Supporting Information:

Shortening the HIV-1 TAR RNA Bulge by a Single Nucleotide

Preserves Motional Modes Over a Broad Range of Timescales

Dawn K. Merriman¹, Yi Xue², Shan Yang³, Isaac J. Kimsey², Anisha Shakya⁴, Mary Clay², Hashim M. Al-Hashimi^{*1,2}

1. Department of Chemistry, Duke University, Durham, North Carolina 27708

2. Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710

3. Baxter Health Care, (Suzhou) Co., Ltd. Suzhou, Jiang Su, 215028 China

4. Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109

*To whom correspondence should be addressed: <u>hashim.al.hashimi@duke.edu</u> Tel: 919-660-1113

Supporting Discussion 1. G28U-wtTAR and G28U-∆C24-wtTAR ES2 trap mutants.

In a prior study¹, nine resonances belonging to residues U31 (C6H6 and C1'H1'), C30 (C6H6 and C1'H1'), A22 (C8H8 and C1'H1'), G32 (C8H8 and C1'H1'), and U23-C1'H1' could not be unambiguously assigned in G28U-wtTAR. Based on the present study, and assignments of the ES2^{uucg} mutant, six of the ambiguous assignments have been resolved and three assignments previously labeled as unambiguous (U23-C6H6, A35-C8H8 and C1'H1') have been corrected. In total, 14 resonances have been corrected or added to the assignments of G28U-TAR: U23-C6H6, C24-C6H6, A22-C8H8 and C1'H1', A35-C8H8 and C1'H1', U40-C6H6 and C1'H1', C39-C6H6, C41-C6H6 and C1'H1', G32-N1H1, U31-N1H1, and G43-N1H1.

Among these resonances U23-C6H6 and A35-C8H8 and C1'H1' were previously not deemed ambiguous, but were updated by switching with ambiguous or unassigned peaks: A22*-C8H8 \rightarrow A35-C8H8, A22*-C1'H1' \rightarrow A35-C1'H1' and U31*-C6H6 \rightarrow U23-C6H6. Because new assignments retain very similar carbon chemical shifts, they do not impact the prior agreement reported between the ES2 chemical shifts and those measured in wtTAR-G28U mutants or any of the conclusions in the prior TAR ES2 study.

Resonances previously assigned as U38-N3H3 and G36-N1H1 could not be reconciled with additional data shown here on G28U- Δ C24-wtTAR and the ES2^{uucg} traps. This led us to deduce that G28U-TAR is prone to forming kissing dimers or duplexes resulting in a GU resonance in both wtTAR and Δ C24-wtTAR (updated assignments: G36-N1H1 \rightarrow G32-N1H1, U38-N3H3 \rightarrow U31-N3H3). Once again, this correction does not affect the prior RD analysis since similar ¹⁵N chemical shifts were maintained for all residues affected.

To expand, NOE connectivity data measured on G28U- Δ C24-wtTAR yielded a tri-guanine walk in G28U-AC24-wtTAR (Fig S8, highlighted in orange). This walk could not be explained based on the monomeric G28U- Δ C24-wtTAR secondary structure, but could easily be explained by a kissing dimer or duplex. These NOE connectivities were not observed previously in G28U-wtTAR, possibly due to the lower RNA concentration or poorer resolution in the NOESY spectrum. Indeed, a non-denaturing gel on aliguots of NMR samples used in measuring NOESY spectra (data not shown) shows two wellseparated populations for both G28U-wtTAR and G28U-∆C24-wtTAR. Therefore, at the high concentrations used to collect unlabeled NMR data (≈ 2-3 mM RNA), G28U-wtTAR forms a kissing dimer or duplex in solution. Indeed, lowering the RNA concentration to ≈ 50 µM resulted in the disappearance of the imino assigned to the GU mispair. The formation of a GU mispair associated with the kissing dimer or duplex formation also helps explain the unusual chemical shift of the peak previously assigned as U28, which appears in a region of in a 2D NH spectrum typical of GU mispairs and not WC AU bps². It should be noted that there are still unassigned and ambiguous assignments in G28U-TAR due to severe spectral overlap in the non-exchangeable region of the NOESY spectra.

Supplementary Information Figure Legends

Figure 1: Secondary structure and assignments of Δ C24-wtTAR and Δ C24-TAR^{uucg}. (A) Overlay of 2D HSQC spectra of wtTAR (black) and Δ C24-wtTAR (red) where large chemical shift perturbations are highlighted with black lines. (B) Secondary structure (left) and 2D HSQC overlays of Δ C24-wtTAR (red) and Δ C24-TAR^{uucg} (blue). Asterisks highlight apical loop residues that differ between RNA molecules. Figure 2: Comparison of chemical shifts for wtTAR and Δ C24-wtTAR with and without Mg²⁺. Shown is the secondary structure of wtTAR, highlighting the deleted bulge nucleotide in Δ C24-wtTAR with a red X, and 2D HSQC overlays of wtTAR (black), Δ C24-wtTAR (red), wtTAR in the presence of 4 mM Mg²⁺ (orange)³. Black lines highlight significant chemical shift perturbations from wtTAR at low salt conditions to Mg²⁺ bound wtTAR, and Δ C24-wtTAR at low salt conditions.

Figure 3: 2D HSQCs of wtTAR and Δ C24-wtTAR in the presence of Mg²⁺. (A) Shown are 2D HSQC overlays of magnesium titrations with wtTAR (top) and Δ C24-wtTAR (bottom) at 0 mM (black), 2 mM (blue) and 4 mM (green) Mg²⁺. (B) 2D HSQC overlays of wtTAR (black) and Δ C24-wtTAR (red) at the 4 mM Mg²⁺ titration point to highlight the similarities of the spectra in comparison to free wtTAR and Δ C24-wtTAR (main Fig 2A, Fig S1A).

Figure 4: ¹³**C Spin Relaxation comparison.** Shown are correlation plots of ¹³C R₁ (A) and R₂ (B) relaxation rates where residues are colored according to helix 1 (red), helix 2 (blue), bulge (orange), and apical loop (green). See insert for symbols depicting the different spins measured.

Figure 5: Residual dipolar couplings measured in Δ **C24-wtTAR.** (A) Comparison of RDCs measured based on splittings encoded in ¹³C and ¹H dimensions. The unity line is also shown. RMSD was calculated over all RDCs measured and final values utilized for further analyses were obtained from averaging the two sets of RDC measurements (B) 2D overlay of the ¹H downfield and ¹³C upfield TROSY component for Δ C24-wtTAR free

(red) and in the presence of Pf1 phage (blue). (C) Comparison of the measured RDCs in helix 1 (red) and helix 2 (blue) and values back predicted when best fitted to an idealized A-form geometry (see methods).

Figure 6: RD profiles. In all cases, RD profiles show the dependence of $R_2 + R_{ex}$ on spin lock power ($\omega_{eff}/2\pi$) and offset ($\Omega/2\pi$) with global fits (solid lines) to the two-state Laguerre equation (Eq 2)⁴. Error bars represent experimental uncertainty (1 s.d., see methods). (A) RD profiles measured in Δ C24-wtTAR (B) RD profiles measured in wtTAR and Δ C24-wtTAR in 5 mM Mg²⁺. Shown are representative off-resonance (A35-C8) and on resonance (U38-N3) RD profiles measured in wtTAR and Δ C24-wtTAR. (C) ES3 RD profiles measured in wtTAR and Δ C24-wtTAR.

Figure 7: MC-Fold results for Δ **C24-wtTAR.** Shown are the top four results from MC-Fold⁵ using standard input options exploring the best 15% sub-optimal structures. Structures are in order as they were ranked from MC-Fold and labeled as the ground state (GS) and excited states (ES) as determined by NMR.

Figure 8: NMR Spectra of G28U- Δ C24-wtTAR. (A) Secondary structure of G28U- Δ C24-wtTAR with the mutated G to U highlighted in green. (B) Example imino proton NOE connectives that support a kissing or duplex dimer in G28U- Δ C24-wtTAR. NOE connectivities are colored according to the G28U- Δ C24-wtTAR secondary structure, with the lower helix formation (black), uridine mispair formation (orange) and upper helix walk (red). (C) Exchangable NOE proton walk for the lower helix of G28U- Δ C24-wtTAR from residues G17 to U23, and highlighting the strong NOE for G33 H1'-H8 consistent with

G28U-wtTAR and the *syn* conformation of residue G33. (D) 2D HSQC overlay of Δ C24-wtTAR (blue) and G28U- Δ C24-wtTAR (red).

Figure 9: NMR assignments of wtTAR-ES2^{uucg} and Δ C24-wtTAR- ES2^{uucg}. Shown are the non-exchangeable NOE walk for wtTAR-ES2^{uucg} (A) and Δ C24-wtTAR- ES2^{uucg} (B) taken at 10°C (left) and exchangeable NOE walks taken at 25°C (right). The imino walks completed are highlighted on the secondary structure inserts. (C) 2D HSQCs of ES2^{uucg} traps overlaid on the corresponding spectra of wtTAR and Δ C24-wtTAR. Ambiguous assignments in are marked with an asterix.

wtTAR		wtTAR	∆C24-wtTAR
Aromatic	R₁	10 (2x), 100, 200, 300, 580 (2x)	10, 50 (2x), 150, 350 (2x), 500
	R_2	4, 9, 14, 24, 29, 34, 39, 44, 50	4, 8 (2x), 16, 20, 24, 28, 32, 36, 40 (2x)
Aliphatic	R ₁	10 (2x), 90, 190, 300, 600 (2x)	10 (2x), 90, 190, 300, 440, 600 (2x)
	R_2	0.4 (2x), 4, 10, 20, 40, 42 (2x)	0.4 (2x), 4, 10, 30, 42 (2x)

Table 1: Delays (ms) used in R_1 and R_2 relaxation experiments. 2x refers to repeated delays to assist in estimating experimental error.

	Atom	R ₁	Error	R ₂	Error
G17	C8	1.87	0.02	29.39	0.08
G18	C1'	1.40	0.03	26.9	0.5
A20	C8	1.97	0.02	28.2	0.1
	C2	2.13	0.02	33.9	0.3
	C1'	1.47	0.01	24.5	0.6
G21	C8	1.87	0.01	34.5	0.2
	C1'	1.53	0.01	23	1
A22	C8	1.93	0.01	31.03	0.09
	C2	2.03	0.05	35.2	0.2
	C1'	1.57	0.01	24.6	0.3
U23	C6	2.66	0.03	29.67	0.19
	C1'	1.97	0.01	17.1	0.9
U25	C6	2.73	0.01	25.64	0.07
G26	C8	1.84	0.03	32.4	0.2
A27	C8	1.90	0.02	29.9	0.2
	C2	1.92	0.01	36.9	0.3
	C1'	1.29	0.02	30.7	0.6
G28	C8	1.87	0.02	34.0	0.1
	C1'	1.47	0.04	23.9	0.7
C29	C6	2.43	0.05	39.1	0.3
	C1'	1.44	0.02	25.1	0.9
C30	C6	2.44	0.04	36.3	0.5
	C1'	1.68	0.02	38	2
U31	C1'	1.92	0.02	34	1
G32	C8	2.20	0.02	19.9	0.1
	C1'	1.87	0.02	19	1
G33	C8	2.02	0.02	31.71	0.08
	C1'	1.73	0.01	20.0	0.8
G34	C8	1.94	0.01	44.1	0.3
	C1'	1.74	0.03	40.4	0.9
A35	C8	2.07	0.01	16.13	0.03

	C1'	2.06	0.03	33	1
G36	C8	1.90	0.01	34.42	0.06
	C1'	1.41	0.01	28	1
C37	C6	2.40	0.03	38.9	0.1
	C1'	1.47	0.01	24.6	0.2
U38	C1'	1.50	0.01	23.7	0.8
C39	C6	2.39	0.03	36.8	0.3
	C1'	1.52	0.01	23.9	0.6
U40	C1'	1.63	0.03	23	1
C41	C6	2.36	0.02	37.5	0.1
U42	C1'	1.56	0.02	24.7	0.8
G43	C8	1.96	0.03	24.7	0.8
C45	C1'	1.63	0.04	19.2	0.3

Table 2: Carbon R ₁ a	and R ₂ relaxation rates	(s⁻¹) of wtTAR
----------------------------------	-------------------------------------	------	------------

	Atom	R ₁	Error	R ₂	Error
G17	C8	1.91	0.01	26.50	0.19
G18	C8	1.94	0.01	29.31	0.19
	C1'	1.39	0.01	29.31	0.19
C19	C6	2.43	0.02	35.07	0.16
A20	C8	2.00	0.02	28.14	0.10
	C2	2.05	0.00	29.25	0.42
	C1'	1.41	0.02	23.91	0.09
G21	C8	1.94	0.00	29.25	0.18
	C1'	1.45	0.02	23.26	0.15
A22	C8	2.00	0.02	27.65	0.19
	C2	2.04	0.02	30.02	0.32
	C1'	1.66	0.03	21.22	0.06
U23	C6	2.76	0.00	24.31	0.07
	C1'	2.05	0.03	17.98	0.11
U25	C6	2.65	0.01	18.97	0.13
	C1'	2.12	0.01	16.38	0.09
G26	C8	1.89	0.04	30.09	0.12
A27	C8	1.92	0.03	29.55	0.10
	C2	1.98	0.02	30.65	0.23
	C1'	1.39	0.02	37.22	0.24
G28	C8	1.89	0.01	31.09	0.18
C29	C6	2.47	0.02	37.41	0.19

	C1'	1.44	0.02	23.79	0.14
C30	C6	2.41	0.02	36.85	0.13
	C1'	1.68	0.02	35.13	0.27
U31	C6	2.75	0.01	28.89	0.06
	C1'	1.92	0.02	37.08	0.24
G32	C8	2.21	0.01	18.66	0.07
	C1'	1.89	0.02	18.97	0.11
G33	C8	2.08	0.01	30.16	0.06
	C1'	1.75	0.02	20.14	0.19
G34	C8	2.02	0.01	46.46	0.25
	C1'	1.78	0.06	37.68	0.24
A35	C8	2.11	0.01	15.86	0.13
	C1'	2.00	0.05	38.30	0.29
G36	C8	1.91	0.01	31.66	0.12
	C1'	1.36	0.03	26.50	0.12
C37	C6	2.45	0.03	36.96	0.38
	C1'	1.39	0.02	24.11	0.06
U38	C1'	1.43	0.02	23.83	0.11
C39	C6	2.44	0.03	36.39	0.08
C41	C6	2.44	0.01	35.78	0.25
G43	C8	1.96	0.01	29.22	0.06
	C1'	1.46	0.02	27.05	0.23
C44	C6	2.45	0.03	35.69	0.12
C45	C6	2.44	0.01	32.98	0.22

Table 3: Carbon R_1 and R_2 relaxation rates (s⁻¹) of \triangle C24-wtTAR

Desidue	Bond	RDC
Residue	Vector	(Hz)
C17	C8H8	4.2
GI	C1'H1'	-15.3
C10	C8H8	1.6
GIØ	N1H1	-2.3
C19	C1'H1'	-1.8
A 00	C8H8	26.3
A20	C2H2	16.0
	C8H8	34.4
G21	C1'H1'	-29.5
	N1H1	-15.4
	C8H8	28.8
A22	C2H2	29.5
	C1'H1'	8.8
1100	C6H6	13.8
023	C1'H1'	7.5
	C6H6	1.8
025	C1'H1'	-9.1
0.06	C8H8	32.2
G20	N1H1	-12.9
	C8H8	26.0
A27	C2H2	33.5
	C1'H1'	-19.4
<u></u>	C8H8	30.1
GZO	N1H1	-16.8
C29	C6H6	38.7
C30	C1'H1'	7.7
1124	C6H6	-9.7
031	C1'H1'	-10.5
C30	C8H8	0.3
652	C1'H1'	4.6
C33	C8H8	20.7
635	C1'H1'	-1.0
C 34	C8H8	32.0
634	C1'H1'	14.5
A 25	C8H8	2.2
ASS	C1'H1'	-17.4
G36	C8H8	39.9

	C1'H1'	-55.0
	N1H1	-40.7
C37	C6H6	31.7
1120	C1'H1'	-18.8
030	N3H3	-12.2
U42	N3H3	-14.0
C 4 2	C8H8	24.4
643	N1H1	-7.6

Table 4: RDCs measured on \triangle C24-wtTAR at 25°C in 15 mM sodium phosphate 25 mM sodium chloride and 0.1 mM EDTA at pH 6.4. Estimated error is 3.7 Hz (see methods).

Table 5: List of spin-lock powers and offsets used for $R_{1\rho}$ experiments

∆C24-	On-resonance spinlock power (Hz)/Off-resonance spinlock power (Hz) with
wtTAR at	[offsets]
25 0	
A20 – C8	2500, 3000
G21 – C8	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000
G21 – C1'	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000
	100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000
	200 & ± [20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 225, 250, 300, 350, 400, 500]
G21 – N1	1000 & ± [100, 200, 300, 400, 500, 600, 700, 900, 1100, 1300, 1500, 2000, 2500, 3000, 3500, 4000]
	100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000
	200 & ± [20, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 225, 250, 300, 350, 400, 500]
G21 – N1	1000 & ± [100, 200, 300, 400, 500, 600, 700, 900, 1100, 1300, 1500, 2000, 2500, 3000, 3500, 4000]
	50, 100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500
	100 & ± [50, 100, 150, 200, 250, 300, 350, 400, 450], [-500]
A22 – C8	200 & [-800] ±[50, 100, 150, 200, 300, 400, 500, 600, 700]
	400 & ± [100, 200, 300, 400, 500, 600, 700, 800, 1000, 1200]
	600 & [100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800]
	1000 & [-3000] ± [200, 400, 600, 800, 1200, 1600, 2000, 2500]
	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500
	150 & \pm [20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 400, 500, 600]
A22 – C1'	200 & ± [30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 700, 800]
	300 & ± [40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 700, 800, 1000, 1200]
	400 & ± [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1200, 1500]

	600 & ± [75, 150, 225, 300, 375, 450, 550, 650, 800, 1000, 1200, 1400, 1600, 2000, 2500, 3000, 4000, 5000]
	1000 & [1300] ± [100, 200, 300, 400, 500, 700, 900, 1100, 1500, 1700, 2000, 2500, 3000, 3500, 4000, 5000, 7500]
A22 – C2	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500
	250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500
	200 & [-30] ± [60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 700, 800]
U23 – C6	400 & ± [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1200, 1500]
	600 & [375, 450, 550, 650, 800, 1000, 1200, 1400, 1600, 2000, 2500, 3000, 4000, 5000]
	1000 & ± [100, 200, 300, 400, 500, 700, 900, 1100, 1300, 1500, 1700, 2000, 2500, 3000, 3500, 4000, 5000, 7500]
	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500
	$150 \& \pm [20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 240, 260, 280, 300, 320, 400, 500, 600]$
U25 – C6	$ \begin{array}{c} 200 \ \& \ \pm \ [30, \ 60, \ 90, \ 120, \ 150, \ 180, \ 210, \ 240, \ 270, \ 300, \ 330, \ 360, \ 390, \ 420, \ 480, \ 540, \ 600, \ 700, \\ \hline 800] \end{array} $
	1000 & ± [100, 200, 300, 400, 500, 700, 900, 1100, 1300, 1500, 1700, 2000, 2500, 3000, 3500, 4000, 5000, 7500]
	100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000
000 14	$200 \& \pm [20, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 225, 250, 300, 350, 400, 500]$
G26 – N1	1000 & \pm [100, 200, 300, 400, 500, 600, 700, 900, 1100, 1300, 1500, 2000, 2500, 3000, 3500, 4000]
	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500
	$200 \& \pm [30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 700, 800]$
G26 – C8	400 & ± [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1200, 1500]
	600 & \pm [75, 150, 225, 300, 375, 450, 550, 650, 800, 1000, 1200, 1400, 1600, 2000, 2500, 3000, 4000, 5000]
	1000 & ± [100, 200, 300, 400, 500, 700, 900, 1100, 1300, 1500, 1700, 2000, 2500, 3000, 3500, 4000, 5000, 7500]
A27 – C2	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500
A27 – C8	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500
	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500
	200 & ± [10, 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 700]
A27 – C1'	400 & ± [10, 127, 254, 381, 508, 635, 762, 889, 1016, 1143, 1270, 1400]
	600 & [1528] ± [10, 191, 382, 573, 764, 955, 1146, 1719, 1910, 2100]
	$800 \& \pm [10, 255, 510, 765, 1020, 1275, 1785, 2040, 2295, 2550, 2800]$
	$1000 \& [1590] \pm [10, 318, 636, 954, 1272, 1590, 1908, 2226, 2544, 2862, 3180]$
G28 – C8	2500, 3000, 3500 2500, 3000, 3500
G28 – N1	100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000
C30 – C1'	100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500

	400 & ± [50, 100, 200, 300, 400, 500, 600, 700, 800, 1000]
	1000 & [1250] ± [50, -100, 250, 500, 750, 1000, 1500, 2000, 2300, 2600]
	1600 & [1000, 1400] ± [50, 100, 200, 300, 400, 500, 800, 900, 1000, 1400, 1550, 1750, 2000, 2600, 3200, 3740, 3200, 3740, 4270, 4800, 3740, 4270]
	2500 & [800, 900, 1750] ± [50, 100, 200, 300, 400, 500, 2000, 1550, 2600, 3200, 3740, 4270, 4800, 5000, 7100]
	$3000 \& [750, 1000, 1500] \pm [50, 150, 200, 300, 450, 500, 1900, 2000, 2400, 3000, 4000, 6000, 7000, 8000, 9000]$
	100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000,
	2500, 3000, 3500
	400 & ± [50, 100, 200, 300, 400, 500, 600, 700, 800, 1000]
	1000 & [1000, 1250] ± [50, 100, 250, 500, 750, 900, 1500, 1400, 2000, 2300, 2600]
U31 – C1'	1600 & [1000, 1200, 1400] ± [50, 100, 200, 300, 400, 500, 800, 900, 1550, 1750, 2000, 2600, 3200, 3740, 4270, 4800]
	2500 & [625, 900, 1250, 1000] ± [50, 100, 125, 250, 375, 500, 1875, 1550, 2000, 2500, 3125,
	3740, 4270, 4800]
	3000 & [450, 500, 750, 1000] ± [50, 100, 200, 300, 2000, 2400, 3000, 4000, 6000, 7000, 9000]
	250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500
	$400 \& \pm 150 \ 100 \ 200 \ 300 \ 400 \ 500 \ 600 \ 700 \ 800 \ 1000]$
U31 – C6	$1600 \& \pm [50, 100, 200, 300, 400, 600, 800, 1000, 1200, 1400, 1750, 2000, 2100, 2600, 3200]$
	3740, 4270, 48001
	$3000 \& \pm [50, 150, 300, 450, 600, 750, 1000, 1250, 1500, 1900, 2250, 2625, 3000, 3300, 3750]$
	6000, 7000, 8000, 9000]
G32 – C1'	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500
	50, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500,
	3000, 3500
	150 & [275, 325, 350, 375, 425,450, 550, 600, -100, -500] ± [50, 150, 200, 250, 300, 400]
G33 - C1'	200 & [150, 250, 275, 325, 350, 375, 425, 450, 500, 550, 700] ± [50, 100, 200, 300, 400, 600]
000-01	300 & [150, 250, 275, 300, 325, 350, 375, 400, 425, 450, 500, 550, 600, 700, 800] ± [50, 100,
	200]
	400 & [-100] ± [50, 200, 300, 400, 500, 600, 800]
	1000 & [-500, -2500] ± [200, 1000, 1500, 2000, 3000]
	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500
	2500, 5000, 5500
G33 - C8	$150 \& \pm [50, 100, 150, 200, 250, 275, 300, 325, 350, 375, 400, 420, 450, 500]$
000 - 00	$200 \text{ d} [-000] \pm [50, 100, 100, 200, 250, 270, 500, 523, 550, 575, 400, 423, 450, 500, 550, 500, 700]$
	$300 \& \pm 150, 100, 200, 250, 275, 300, 325, 350, 375, 400, 425, 450, 500, 550, 600, 700, 800, 900$
	800 & ± [50, 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000]
	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000,
	2500, 3000, 3500
	400 & [1000] ± [50, 100, 200, 300, 400, 500, 600, 700, 800]
G34 - C1'	1000 & [1000] ± [50, 100, 250, 500, 750, 800, 1250, 1500, 1400, 2000, 2300, 2600]
004 - 01	1600 & [700, 800, 900, 1200, 1300, 1400] ± [50, 100, 200, 300, 400, 600, 1300, 1750, 2000,
	2600, 3200, 3740, 4270, 4800]
	2500 [375, 500] & ± [50, 100, 125, 250, 1600, 1875, 2500, 3125, 3750, 4250, 4800, 5000, 7100]
	<u>3000 & [300, 450, 500, 750] ± [50, 100, 200, 2000, 3000, 4000, 7000]</u>
004 00	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3500
G34 – C8	400 & ± [50, 100, 200, 300, 400, 500, 600, 700, 800, 1000]
	1600 & ± [50, 100, 200, 300, 400, 600, 800, 1000, 1200, 1400, 1750, 2000, 2600, 3200, 3740,

	4270]
	2300 & ± [50, 125, 250, 375, 500, 650, 825, 1150, 1800, 2200, 3000, 4000, 4500, 5000
	3000 & ± [50, 150, 300, 450, 600, 750, 900, 1000, 1300, 1500, 1900, 2250, 2625, 3000, 3300,
	3750, 6000, 7000, 8000, 9000]
	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000,
	2500, 3000, 3500
	400 & ± [50, 100, 200, 300, 400, 500, 600, 700, 800, 1000]
A35 – C1'	1000 & [1000, 1250] ± [50, 100, 250, 500, 750, 900, 1500, 1400, 2000, 2300, 2600
	1600 & [800, 900, 1000, 1200, 1400] ±[50, 100, 200, 300, 400, 500, 1550, 1750, 2100, 2600, 3200, 3740, 4270, 4800]
	2500 & [625, 1250, 1000,] ± [50, 100, 250, 500, 1875, 2000, 3125, 3750, 4250, 4800, 5000, 6600, 7100, 7600]
	100, 150, 200, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000,
	$150 \& [-500, -550] \pm [50, 100, 150, 200, 250, 300, 350, 400, 450]$
A35 – Co	$200 \& [-600] \perp [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700]$
	$500 \& \pm [50, 100, 200, 300, 550, 400, 450, 500, 600, 700, 800, 1000]$
	400 & [000, 000, 1000, 1200]
G36 – C8	150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000
	2500, 3000, 3500
	50, 100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800
	50 & [25, 70, 90, 110, 130] ± [50, 100, 150]
	100 & [25, 70, 90, 110, 130, 170, 190, 210, 230, 270, 290, 310, -100] ± [50, 150, 250]
	150 & [25, 70, 90, 110, 130, , 170, 190, 210, 230, 270, 290, 310, 330, 350, 370, 390, 410, 430,
U38 – N3	450, -100] ± [50, 150, 250]
	200 & [25, 70, 90, 110, 130, 170, 190, 210, 230, 270, 290, 310, 330, 350, 370, 390, 410, 430,
	450, 475, 500, 550, 600, -100] ± [50, 150, 250]
	300 & ± [30, 60, 90, 120, 150, 180, 210, 250, 300, 350, 400, 500, 600, 700, 800]
	600 & ± [40, 80, 120, 160, 200, 240, 300, 400, 500, 600, 800, 1000, 1200, 1400, 1600]
	100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000
	200 & ± [40, 60, 80, 100, 120, 140, 160, 180, 200, 225, 250, 300, 350, 400, 500]
U42 – N3	400 & ± [30, 60, 90, 120, 150, 180, 210, 250, 300, 350, 400, 500, 600, 700, 800]
	<u>600 & ± [40, 80, 120, 160, 200, 240, 300, 400, 500, 600, 800, 1000, 1200, 1400, 1600, 2000]</u>
	$1000 \& \pm [100, 200, 300, 400, 500, 600, 700, 900, 1100, 1300, 1500, 2000, 2500, 3000, 3500, 4000]$
	100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000
040 14	200 & ± [20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 225, 250, 300, 350, 400, 500]
G43 – N1	$1000 \& \pm [100, 200, 300, 400, 500, 600, 700, 900, 1100, 1300, 1500, 2000, 2500, 3000, 3500.$
	4000]

wtTAR at 10°C	On-resonance spinlock power (Hz)/Off-resonance spinlock power (Hz) with [offsets]
	100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000
	150 & [450] ± [50, 100, 150, 200, 250, 300, 350, 400]
	200 & ± [30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600]
A27 – C1'	300 & [750, 850] ± [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900]
	400 & ± [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1200]
	1000 & [-1300, -2500, -3000] ± [100, 200, 300, 400, 500, 700, 900, 1100, 1500, 1700, 2000]
	1500 & ± [100, 200, 300, 400, 500, 700, 900, 1100, 1500, 1700, 2000, 2500, 3000, 3500, 4000,
	5000, 7500]

	100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000
	200 & ± [30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600
G26 – C8	400 & ± [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1200]
	600 & ± [75, 150, 225, 300, 375, 450, 550, 650, 800, 1000, 1200, 1400, 1600]
	1000 & ± [100, 200, 300, 400, 500, 700, 900, 1100, 1300, 1500, 1700, 2000, 2500, 3000, 3500,
	4000, 5000, 7500]

wtTAR in 5 mM Mg ²⁺	On-resonance spinlock power (Hz)/Off-resonance spinlock power (Hz) with [offsets]
	100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000
A35 C9	200 & ± [30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600]
A33 - C8	400 & ± [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1200]
	600 & ± [75, 150, 225, 300, 375, 450, 550, 650, 800, 1000, 1200, 1400, 1600]
	1000 & ± [100, 200, 300, 400, 500, 700, 900, 1100, 1300, 1500, 1700, 2000, 2500, 3000]
U38 – N3	200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500

∆C24- wtTAR in 5 mM Mg ²⁺	On-resonance spinlock power (Hz)/Off-resonance spinlock power (Hz) with [offsets]
	100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000
	200 & ± [30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 700]
A35 – C8	400 & ± [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000, 1200,
	1500]
	600 & ± [75, 150, 225, 300, 375, 450, 550, 650, 800, 1000, 1200, 1400, 1600]
	1000 & ± [100, 200, 300, 400, 500, 700, 900, 1100, 1300, 1500, 1700, 2000, 2500, 3000]
U38 – N3	150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000

Table 6: Parameters for $R_{1\rho}$ data fitting

ES1 of Δ C24-wtTAR

∆C24- wtTAR	Temp.	R ₁ (Hz)	R ₂ (Hz)	<i>k</i> _{ex} (s⁻¹)	<i>k</i> ₁ (s ⁻¹)	<i>k-</i> ₁ (s ⁻¹)	Population and Lifetime	Δω _{ES} (p.p.m.)
C30 – C1'	25°C	2.0 ± 0.2	26 ± 1					2.0 ± 0.2
U31 – C1'	25°C	1.4 ± 0.2	25 ± 1				16 ± 4 %	2.2 ± 0.2
U31 – C6	25°C	2.1 ± 0.1	31 ± 1	27016 ±	4267 ±	22749 ±		-1.4 ±0.1
G34 – C1'	25°C	2.2 ± 0.1	28 ± 1	1425	1080	5760		2.0 ± 0.2
G34 – C8	25°C	1.4 ±0.1	35 ± 2				44 \pm 11 µs	2.6 ± 0.2
A35 – C1'	25°C	2.0 ± 0.3	22 ± 3					2.6 ± 0.3

ES2 of ∆C24-wtTAR

∆C24- wtTAR	Temp.	R ₁ (Hz)	R ₂ (Hz)	$k_{ex}(s^{-1})$	<i>k</i> ₁ (s ⁻¹)	<i>k</i> -₁ (s ⁻¹)	Population Lifetime	$\Delta\omega_{ES}$
A22 – C1'	25°C	1.07 ± 0.07	23.7 ± 0.1					1.7 ± 0.3
U23 – C6	25°C	2.1 ± 0.1	31.2 ± 0.2				0.17 ±	-3.5 ± 0.6
G33 – C8	25°C	1.4 ±0.1	37.2 ± 0.2	541 ±	0.9 ±	540 ±	0.02 /0	2.7 ± 0.5
G33 – C1'	25°C	0.53 ± 0.08	21.6 ± 0.1	93	0.2	115		2.4 ± 0.5
A35 – C8	25°C	1.86 ± 0.03	20.55 ± 0.05				1.8 ± 0.4 ms	-2.3 ±0.1
U38 –N3	25°C	1.52 ± 0.03	6.52 ± 0.03				0.4 113	-4.5 ±0.1

Individual Fit for U23-C6 in Δ C24-wtTAR

∆C24- wtTAR	Temp.	R1 (Hz)	R ₂ (Hz)	<i>k_{ex}</i> (s ⁻¹)	<i>k</i> ₁ (s ⁻¹)	<i>k-</i> ₁ (s ⁻¹)	Population	$\Delta \omega_{ES}$
U23 – C6	25°C	2.09 ± 0.07	30.5 ± 0.2	761 ± 399	2.3 ± 0.9	759 ± 494	0.3±0.1 %	-3.0 ± 0.2

ES3 of \triangle C24-wtTAR

∆C24- wtTAR	Temp.	R ₁ (Hz)	R ₂ (Hz)	$k_{ex}(s^{-1})$	$k_1(s^{-1})$	<i>k-</i> ₁ (s ⁻¹)	Population Lifetime	$\Delta\omega_{\text{ES}}$
G26 – C8	25°C	1.12 ± 0.05	32.2 ± 0.2	5043 ±	12 + 7	5031 ±	0.24 ± 0.01 %	4.1±0.2
A27 – C1'	25°C	-0.12 ± 0.07	38.9 ± 0.4	327	12 - 1	372	19 \pm 15 μ s	-7.5±0.2

ES3 of wtTAR

wtTAR	Temp.	R₁ (Hz)	R ₂ (Hz)	$k_{ex}(s^{-1})$	<i>k</i> ₁ (s ⁻¹)	<i>k-</i> ₁ (s ⁻¹)	Population Lifetime	$\Delta\omega_{\text{ES}}$
G26 – C8	10°C	1.29 ± 0.08	52.4 ± 0.2	2303 ±	4.3 ±	2299	0.18 ± 0.01 %	4.5 ± 0.3
A27 – C1'	10°C	1.19 ± 0.2	56.82 ± 0.4	387	0.8	± 425	$434\pm80~\mu s$	-6.5±0.9

ES of $\Delta\text{C24-wtTAR}$ in the presence of 5 mM $\text{Mg}^{\text{2+}}$

∆C24- wtTAR	Temp.	R1 (Hz)	R ₂ (Hz)	$k_{ex}(s^{-1})$	$k_1(s^{-1})$	<i>k</i> -₁ (s ⁻¹)	Population	$\Delta\omega_{\text{ES}}$
A35-C8	25°C	0.06 ± 0.06	28 ± 2	18583 ± 1643	750 ± 200	17833 ± 4730	4 ± 1 %	-3.1±0.3

ES of wtTAR in the presence of 5 mM ${\rm Mg}^{\rm 2+}$

wtTAR	Temp.	R1 (Hz)	R ₂ (Hz)	$k_{ex}(s^{-1})$	<i>k</i> ₁ (s ⁻¹)	<i>k-</i> ₁ (s ⁻¹)	Population	$\Delta\omega_{\text{ES}}$
A35-C8	25°C	-0.52 ± 0.07	30 ± 1	13303 ± 930	348 ± 86	12954 ± 2829	$2.6 \pm 0.5\%$	-3.0±0.3

Table 7: Comparison of the individual fitted parameters from R_{1p} using and 2and 3-state exchange with no minor exchange in a linear topology, for Δ C24wtTAR A27 – C1' at 25°C

∆C24- wtTAR	Parameters	2-state (GS, ES3)	3-state (GS, ES2, ES3)
	R1 (Hz)	-0.14 ± 0.08	-0.21 ± 0.8
	R ₂ (Hz)	39.2 ± 0.4	39.8 ± 0.4
	<i>k_{ex}</i> (s ⁻¹), ES2	-	2014 ± 1263
	Pop. ES2	-	$0.15 \pm 0.06\%$
	$\Delta \omega_{\text{ES2}}$	-	-2.1±0.8
A27 – C1'	<i>k_{ex}</i> (s⁻¹), ES3	4879 ± 456	4012 ± 560
	Pop. ES3	0.229 ± 0.009%	$0.20 \pm 0.01\%$
	$\Delta\omega_{\text{ES3}}$	-7.6±0.2	-8.3 ± 0.3
	Reduced χ^2	0.28	0.26
	R^2	0.999	0.998
	AIC Test	3-Sta	ate

REFERENCES

- [1] Lee, J., Dethoff, E. A., and Al-Hashimi, H. M. (2014) Invisible RNA state dynamically couples distant motifs., *Proceedings of the National Academy of Sciences of the United States of America 111*, 9485-9490.
- [2] Xue, Y., Kellogg, D., Kimsey, I. J., Sathyamoorthy, B., Stein, Z. W., McBrairty, M., and Al-Hashimi, H. M. (2015) *Characterizing RNA Excited States Using NMR Relaxation Dispersion*, 1 ed., Elsevier Inc.
- [3] Lee, J., Vogt, C. E., McBrairty, M., and Al-Hashimi, H. M. (2013) Influence of Dimethylsulfoxide on RNA Structure and Ligand Binding, *Analytical Chemistry* 85, 9692-9698.
- [4] Massi, F., Johnson, E., Wang, C., Rance, M., and Palmer, A. G. (2004) NMR R1pRotating-Frame Relaxation with Weak Radio Frequency Fields, *Journal of the American Chemical Society* 126, 2247-2256.
- [5] Parisien, M., and Major, F. (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data, *Nature* 452, 51-55.