Table S1: Key candidate genes involved with osmoregulation in prawns and other aquatic crustacean species.

Gene Name	Functions and Mechanisms	Species Studied
Na ⁺ /K ⁺ - ATPase (NKA)	The most important (master) gene for osmoregulation,	Crayfish (Ali et al., 2015), M.
	exchange ions depending on external medium, establish	amazonicum (Faleiros et al., 2010), M.
	electromechanical gradients across gill membranes	australiense (Moshtaghi et al., 2016)
V type (H ⁺) ATPase (VAT)	Drives osmoregulation in dilute/extreme freshwater	M. amazonicum (Faleiros et al., 2010),
	medium, pump protons for overall ion exchange	M. australiense (Moshtaghi et al. 2016)
Na ⁺ /K ⁺ /2Cl ⁻ cotransporter	Ion transportation into gill cells either from the blood or	M. australiense (Moshtaghi et al.,
(NKCC)	environment depending on salinity of external medium	2016), Crayfish (Ali et al., 2015)
Carbonic Anhydrase (CA)	Produce H ⁺ & HCO ₃ ⁻ to drive Na ⁺ & Cl ⁻ exchange	M. australiense (Moshtaghi et al. 2016)
Alkaline Phosphatase	Ion precipitation, support Ca ⁺² - ATPase for calcification	Mud crab (Tongsaikling et al., 2013)
Arginine Kinase	Support ion transport and partial role in salinity regulation	M. australiense (Moshtaghi et al. 2016)
Calreticulin	Signal transduction, Ca ⁺² homeostasis, salinity stress biomarker,	M. rosenbergii (Barman et al., 2012),
	oxidative stress response and molecular chaperon	crayfish (Ali et al., 2015)
CFT Regulator	Cl ⁻ channel regulator for euryhaline animals	Crayfish (Havird et al., 2013)
ABC (ATP-binding cassette)	Participate in ion channel regulation and osmoregulatory	M. rosenbergii (Barman et al., 2012)
C12 protein	pathway, significant role in salinity adaptation in gill	
Ca ⁺² - ATPase	Ca ⁺² transport & exchange, calcification, Ca ⁺² homeostasis	Crayfish (Gao and Wheatley, 2004)
Na ⁺ /H ⁺ exchanger	Exchange of Na ⁺ for H ⁺ or vice versa, cell volume regulation	M. amazonicum (Falaeiros et al., 2010)
Na ⁺ /HCO ₃ cotransporter	Transport HCO ₃ ⁻ and exchange HCO ₃ ⁻ for Na ⁺	Green crab (Havird et al., 2013)
H ⁺ /Cl ⁻ exchanger	Exchange of H ⁺ for Cl ⁻ or vice versa depending on salinity	Crab (Genovese et al., 2013)
Na ⁺ /Ca ⁺² exchanger	Remove Ca ⁺² from cell and uptake Na ⁺ from environment	Crayfish (Gao and Wheatley, 2004)
Ca ⁺² activated K ⁺ channel	Signal transduction for Ca ⁺² transport and other cations	Lobster (Berkefeld et al., 2010)
Ca ⁺² Cl ⁻ channel regulator	Exchange of 1 Ca ⁺² for 2 Cl ⁻ for ion regulation	Crayfish (Havird et al., 2013)
Cl ⁻ transporter	Transportation of Cl	Crayfish (Havird et al., 2013)
Cl ⁻ /HCO ₃ exchanger	Catalyze HCO ₃ ⁻ from inside the cell for Cl ⁻ outside the cell	M. australiense (Moshtaghi et al. 2016)
Mg ⁺² transporter	Mg ⁺² transport across cell membrane & signal transduction	Crab (Leite and Zanotto, 2013)
K ⁺ Cl ⁻ symporter	Transport K ⁺ & Cl ⁻ ions, maintain electrochemical balance	P. monodon (Pongsomboon et al., 2009)
Integrin	Supporting role to control homeostasis for salinity stress	M. rosenbergii (Barman et al., 2012)
Claudin 3	Maintain epithelial permeability, sensing osmotic stress	Freshwater crab (Furriel et al., 2010)
Aquaporin 3	Regulate cell volume caused by osmotic stress	M. australiense (Moshtaghi et al. 2016)
P38 MAP kinase	Signal transduction for stress response to osmotic balance	M. rosenbergii (Barman et al., 2012)
Osmotic Stress transcription 1	Signal transduction during osmotic stress	M. rosenbergii (Barman et al., 2012)
Mitochondrial carrier protein	Osmoregulatory signal transduction	Crab (Genovese et al., 2005)
Selenophosphate 1 (SPS1)	Tolerance of oxidative and salinity fluctuation stresses	M. rosenbergii (Barman et al., 2012)
ILF2 (interleukin enhancer	A transcriptional regulator involved in the physiological	M. australiense (Moshtaghi et al. 2016)
binding factor 2)	process of euryhalinity	M. rosenbergii (Barman et al., 2012)