
Supplementary Information 

 

1/ Installation and usage of the python script 

 

The script was written in python 2.7.10 but probably runs on any python 2.6 and plus. Not on 

python 2.3. 

Dependencies: 

The script requires: 

- a recent RDKit version 

- a recent scikit-learn version 

- NumPy 

The training set: 

The training set is given as an sd file, named “BCRP_training.sdf”. It should contain 978 

compounds annotated for their BCRP inhibition (under the section “Activity”). Please refer to 

“BCRP inhibition: from Data Collection to Ligand-Based Modeling”, by Montanari and Ecker, 

Molecular Informatics, 2014 (DOI: 10.1002/minf.201400012) for more details on how the data 

was collected. 

The test set: 

We call “test set” the dataset for which you want to obtain a BCRP inhibition prediction. It 

should be reasonably cleaned (removing salts, standardizing the structure, removing 

compounds with rare atoms, etc.) since the workflow takes the compounds as-is in the given 

test set. If possible, it should contain a property that defines a molecule identifier, but it is not 

compulsory. Any other property will be ignored. 

Variables to customize: 

The script can be viewed in a regular text editor, Gedit in Ubuntu for example. At the beginning 

of the script, after the imports, you will see the following: 



 

This part is the only part you have to edit. For “TRAINING”, replace the pink string by the path 

to the training set (once you have downloaded it). For “TRAINED_MODEL”, replace the pink 

string by the path to where you want the model to be stores / where the model is stored (if it 

has already been trained). For “TEST_SET”, replace the pink string by the path to the sd file 

containing the compounds you want to predict. For “MOLID_TEST”, replace the pink string by 

the name of the property that contains the index of the compounds. If the dataset does not 

contain any index (or molecule identifier), replace the pink string by the word “None” (without 

quotes). For “PREDICTIONS”, replace the pink string by the path to the file where you want to 

save the predictions for the test compounds. 

How to run the script: 

Once all dependencies are installed and the custom variables are properly set, go to the 

directory where the script is stored and in a terminal write: 

>> python BCRP_inhibition_model.py 

 

2/ Cross-validation and leave-sources-out validation results for the 16 models 

 

Table SI-1: 

Learning method LSO AUC ROCa 10-fold CV AUC ROCb 

MACCS, Naïve Bayes 0.58 0.65 

MACCS, logistic regression 0.62 0.83 

MACCS, Random Forest 0.65 0.88 

MACCS, SVM 0.68 0.88 

CDK, Naïve Bayes 0.63 0.67 

CDK, logistic regression 0.70 0.85 

CDK, Random Forest 0.71 0.87 

CDK, SVM 0.71 0.77 



ECFP, Naïve Bayes 0.56 0.78 

ECFP, logistic regression 0.71 0.90 

ECFP, Random Forest 0.65 0.86 

ECFP, SVM 0.73 0.90 

VolSurf, Naïve Bayes 0.69 0.69 

VolSurf, logistic regression 0.72 0.80 

VolSurf, Random Forest 0.61 0.77 

VolSurf, SVM 0.64 0.73 

a Area under the ROC curve in the “leave-sources-out” validation setting, average over 166 

experiments 

b Area under the ROC curve in 10-fold cross-validation 

 

3/ Characterization of the PLB985 cells stably expressing BCRP 

 

Materials and methods 

Western blot analysis 

Cells were harvested and lysed in lysis buffer (50 mM Tris pH8, 120 mM NaCl, 1 mM EDTA, 2% 

Triton X-100) containing protease inhibitors (Complete Protease Inhibitor Cocktail Tablets, 

Roche Diagnostics, Indianapolis, IN). Cell debris was pelleted by centrifugation (1000 g, 5 min, 

4°C), and  supernatant, containing 20 µg protein/sample, was mixed with sample buffer 

(reaching final concentrations of 8% glycerol, 0.8% SDS, 0.01% bromophenol blue, 5% 2-

mercaptoethanol). Samples were separated on 8% SDS polyacrylamide gel, and then  

electrophoretically transferred onto a nitrocellulose blotting membrane (GE Healthcare Life 

Sciences, Freiburg, Germany). The membranes were blocked with 5% BSA in TBS (25 mM Tris, 

140 mM NaCl, 2.5 mM KCl, pH 7.4) and incubated with BXP-21 mouse anti-BCRP (Santa Cruz 

Biotechnology, CA, USA) or β-Actin (D6A8) Rabbit mAb (Cell Signaling Technology MA, USA) 

antibodies diluted 1:1000, overnight at 4°C. IRDye 800CW goat anti-mouse IgG and IRDye 680 

goat anti-rabbit IgG (LI-COR Biotechnology, Homburg, Germany), diluted 1:10000, were used as 

secondary antibodies and were added for 45 min incubation at room temperature. All 

antibodies were diluted in 5% BSA in TBS-T (TBS with 0.1% Tween 20). Fluorescence was 



detected on LI-COR Odyssey® CLx Imager (LI-COR Biotechnology) at 800 nm and 700 nm, 

respectively. 

 

Results 

To confirm expression of BCRP in PLB985 cells stably expressing BCRP, Western blot analyses 

were performed (Figure SI-1A) showing BCRP protein expression only in the BCRP expressing 

PLB985 cells but not in the parental cell line. Functionality of BCRP in overexpressing PLB985 

cells was verified by the steady state mitoxantrone accumulation assay (Figure SI-1B). As the 

efflux of mitoxantrone is mediated by BCRP, BCRP overexpressing PLB985 cells show 

significantly decreased mitoxantrone accumulation compared to the parental cell line, 

confirming functionality of BCRP in overexpressing PLB985 cells.  Addition of Ko143, a known 

BCRP inhibitor, to BCRP-overexpressing PLB985 cells increased accumulated mitoxantrone 

levels similar to that observed in parental PLB985 cells (Figure SI-1B).  On the contrary, 

mitoxantrone accumulation in parental PLB985 cells was not affected by Ko143, confirming the 

absence of any endogenous mitoxantrone transporter sensitive to Ko143. Furthermore, IC50 

measurements for Ko143 (Figure SI-1C) were conducted in BCRP-overexpressing PLB985 cells, 

giving an IC50 value of 9.8 ± 1.6 nM, which is in accordance to the previous published IC50 value 

of Weiss, J. et al. (10 nM; Weiss, J., Rose, J., Storch, C. H., Ketabi-Kiyanvash, N., Sauer, A., 

Haefeli, W. E., & Efferth, T. (2007). Modulation of human BCRP (ABCG2) activity by anti-HIV 

drugs. The Journal of Antimicrobial Chemotherapy, 59(2), 238–45). 
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Figure SI-1: Characterization of BCRP-overexpressing PLB985 cells. 

A. Expression analysis of BCRP in parental (par) and BCRP stably expressing PLB985 cells at the 

protein level using Western blot. To dissociate the BCRP complex into monomers cell lysates 

were treated with 5% 2-mercaptoethanol. The BCRP monomer band is detected at 72 kDa. ß-

actin served as a loading control. The figure shows a representative Western blot of two 

independent experiments. 

B. Verification of BCRP function in BCRP overexpressing PLB985 cells compared to parental 

PLB985 cells. Steady state accumulation of mitoxantrone (7 µM) was measured in the absence 

(-Ko143) or presence of 1 µM Ko143 (+Ko143) as described in the materials and methods 

section of the original article, except fluorescence intensity measurement, which was done on 

BD FACSCalibur flow cytometer (Becton Dickinson, San Jose, CA, USA). Data show the mean 

percentage fluorescence intensity after subtracting the background fluorescence of unstained 

cells and subsequent normalization to parental cells without Ko143 treatment, which was set to 

100%, and ± SD of 2 independent experiments. Each experiment was performed in technical 

duplicates. 

C. IC50apparent measurement of Ko143. Steady state accumulation of mitoxantrone (7 µM) in the 

absence and presence of 11 different concentrations of Ko143 ranging from 0.1 to 1000 nM 

was measured as described in the materials and methods section of the original article, except 



fluorescence intensity measurement, which was done on BD FACSCalibur flow cytometer 

(Becton Dickinson, San Jose, CA, USA). Data given here show the mean percentage fluorescence 

intensity after subtracting the background fluorescence of unstained cells and the fluorescence 

of the DMSO control and subsequent normalization to the fluorescence intensity at the highest 

Ko143 concentration, which was set as 100%, ± SD of 3 independent experiments. 

 

4/ Sensitivity analysis of the logistic regression model 

 

The sensitivity analysis performed here relates to the uncertainty of the source-by-source 

threshold assignment that was chosen and described in Montanari and Ecker, Molecular 

Informatics, 2014. The model built depends on the input X (feature matrix) and y (labels 

vector). Y in turn depends on the thresholds initially applied. In this analysis, we try to simulate 

the effect of changing the thresholds on the output model. 

 

Methods 

The sensitivity analysis is performed with the following restraints: the number of compounds in 

the training set will not vary (which concretely means that we will ignore potential label 

discrepancies arising from the new thresholds for compounds measured in several sources) and 

the model settings will not vary (which concretely means that we will ignore the fact that for 

some y the ideal model may not be a logistic regression). 

To evaluate the effect of changing the thresholds and class assignments, we look at the 

DrugBank screen results. 

 

For each source in the training set, a range of possible thresholds was defined that would be 

sensible in the context of the experiment and reported end-point. Table SI-2 reports these 

ranges. 

 

Table SI-2: Possible values taken by the new thresholds in the sensitivity analysis for each 

source 

 

Source End point unit Initial 

threshold 

Lowest 

allowed 

Highest 

allowed 

Pick_2008 pIC50 (M) 4 3 6 

Pick_2010 IC50 (μM) 25 5 35 

Pick_2011 IC50 (μM) 10 5 25 



Ahmed-Belkacem_2005 IC50 (μM) 10 5 25 

Ahmed-Belkacem_2007 % inhibition 50 40 70 

acridones_Boumendjel_

2007 

IC50 (μM) 15 5 30 

Boumendjel_2005 fluorescence intensity 200 150 300 

Matsson_2007 fold increase 3 2 5 

Saito_2006 % inhibition 20 15 70 

cdkinhib_An_2008 IC50 (μM) 25 5 35 

Katayama_2007 RI50
-1 (μM-1) 0.1 0.01 6 

Loevezijn_2001 fluorescence intensity 150 90 210 

Juvale_2012 IC50 (μM) 15 5 30 

phenylquinazolines_Juva

le_2012 

IC50 (μM) 10 5 25 

Jin_2006 IC50 (μM) 10 5 25 

Cramer_2007 EC50 (μM) 10 5 25 

Imai_2004 degree of resistance 10 5 15 

Sugimoto_2003 reversal index 1.15 1.1 2 

flavonoids_Zhang_2004 Substrate accumulation 300 200 400 

flavonoids_Zhang_2005 EC50 (μM) 15 5 30 

Colabufo_2008 EC50 (μM) 10 5 25 

Colabufo_2008_ext IC50 (μM) 10 5 25 

Holland_2007 fluorescence intensity 25 15 35 

Ivnitski-Steele_2008 percent inhibition 50 40 70 

Ivnitski-Steele_2010 rank score 52 40 70 

Njus_2010 toxic dose / reversal index 10 5 30 

Xiao-Ling_2008 IC50 (μM) 10 5 25 

Zembruski_2011 PubChem annotation None None None 

Hacker_2009 IC50 (μM) 15 5 30 

Arnaud_2010 percent inhibition 50 40 70 

Jimenez-Alonso_2008 PubChem annotation None None None 

Kuhnle_2009 IC50 (μM) 15 5 30 

Ochoa-Puentes_2011 IC50 (μM) 15 5 30 

Ali-Versiani_2011 IC50 (μM) 10 5 25 

Bokesch_2010 IC50 (μM) 18 5 30 

Takada_2010 IC50 (μM) 20 10 35 

Feng_2008 IC50 (μM) 5 3 15 

Feng_2009 IC50 (μM) 5 3 15 

Giannini_2008 IC50 (μM) 15 5 30 



Mao_2004 IC50 (μM) 15 5 30 

Pan_2013 IC50 (μM) 15 5 30 

Marighetti_2013 IC50 (μM) 15 5 30 

Wang_2008 IC50 (μM) 25 10 40 

Matsson_2009 percent inhibition 50 40 70 

Patel_2011 IC50 (μM) 25 10 40 

Weiss_2007 IC50 (μM) 30 15 45 

Curtis_2007 IC50 (μM) 10 5 25 

 

 

The sensitivity analysis was then performed by repeating 2000 times the following experiment: 

 

A random number of sources (between 2 and 30) are picked for threshold change. For each of 

these sources, the threshold is randomly chosen within the range proposed in Table SI-2. The 

new thresholds are then used to derive the vector y of training labels. The logistic model 

described in the Methods section of the manuscript is then rebuilt using these new training 

data. The DrugBank set is then passed through the new model, and scores are kept. 

 

Results 

 

The impact of changing the thresholds in the training set was evaluated on the DrugBank screen 

results. First, the ranking of the compounds obtained in each experiment was compared with 

the initial ranking by means of Spearman correlation coefficient. The distribution of Spearman 

coefficients is shown in Figure SI-2. 

 



 
Figure SI-2: Distribution of Spearman coefficient correlations for the 2000 rankings of 

DrugBank in the sensitivity analysis compared with the initial ranking.  

 

Most of the experiments led to a Spearman R over 0.9, which means that the obtained rankings 

are very close to the original ranking. 

Next, the impact of the thresholds in the training set on the scores obtained for the 10 

compounds that were selected for testing is shown in Figure SI-3.  



 

Figure SI-3: Boxplot of the scores obtained by the 10 tested compounds across the 2000 

experiments of the sensitivity analysis. 

 

The scores varied quite a bit for some experiments, but the overall population of scores is 

centered on the original score for each compound (see Table 2 in the main manuscript).  

Finally, as a proof that the threshold ranges chosen actually had an effect on the training labels, 

we propose in Figure SI-4 a distribution of the proportions of labels affected by changes in the 

2000 experiments. We see that in most cases almost half of the labels are actually affected. 



 

Figure SI-4: Distribution of proportion of labels affected by changes across the 2000 

experiments of the sensitivity analysis. 


