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1. Additional information

In order to enhance the readability of the main text, we summarize a few technical
comments and side remarks in this supplementary information.

1.1. Dynamical model and details of the numerical experiment

Previous investigations have also considered the case of an absolute threshold, where
a fixed number (set often to one) of excited neighbors triggers the activation of a
susceptible node. They have shown the key role of hubs as organizing centers of the
activity (Müller-Linow et al., 2008; Hütt and Lesne, 2009). In contrast, in the case of
a relative threshold κ considered here, there is no amplification due to a potentially
increased excitability of high-degree nodes. For a given node, there is actually a balance
between a sufficient number of excited neighbors and the number of susceptible neighbors
able to propagate the excitation signal. Overall, the amplification rate at a given node
is bounded by (1− κ)/κ.

To check the quality of our predictions, we accumulated the results obtained with
several network realizations for each number of edges (10 realizations in Fig. 3 and
Fig. 5 of the main text, 50 realizations in Fig. 4 and Fig. 6), then for each network all
the possibilities for the input node. For the prediction of 1/κc (Fig. 3 and Fig. 4), we
then considered for each input node either a randomly chosen output node (prediction
k∗) or all output nodes (prediction k∗∗). For the prediction of 1/κm (Fig. 5 and Fig. 6),
we considered for each input node the maximal degree kmax,1 in the corresponding first
layer, and the overall maximal degree kmax.

The number of layers depends on the network size and the connectivity (as it can
be seen on the extreme case of a fully connected network, displaying only one shell
whatever the input node is). In our simulations with networks of 80 nodes, the number
of shells typically ranges between 5 and 2.

In the context of the relationships between network architecture and dynamics,
considering discrete dynamical models has provided some key insights into the functions
of complex networks in the past, e.g. Boolean models for gene regulatory networks
(Bornholdt, 2005) and SIR (’susceptible’ – ’infected’ – ’removed’) and SIS (’susceptible’
– ’infected’ – ’susceptible’) models for epidemic diseases in social networks (Pastor-
Satorras and Vespignani, 2001).

1.2. Generic properties of the response curve

Due to the definition of the relative threshold κ, the actual transition points 1/κm and
1/κc are expected to take only integer values. The result of the binary search algorithm
used to numerically determine these points confirms this expectation, up to a minor
amount equal to the precision of the algorithm, and the numerical values will be thus
rounded to the nearest integer.
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Regarding the comparison of the stochastic model (p < 1) and the deterministic
model (p = 1), in rare situations a higher excitation level is achieved in the
stochastic case near transition point B (overshooting of some stochastic curves above
the deterministic level in Figure 2). The explanation relies on a mechanism detailed in
Sec. V of the main text, according which the persistence of a refractive node makes a
‘faster’ pacemaker (cycling excitation) accessible.

1.3. Prediction of transition point A

The contribution from multiple excitations does not fully explain the falsely predicted
cases for sparse graphs. Therefore, the difference to 100 percent prediction quality in
Figure 4 must be due to the more complicated layer structure of sparse graphs. This
observation is consistent with the fact that the discrepancy appears for ER graphs, but
less so for BA graphs, which has a more stable layer structure due to its hubs.

1.4. Prediction of transition point B

Distinction between kmax and kmax,1. One might think that with increasing density, the
node of maximal degree would rapidly come to lie in the first layer. This is not the case,
as shown by the discrepancy between the quality curves for the prediction kmax,1 and
for the prediction kmax, which lies far below. If the node of maximal degree were always
in the first layer, then kmax,1 = kmax and the two curves in Figure 6 would coincide. For
dense graphs we observe the presence of a hole in the first layer (of degree kmax,1) to be
important for the onset of signal amplification while the hub of maximal degree (kmax)
is not so significant. Although a hub would act as a barrier for a single excitation, its
location in a deeper layer of the dense graph makes it highly probable that it is reached
by concurring excitations and thus propagates the signal without generating a hole (see
Sec. IV in the main text; dashed green curve in Figure 4 and Eq. A.3 in the Appendix
of the main text).
Sparse graphs vs. dense graphs. What apparently matters most in sparse graphs for
signal amplification by recurrent (cycling) excitation is the delayed excitation of a global
hub. In contrast, what apparently matters in dense graphs is the delayed excitation of
a hub in the first layer. In both cases it is difficult to say whether it is the presence of
a hole per se which matters, or whether what matters are correlated features (e.g. the
presence of a sufficient number of holes, or some more intricate feature of the available
cycles). These more complex conditions for the onset of signal amplification are the
reason for the low prediction quality of 1/κm in the case of sparse graphs. Improving
our predictions would ask for a better understanding of what happens after a hole as
appeared in the excitation front. The requirements for recurrent activity in terms of
either cycle statistics, paths statistics or simultaneous presence of several holes (i.e.
degeneracy of the degree kmax or kmax,1) would deserve further investigations.
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1.5. Prediction of height C

In the deterministic case, the output excitation level increases linearly with the duration
of the observation T . For p < 1, the excitation ultimately vanishes in a finite network;
however, for p close enough to 1, a long transient activity is observed, during which the
accumulated output signal increases with T . Practically the transient duration grows
exponentially with p and is longer than any reasonable simulation length, for example
a network with N = 80,M = 284 displays a transient duration of order 106 time steps
around p = 0.4 (data not shown).

1.6. Parallel to spiral waves in spatiotemporal pattern formation

The transition from a sequential activation of the layers to self-sustained dynamics
involving cycling excitations (transition point B; see Sections III and V) is reminiscent
of the formation of spiral waves in spatiotemporal pattern formation (Grace and Hütt,
2015). In contrast to simple propagating (target) waves, spiral waves are autonomously
driven by an excitation propagating on a ring serving as the spiral ’core’. In such a
scenario of spatiotemporal pattern formation, the circumference of the ring matches the
refractory period of the excitable medium, thus forming a minimal spatial structure
capable of self-sustained activity.

Such spiral cores are formed for example when a gap in a propagating wave front
leads to a curling of the open ends (Geberth and Hütt, 2008; Liao et al., 2011; Garcia
et al., 2012), which is quite similar to the hole (not activated node) in one of the
layers responsible for transition point B in the present study. Topological cycles in the
graph then can play a similar role as the spiral core with the cycle length matching the
refractory time (on average 1/p).

Relatedly, the effect of shortcuts on spiral wave patterns has been studied, both
theoretically (Sinha et al., 2007) and experimentally (Tinsley et al., 2005) as another
link between self-sustained activity and network topology.

2. Network size dependence

We discussed comparatively small graphs, in order to stay close to the phenomenon of
sustained activity in cortical area networks. Thus we did not explore the scaling of the
threshold curve with network size. This general topic of scaling with network size would
resemble the widely discussed phenomena around the topology-dependence of epidemic
thresholds. As a trend, we here observe that our predictions, relying on some localized
feature, become worse when the network size increases and all the different dynamical
events superimpose (mix up) and the impact of a specific one fades away.

Looking at the system size dependence of our prediction quality, the most
interesting phenomenon is the reduction of quality for larger BA graph due to many
competing hubs.
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Figure 1. A plot of the prediction quality for the end of sustained activity (1/κc).
The data is for graphs of size N = 20...350 and M = 0.04N2. The predictions are
i) the node with the highest degree on the easiest path (where the maximal degree is
minimal) from the input node to the output node is limiting ii) 1/κc = 2 + 1/p = 3

(mean field prediction) and iii) 1/κc = kmin (ER and BA graphs).
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Figure 2. A plot of the prediction quality for the onset of sustained activity ( 1
κm

).
The data is for graphs of size N = 20...350 and M = 0.04N2. The predictions are that
1/κm = k(max,1) and 1/κm = kmax (ER and BA graphs).
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