Supplemental Information

Myo2p is the major motor involved in actomyosin ring contraction in fission yeast

Paola Zambon, Saravanan Palani, Anton Kamnev and Mohan K. Balasubramanian

Figure S1. Actomyosin ring assembly, dwelling and contraction of wild type *S. pombe* and myosin mutants.

(A) Time-lapse image series of mitotic cells of wild-type Blt1-GFP and *myo*2 Δ Blt1-GFP germinated from spores. Scale bars represent 3 µm. (B–D) Time-lapse image series of mitotic cells of seven genotypes (wild-type, *myo*2-E1, *myp*2 Δ , *myo*51 Δ , *myo*51 Δ , *myo*2-E1 *myp*2 Δ , *myo*2-E1 *myp*2 Δ , *myo*51 Δ), respectively. In all cases, Rlc1-3GFP was used as a marker of cytokinetic nodes and the actomyosin ring and alpha tubulin 2 (mCherry-atb2) served as a cell-cycle marker (t = 0 denotes the elongation of the spindle ~1 µm). Time-lapse movies were taken at (B) 25°C, (C) 30°C and (D) 36°C, respectively. In (B), time points between 33 and 54 minutes were highlighted with blue dotted square box in the *myo*2-E1 *myo*51 Δ cells. Scale bars represent 3 µm.

Supplemental Experimental Procedures

Yeast strains and growth conditions

The *S. pombe* strains used in this study are listed below and all of them have been verified by PCR and DNA sequencing using appropriate primers. *S. pombe* cell culture, genetic and growth conditions for live-cell imaging were used as previously described [S1,S2].

MBY8841	mCherry-atb2::hph; Rlc1-3GFP::KanMX6; ura4-D18 ade6-210 leu1-32 h+
MBY10024-1	myo2-E1 mCherry-atb2::hph Rlc1-3GFP::KanMX6 h+
MBY10075	<i>myp2</i> ::NatMX6 mCherry-atb2::hph; Rlc1-3GFP::KanMX6 ade6-21
MBY10097	<i>myo</i> 2-E1 <i>myp</i> 2::NatMX6 mCherry-atb2::hph Rlc1- 3GFP::KanMX6 ade6-21
MBY10995	<i>myo51</i> ::ura4 <i>myp2</i> ::NatMX6 mCherry-atb2::hph Rlc1- 3GFP::KanMX6
MBY10996	myo51::ura4 mCherry-atb2::hph Rlc1-3GFP::KanMX6
MBY11002	h90/h90 <i>myo</i> 2∆/+ strain a (<i>myo</i> 2∆::ura4) Blt1-GFP::NatMX6
MBY11129	<i>myo2</i> -E1 <i>myo51</i> ::ura4 Rlc1-3GFP::KanMX6 mCherry- atb2::hph h+

Table of strains used in this study

Live-cell imaging

For time-lapse live-cell imaging, mid log phase cells were grown at 25°C and shifted to 30°C and/or 36°C for 3–4 hours prior to imaging. Time-lapse movies were taken under fully controlled 30°C and/or 36°C incubation chamber while the images were acquired for 3–4 hours. YES Agarose pad imaging method was used for time-lapse imaging as described [S2]. Time-lapse series were acquired using a spinning disk confocal microscope (Andor Revolution XD imaging system, equipped with a 100x oil immersion 1.45NA Nikon Plan Apo lambda, and a confocal unit Yokogawa CSU-X1, EMCCD detector (Andor iXON) and Andor iQ acquisition software. Fifteen z-stacks of 0.5 μ m thicknesses at 1-minute intervals were taken for Rlc1-3GFP (myosin regulatory light chain 1), which served as contractile ring marker and alpha tubulin 2 (mCherry-atb2) served as a cell-cycle marker. We defined the timing of assembly from coalescence of nodes into a condensed single ring (t = 0 denotes the

elongation of the spindle ~1 μ m). The time between full ring assembly and initiation of contraction was considered as dwelling time. We determined the timing of ring contraction from a complete ring into a dot or no fluorescence. Scale bar 3 μ m. Images were processed using Fiji software.

Ring contraction rate measurement

The rate of ring contraction was measured similarly as described [S3]. First, kymographs of contracting cytokinetic ring (15 z-stacks of 0.5 μ m thickness taken for 7 μ m at 1-minute intervals) were constructed from maximum intensity projection of original time series along the z-axis. Next, ring contraction velocity was measured as a slope formed by migrating ring edge to the time-axis. On average we measured 20~30 rings per group.

Supplemental References

- S1. Moreno, S., Klar, A., and Nurse, P. (1991). Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. *194*, 795-823.
- S2. Huang, J., Huang, Y., Yu, H., Subramanian, D., Padmanabhan, A., Thadani, R., Tao, Y., Tang, X., Wedlich-Soldner, R., and Balasubramanian, M.K. (2012). Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast. J. Cell Biol. *199*, 831-847.
- S3. Laplante, C., Berro, J., Karatekin, E., Hernandez-Leyva, A., Lee, R., and Pollard, T.D. (2015). Three myosins contribute uniquely to the assembly and constriction of the fission yeast cytokinetic contractile ring. Curr. Biol. *25*, 1955-1965.