Supporting Information

Engineering Hepatitis B Virus Core Particles for Targeting HER2 Receptors *In Vitro* **and** *In Vivo*

Izzat Fahimuddin Bin Mohamed Suffian¹ , Julie Tzu-Wen Wang¹ , Naomi O. Hodgins¹ , Rebecca Klippstein Martin¹, Mitla Garcia-Maya², Paul Brown², Yuya Nishimura³, Hamed Heidari⁴, S ara Bals⁴, Jane Sosabowski⁵, Chiaki Ogino³, Akihiko Kondo³, Khuloud T. Al-Jamal^{1*}

1 Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.

2 Randall Division of Cell & Molecular Biophysics, King's College London, New Hunt's House, London SE1 1UL, UK.

³ Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.

4 Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium.

5 Centre for Molecular Oncology, Bart's Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK

*** Corresponding author

Prof. Khuloud T. Al-Jamal

Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building,

150 Stamford Street, London SE1 9NH, UK.

Tel: +44(0)20-7848-4525

1. Supporting Materials

Ampicillin sodium, AIM-terrific broth base including trace elements, Tris base Ultra-Pure, EDTA disodium and DTT dithiothreitol were obtained from ForMedium™ (UK). Calcium chloride (anhydrous) and urea (carbamide) were obtained from Melford (UK). Imidazole, Glycerol, 2-mercapoethanol, *N*, *N*, *N'*, *N'*-tetramethylethylenediamine, sodium chloride, agarose, ribonuclease A (from bovine pancreas) and Bromophenol Blue sodium salt were obtained from Sigma Life Science (UK). cOmplete™ ULTRA Tablets, glass vials Protease Inhibitor Cocktail and cOmplete™ His-Tag Purification Resin were from Roche (Germany). Sodium hydrochloride and methanol were obtained from Fisher Scientific (UK). Acetic acid ≥99.0% (T) and skimmed milk powder were obtained from Fluka Analytical (Switzerland). Triton® X-100, sodium carbonate, ammonium persulfate and Bovine Serum Albumin lyophilized powder, ≥96% (agarose gel electrophoresis) were obtained from Sigma-Aldrich (Germany). Citric acid monohydrate and Brilliant Blue R were obtained from Sigma (UK). Sodium dodecyl sulphate was obtained from BDH Laboratory (UK). Acrylamide/Bis Solution (30%), 37.5:1, Precision Plus Protein™ Dual Xtra Standards, Precision Protein StrepTactin-HRP Conjugate and Clarity Western ECL Substrate were obtained from Bio-Rad Laboratories (USA). Mouse Anti-Hepatitis B Virus Antibody, core antigen (ayw), clone 10E11 was from Merck Millipore (USA). Hydrochloric acid, for analysis, fuming, 37% solution in water was obtained from Aeros Organic (Germany). UltraPure™ Phenol:Chloroform:Isoamyl Alcohol was obtained from Invitrogen (USA). Anti 6-His affinity purified was obtained from Bethyl Laboratories Inc. (USA). Newborn Calf Serum, Heat Inactivated was obtained from First Link Limited (UK). PE Mouse Anti-Human HER-2/neu and PE Mouse IgG1, κ Isotype Control were from BD Biosciences (USA). Alexa Fluor® 488 NHS Ester (Succinimidyl Ester), MEM GlutaMAX™ Supplement, DMEM high glucose pyruvate, Advanced RPMI 1640 Medium, PBS (10X) pH 7.4, Trypsin-EDTA (0.05%) phenol red, Penicillin-Streptomycin (10,000 U/mL), L-Glutamine (200 mM), GlutaMAX™ Supplement,

SnakeSkin™ Dialysis Tubing 10K MWCO 35 mm and Pierce™ 16% Formaldehyde (w/v) Methanol-free were from Thermo-Fisher Scientific (USA). IsoLink kit was obtained from Mallinckrodt Medical BV (Netherlands). $[{}^{99m}TcCO_4]$ solution was obtained from Mallinckrodt Pharmaceuticals (Netherlands). XenoLight™ D-luciferin potassium salt was obtained from Perkin Elmer (EU). *Escherichia Coli*, BL21 (DE3) [F ompT hsdSB (rB mB) gal dcm (DE3)] was obtained from Dr. Mitla Garcia Maya, Randall Division of Cell and Molecular Biophysics, King's College London, UK. Plasmids pET-22b(+)-dc183_WT-His6, pET-22b(+) -dc149-His6 and pET-22b(+)-dc149-Z342-His6 were obtained from Associate Professor Chiaki Ogino, Chemical and Science Engineering Department, Kobe University, Japan.

2. Supporting Methods

2.1 Cell culture

A panel of cell lines, of varied degree of HER2 expression, was used in this study. The BT-20 human breast carcinoma (BT-20; ATCC, HTB-19) was cultured in MEM media supplemented with 15% fetal bovine serum (FBS), 50 U/ml penicillin, 50 µg/ml streptomycin, 1% L-glutamine, at 37 °C in 5% $CO₂$. The IGROV-1 human ovarian adenocarcinoma (IGROV-1; RRID, CVCL_1304) and SKOV-3 human ovary adenocarcinoma (SKOV-3; ATCC, HTB-77) were cultured in DMEM media supplemented with 10% FBS, 50 U/ml penicillin, 50 μ g/ml streptomycin, 1% L-glutamine, at 37 °C in 5% CO₂. The HeLa human cervix adenocarcinoma (HeLa; ATCC, CCL-2) were cultured in DMEM media supplemented with 10% FBS, 50 U/ml penicillin, 50 μ g/ml streptomycin, 1% L-glutamine, at 37 °C in 5% $CO₂$. All cells were routinely grown in 75 cm² canted-neck tissue culture flasks and passaged twice a week using Trypsin/EDTA at 80% confluency.

2.2 Determination of HER2 receptors expression levels in cancer cell lines

Cells were cultured in complete media in 25 cm^2 canted-neck tissue culture flasks. When cells reached 80% confluency, cells were washed twice with PBS buffer; trypsinised and 1 x $10⁶$ cells were transferred to assay tubes for the subsequent immunostaining. Cells were fixed in 4 % PFA for 10 min at room temperature, washed in PBS buffer and incubated with 150 µl of blocking buffer (1% BSA in PBS buffer) for 30 min at room temperature. After this period of time, cells were washed with PBS buffer and incubated with 20 µl of PE Mouse Anti-Human HER-2neu antibody (BD Biosciences, USA) or 20 µl of Isotype Mouse BALB/c IgG₁, κ for 30 min in dark at room temperature. Finally, cells were washed with PBS buffer. PE fluorescence was analysed by flow cytometry using a BD FACS Calibur™ flow cytometer (BD Biosciences, USA). A total of 10,000 cells were gated and fluorescence was analysed in triplicates for each condition using the FL-2 detector and BD CellQuest software (BD Biosciences, USA).

3. Supporting Results

3.1 Characterisation of cancer cells for HER2 expression

HER2 expression levels in 9 cancer cell lines, including MDA-MB-468, MDA-MB-231, IGROV-1, HeLa, BT-20, SKOV-3, MDA-MB-435-MLE, SKBR-3 and BT-474 cells, were assessed using flow cytometry. Expression levels were assessed by measuring the median fluorescent intensity (MFI) using FL-2 detector. Cell lines were stained with PE mouse antihuman HER2/neu primary antibody. κ isotype was used as a negative control.

As shown in **Figure S1A**, MDA-MB-468 cells showed no difference in the mean fluorescence intensity (MFI) between cells stained with the mouse anti-human HER2/neu primary antibody and naïve (grey colour) or isotype control cells (green line); suggesting that

MDA-MB-468 cells are HER2 negative. On the contrary, MDA-MB-231, IGROV-1, HeLa, BT-20, SKOV-3, MDA-MB-435-MLE, SKBR-3 and BT-474 were confirmed HER2 positive, as shown by the increase in MFI of cells, stained with mouse anti-human HER2/neu (FL2) (purple line) (**Figure S1A**). Based on MFI values, HER2 expression levels on cells were ranked in the following order: MDA-MB-468 \leq MDA-MB-231 \leq IGROV-1 \leq HeLa \leq BT-20 $<$ SKOV-3 $<$ MDA-MB-435-MLE $<$ SKBR-3 $<$ BT-474. Cells were classified as negative (-) (MDA-MB-468), lowly expressed (+) (MDA-MB-231, IGROV-1, HeLa, BT-20) or overly expressed (+++) (SKOV-3, MDA-MB-435-MLE, SKBR-3, BT-474) for HER2 receptors (**Figure S1B**). Only MDA-MB-468, MDA-MB-231, SKBR-3 and BT-474 cell lines were chosen as representative cell lines for further cellular uptake studies.

3.2 Fluorescence labelling of HBc particles

All HBc particles were fluorescently labelled with Alexa Fluor™ 488 dye. Fluorescence was measured with excitation at 485 nm and emission at 520 nm, using BMG FLUOstar Omega fluorometer. As shown in **Figure S2**, HBc particles showed higher fluorescence intensity than ΔHBc and ZHER2-ΔHBc particles (**Figure S2**).

3.3 *In vivo* **monitoring of highly-expressing HER2 (HER2 (+++)) xenograft tumour models by bioluminescence imaging**

In order to study the biodistribution of HBc particles in an *in vivo* model, two tumour mice models were prepared; intraperitoneal and mammary fat pad tumour models. NSG mice were inoculated with luciferase-expressing MDA-MB-435-MLE cells, either intraperitoneally or subcutaneously into the mammary fat pad, to generate intraperitoneal or mammary fat pad tumour models, respectively. Tumour growth in each model was monitored by bioluminescence *in vivo* imaging, every 7 days after inoculation. Ventral images of a representative NSG mouse from both tumour models are shown in **Figure S3**. The

intraperitoneal model showed tumour growths at multiple sites around the abdominal cavity, including the spleen, intestines and male reproductive organs (**Figure S3A**). Meanwhile, localised bioluminescent signals were observed at mammary fat pads on both sides in the mammary fat pad model (**Figure S3B**).

3.4 Blood clearance, excretion profiles and organ biodistribution profile of systemicallyadministered [99mTc(CO)3] ⁺ particles by gamma counting

Blood sampling at early time points demonstrated rapid clearance from the blood with values of \sim 50% and \sim 30%ID in blood detected at 30 min-post injection, in intraperitoneal and mammary fat pad tumour models, respectively (**Figure S4A**). At 24 h, these values dropped to \sim 30% and \sim 10%ID in blood for intraperitoneal and mammary fat pad tumour models, respectively (**Figure S4A**). High radioactivity eliminated into urine was observed for $[{}^{99m}Tc(CO)_3]$ ⁺ in both intraperitoneal and mammary fat pad tumour models with ~18-28%ID eliminated/mouse (**Figure S4B**). A similar excretion profile with HBc particles in faeces was observed for $\left[\right.^{99m}$ Tc(CO)₃]⁺ in both models.

 $[{}^{99m}Tc(CO)_3]^+$ was observed to accumulate in multiple organs, with the kidneys (8.45 \pm 3.53%ID/g) and liver $(8.06 \pm 1.71\%$ ID/g) exhibiting the highest accumulation followed by the intestines $(4.69 \pm 0.29\%$ ID/g), stomach $(4.19 \pm 1.14\%$ ID/g), lungs $(3.40 \pm 1.15\%$ ID/g), spleen $(2.97 \pm 0.28\% \text{ID/g})$ and heart $(1.76 \pm 0.54\% \text{ID/g})$ (Figure S4C, black bars). Moreover, tumour accumulation was found to be at $1.44 \pm 0.17\%$ ID/g of tumour (**Figure S4C, black bar**).

 $[{}^{99m}Tc(CO)_3]$ ⁺ showed a similar accumulation profile in systemically-administered mammary fat pad tumour model (**Figure S8C, grey bars)** to that obtained in intraperitoneal model. Tumour uptake was 0.82 ± 0.20%ID/g of tumour (**Figure S8C, grey bars**).

3.5 *In vivo* **whole body SPECT/CT imaging, excretion profiles and organ biodistribution profile of locally-administered [99mTc(CO)3] ⁺ particles by gamma counting**

In intraperitoneal tumour-bearing mice, whole body SPECT/CT imaging of $[^{99m}Tc(CO)_3]^+$ exhibited a different profile to the HBc particles, in which, an intense radioactivity signals were observed in heart, lungs, liver and bladder. $[{}^{99m}Tc(CO)_3]$ ⁺ signals were mostly cleared at 24 h post-injection (**Figure S5A)**. Meanwhile, the excretion profile exhibited low radioactivity eliminated in urine (3.17 \pm 0.14%ID eliminated/mouse) and faeces (0.65 \pm 0.83%ID eliminated/mouse) for $[{}^{99m}Tc(CO)_3]$ ⁺ (**Figure S5B**). Very low organ accumulation was observed with the uptake of $\left[\right]^{99m}$ Tc(CO)₃ $\right]^{+}$ in the intestines (3.55 \pm 1.89%ID/g), followed by the liver $(2.49 \pm 0.39\% \text{ID/g})$, kidneys $(2.38 \pm 0.13\% \text{ID/g})$, stomach $(2.29 \pm 1.02\% \text{ID/g})$ and spleen $(1.14 \pm 0.46\sqrt[6]{\text{ID/g}})$ (**Figure S5C**). A relatively low tumour accumulation of $[{}^{99m}\text{Tr}(\text{CO})_3]$ (2.32 ± 0.84%ID/g) was observed (**Figure S5C**).

In the whole body SPECT/CT imaging of mammary fat pad tumour-bearing mice, $[{}^{99m}\text{Tr}(\text{CO})_3]$ ⁺ exhibited a similar biodistribution profile to ${}^{99m}\text{Tr}$ - Δ HBc and ${}^{99m}\text{Tr}$ - Z_{HER2} -ΔHBc, where by most of the signals were retained in the tumour (**Figure S6A**). No significant radioactivity signals were observed in any organs except bladder, which indicated that some of the particles reached the systemic circulation prior to elimination in the urine. As shown in **Figure S6B,** $[{}^{99m}Tc(CO)_3]$ ⁺ also resulted in a similar excretion profile to HBc particles, with $33.38 \pm 5.66\%$ and $1.36 \pm 0.11\%$ ID eliminated/mouse in the urine and faeces, respectively. Organ accumulation of $\left[\right]^{99m}$ Tc(CO)₃]⁺ was highest in kidneys, followed by liver and spleen with 14.49 ± 3.55 , 11.46 ± 3.28 and $3.49 \pm 0.37\%$ ID/g of tissue at 24 h post-injection, respectively (**Figure S6C**). $[{}^{99m}Tc(CO)_3]$ ⁺ exhibited high tumour uptake of ~34.77 \pm 15.70%ID/g (**Figure S6C**).

3.6 Blood clearance, excretion profiles and organ biodistribution profile of systemicallyadministered HBc particles by gamma counting

Quantitative studies by gamma counting were performed to assess the pharmacokinetic profile and organ biodistribution of HBc particles 24 h post-injection. Radiolabelled ^{99m}Tc-ΔHBc and ^{99m}Tc-Z_{HER2}-ΔHBc particles were injected *via* the tail vein (systemic route) in both of the tumour models. Blood sampling at early time points demonstrated fast clearance from the blood with values of \sim 7.0-7.5% and \sim 4.0-5.5%ID in blood detected in blood at 30 min-post injection, in the intraperitoneal (**Figure S7A**) and mammary fat pad (**Figure S7B**) tumour models, respectively. At 24 h, these values dropped to \sim 4.0-5.0% and \sim 0.5-1.5%ID in blood for the intraperitoneal (**Figure S7A**) and mammary fat pad (**Figure S7B**) tumour models, respectively. No significant difference in the blood clearance profiles between the $\frac{99 \text{m}}{2}$ C- \triangle HBc and ^{99m}Tc-Z_{HER2}- \triangle HBc particles was observed. Relatively low levels of radioactivity suggest that both HBc particles have a short blood circulation time in mice. Animals were also housed in metabolic cages for urine and faeces collection for 24 h to assess excretion profile. Approximately \sim 10-20% and \sim 1.0-2.0%ID was eliminated in urine and faeces within 24 h for both particles (p > 0.05) (**Figure S7C, D**).

In the intraperitoneal tumour mouse model, accumulation of $\frac{99 \text{m}}{2}$ Tc- Δ HBc was observed in kidneys > liver > spleen followed by lungs at %ID/g values of 13.90 ± 1.08 , 9.88 ± 1.24 , 9.27 ± 0.57 and 3.41 ± 0.40% at 24 h post-injection (**Figure S8A, black bars**). A similar trend in organ accumulation profile was observed for 99mTc-ZHER2-ΔHBc (**Figure S8A, grey bars).** The mammary fat pad tumour mouse model exhibited comparable organ biodistribution profiles to those observed in intraperitoneal tumour mouse model (**Figure S8B**). A

statitiscally significant higher lung (*p < 0.05) and lower kidney (**p < 0.01) uptakes were observed for $\frac{99m}{\text{Tc}-\text{Z}_{\text{HFR}}-2}$ - Δ HBc compared to $\frac{99m}{\text{Tc}-\Delta}$ HBc.

Tumour uptake of systemically-administered HBc particles exhibited low uptake with $\sim 0.5\%$ and $\sim 0.2\%$ achieved in the intraperitoneal and mammary fat pad tumour model, respectively, with no significant differences observed between 99m Tc- Δ HBc and 99m Tc- Z_{HFR2} - Δ HBc (**Figure S8**).

3.7 Excretion profiles of locally-administered HBc particles by gamma counting

In the intraperitoneal tumour-bearing mice model, approximately \sim 4-10% and \sim 0.2-2.0 %ID was eliminated into urine and faeces after 24 h for both particles with no significant differences between the type of particles $(p > 0.05)$ (**Figure S9A**). In contrast, in the mammary fat pad tumour-bearing mice model, higher radioactivity was observed in urine for both HBc particles after 24 h $(-17-22%)$ than found with the intraperitoneal model. Approximately ~20-30% and ~1.6-1.7 %ID was eliminated into urine and faeces after 24 h for both particles (p > 0.05) (**Figure S9B**).

Figure S1. HER2 expression levels in cancer cell lines by flow cytometry. (A) Fluorescence intensity histograms (FL2) and **(B)** Median fluorescence intensity (MFI) analyses. Cell lines were stained with PE mouse anti-human HER2/neu primary antibody for assessing the expression level of HER2 receptors on cell membrane surface. PE mouse antihuman IgG1, κ isotype was used to account for non-specific binding to the IgG. HER2

expression levels on cells are in the following order: MDA-MB-468 > MDA-MB-231 > IGROV-1 > HeLa > BT-20 > SKOV-3 > MDA-MB-435-MLE > SKBR-3 > BT-474. Cells were classified as negative $(-)$, low expression $(+)$ or over-expression $(+++)$ for HER2 receptors.

HBc particles concentration (µg/ml)

Figure S2. Standard curve of Alexa Fluor™ 488-labelled HBc particles by fluorometry. WT-HBc, ΔHBc and Z_{HER2}-ΔHBc particles were fluorescently labelled with Alexa FluorTM 488 dye and measured for fluorescence at 485nm and 520 nm excitation and emission wavelengths, respectively. Measurements were performed at 25˚C using a BMG FLUOstar Omega fluorometer. Error bars are too small to be seen. Higher labelling efficiency was obtained for WT-HBc than ΔHBc and ZHER2-ΔHBc particles.

Intra-peritoneal (IP)

Mammary fat pad (MFP)

Figure S3. *In vivo* **IVIS optical imaging of MDA-MB-435-MLE tumour-bearing NSG mice in different models.** NSG mice were inoculated with MDA-MB-435-MLE cells intraperitoneally or subcutaneously to produce **(A)** intraperitoneal (IP) or **(B)** mammary fat pad (MFP) tumour bearing mouse model, respectively. Bioluminescence images of mice were captured every 7 days, from day 7 post-inoculation using IVIS Lumina series III *In Vivo* Imaging Device (IVIS). In each imaging session, a total of 150 mg of luciferin per kg body weight was administered *via* subcutaneous injection.

Figure S4. *In vivo* **blood circulation, excretion profiles and organ biodistribution of** systemically-administered $\int^{99m} \text{Tc(CO)}_3$]⁺ in MDA-MB-435-MLE IP or MFP tumour**bearing NSG mice.** Mice were intravenously injected with $[^{99m}Tc(CO)₃]⁺$ in the IP (black) and MFP (grey) tumour models, at a dose of 6-8 MBq/mouse. **(A)** Blood clearance profiles. Blood samples (5 µl) were collected from the tail vein at 30 min, 4 h and 24 h post-injection. **(B)** Excretion profile at 24 h post injection. (C) Organ biodistribution profile with values expressed as %ID/g of tissue; Inset shows the %ID/g tumour uptake. Results are expressed as mean \pm SD (n=3).

Figure S5. *In vivo* **SPECT/CT imaging, excretion profile and organ biodistribution studies of locally-administered [99mTc(CO)3] ⁺ in MDA-MB-435-MLE IP tumour-bearing NSG mice.** Mice were intraperitoneally injected at a dose of 6-8 MBq/mouse. Organs were excised at 24 h post-injection for gamma counting. **(A)** Whole body SPECT/CT imaging at 0- 30 min, 4 and 24 h post-injection of $[{}^{99m}Tc(CO)_3]^+$. **(B)** Excretion profile at 24 h postinjection, expressed as mean of %ID eliminated/mouse \pm SD (n=3). (C) Organ biodistribution profile with values expressed as %ID/g of tissue; Inset shows the %ID/g tumour uptake. Results are expressed as mean \pm SD (n=3).

Figure S6. *In vivo* **SPECT/CT imaging, excretion profile and organ biodistribution studies of locally-administered [99mTc(CO)3] ⁺ in MDA-MB-435-MLE MFP tumourbearing NSG mice.** Mice were intratumourally injected at a dose of 6-8 MBq/mouse. Organs were excised at 24 h post-injection for gamma counting. **(A)** Whole body SPECT/CT imaging at 0-30 min, 4 and 24 h post-injection of $[{}^{99m}Tc(CO)_3]^+$. **(B)** Excretion profile at 24 h post injection, expressed as mean of %ID eliminated/mouse \pm SD (n=3). (C) Organ biodistribution profile with values expressed as %ID/g of tissue; Inset shows the %ID/g tumour uptake. Results are expressed as mean \pm SD (n=3).

Figure S7. *In vivo* **blood circulation and excretion profiles of systemically-administered 99mTc-HBc particles in IP or MFP model MDA-MB-435-MLE tumour-bearing NSG** mice. Mice were intravenously injected with ^{99m}Tc-ΔHBc (black) or ^{99m}Tc-Z_{HER2}-ΔHBc (grey), in the IP (A, C) or MFP (B, D) tumour mouse model, at a dose of 50 μ g protein/mouse (4-6 MBq per mouse). **(A, B)** Blood clearance profiles and **(C, D)** Excretion profile at 24 h post injection. Blood samples $(5 \mu l)$ were collected from the tail vein at 30 min, 4 h and 24 h post-injection. Low detection of 99m Tc- Δ HBc or 99m Tc- Z_{HER2} - Δ HBc (2.5-3.0%) was detected in blood at 30 min post-injection or both models. Results are expressed as mean \pm SD (n=3).

Figure S8. *In vivo* **organ biodistribution studies of systemically-administered 99mTc-HBc particles in IP or MFP MDA-MB-435-MLE tumour-bearing NSG mice.** Mice were injected with ^{99m}Tc- Δ HBc (black bars) or ^{99m}Tc-Z_{HER2}- Δ HBc (grey bars), intravenously in the **(A)** IP or **(B)** MFP tumour mouse model, at a dose of 50 µg protein/mouse (4-6 MBq per mouse). Organs were excised at 24 h post-injection for gamma counting. Results are expressed as mean of $\frac{\%}{D/g}$ of tissue \pm SD (n=3).

Figure S9. *In vivo* **SPECT/CT imaging of 99mTc-**Δ**HBc particles in MDA-MB-435-MLE IP and MFP tumour-bearing NSG mice.** Mice were injected with ^{99m}Tc-ΔHBc, intraperitoneally, at a dose of 200 µg protein/mouse (6-14 MBq per mouse) in **(A)** IP or **(B)** MFP tumour-bearing mice model. Whole body 3D SPECT/CT imaging at 0-0.5, 4 and 24 h postinjection with a scanning time of 30 min each. White arrow indicates accumulation at tumour region at 24 h post-injection.

Figure S10. In vivo excretion profile of locally-administered $\int^{99m} \text{Te(CO)}_3$]⁺ in MDA-MB-**435-MLE IP or MFP tumour-bearing NSG mice.** Mice were injected with ^{99m}Tc-ΔHBc (black bars) or 99m Tc-Z_{HER2}- Δ HBc (grey bars), intraperitoneally or intratumourally in the **(A)** IP or **(B)** MFP mouse tumour model, respectively, at a dose of 50 µg protein/mouse (4-6 MBq per mouse). Excretion profile at 24 h post injection is expressed as mean of %ID eliminated/mouse \pm SD (n=3).