many  more
probability  values  need  to  be  calculated,  and  a  correspondingly  larger  sequence  ensemble  is
required. However, we found that we were able to create a large enough ensemble (10^7 sequences)
that the trinucleotide model provided a significant improvement over the dinucleotide model. When
predicting the affinities of all 147-base-pair subsequences of the first chromosome of S. cerevisiae,
the  trinucleotide  model  came to  a  root-mean-square  deviation  of  0.85  kT when  comparing  its
predictions  with  those  of  the  underlying  energetic  model.  The  dinucleotide  model  yielded  a
deviation of 1.08 kT, so the trinucleotide model reduces the deviation by about 20%.

For the underlying nucleosome model, we chose the same model presented in  (5). However, we
have made an important alteration to the model in order to perform the analyses presented here.
Previously, a hybrid parameterization was chosen for the Rigid Base Pair Model (6) that underlies
the  nucleosome  model  presented  there.  In  this  hybrid  parameterization  (7),  the  intrinsic
deformations of the base pair steps are derived from crystal-structure data, and the stiffnesses of the
steps from all-atom molecular dynamics similations. 

This hybrid model had previously been found to approximate reality best by Becker et al. (7). Those
authors,  however,  used only short  sequences to  test  the different  parameterizations.  Hence they
primarily  tested  the  local  accuracies  of  the  parameterizations,  for  which  the  correct  oscillatory
behavior of the predicted energy with the helical repeat of DNA is most important.

However, we are interested not in the local changes in affinity, but in long-range effects on the order
of  tens  of  helical  repeats.  For  this  purpose,  we  found  that  the  hybrid  parameterization  yields
unsatisfactory results. Although it gives correctly phased dinucleotide probability distributions, the
average abundances of AT-rich dinucleotide steps in high-affinity sequences are overestimated with
respect to those of GC-rich steps. It is known that high GC content correlates with high affinity, but
the hybrid model ascribes higher affinity to AT-rich sequences. See Fig. S1. The result is that the
model is unable to detect the nucleosome-depleted regions in S. cerevisiae promoters. 
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We  find  that  when  using  a  parameterization  where  both  the  intrinsic  deformations  and  the
stiffnesses are derived from crystal-structure data (4), the model does correctly ascribe high affinity
to high GC content. See Fig 1b. When using this pure parameterization for our model, we find we
do detect the NDR in yeast.

We speculate that the two parameterizations can fulfill complementary roles. The hybrid model may
be most accurate when considering local changes in affinity, but its performance in detecting long-
range  effects  is  lacking.  Conversely,  the  pure  crystallography  parameterization  may  not  be  as
realistic locally (7), but it is able to capture long-range effects much more accurately. For this work
we therefore applied the pure parameterization.

3

Fig. S1: Dinucleotide step frequencies and their 11-bp averages in high-affinity nucleosome 
ensembles. Left: Using the hybrid parameterization, AT-rich dinucleotide steps are enriched, 
while GC-rich steps are depleted. Right: In the pure parameterization, GC-rich steps are 
enriched, in line with experimental evidence.



Supplementary Results

Full set of mechanical signals: In this section we supply the full set of nucleosome positioning 
signals centered on transcription start sites. The signals are plotted in Figs. S2-S7, with organisms 
grouped together under a number of headings.
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Fig. S2: Nucleosome positioning signals in the promoter regions of a number of Archaea.
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Fig. S3: Nucleosome positioning signals in the promoter regions of a number of fungi.

Fig. S4: Nucleosome positioning signals in the promoter regions of a number of plants.
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Fig. S5: Nucleosome positioning signals in the promoter regions of C. elegans and a number of 
other nematodes.
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Fig. S6: Nucleosome positioning signals in the promoter regions of D. melanogaster and a number 
of other flies.



GC content as signal predictor: Finally we wish to note that, in terms of classifying these signals as 
we have done in Fig. 2 in the main manuscript, one might also look at the signals in the GC content,
which are depicted in Fig. S8. The visual similarity with Fig. 2 is of course striking.

We would warn against relying on GC content alone for the purpose for which we have applied our 
model here. The first reason is that, obviously, GC content in itself does not tell us anything about 
the numerical values of the nucleosome occupancy without some sort of calibration. Our model, on 
the other hand, has no free parameters, and is built on physical principles. 

Secondly, we have also found that, using the Mutation Monte Carlo method with the Eslami-
Mossallam nucleosome model [5], we can create sequences with very different mechanical 
properties by only changing the order of the sequence, while keeping GC content fixed, which 
shows that GC content is only part of the story.

That said, statistically, signals in GC content in promoter regions may also be a fruitful way to 
classify organisms. This will require further study.
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Fig. S7: Nucleosome positioning signals in the promoter regions of human, chimpanzee, mouse and
zebrafish genomes.
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Fig. S8: Average GC content around the transcription start sites for the same organisms as 
presented in Fig. 2. Curves have been shifted such that the value at -1000 is zero, and have been 
smoothed using a 147-bp running average.
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