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1 Details of the derivation of invariant-based reconstruction

Consider networks of units i ∈ {1, . . . , N} represented byD-dimensional state variables xi(t) ∈

RD evolving in time t according to

ẋi,d(t) = Fi,d(x(t)) + ξi,d(t) (1)

Here d ∈ {1, . . . , D}, x(t) = (x1(t), . . . , xN(t)) ∈ RND is the state vector of the entire net-

work, ẋi,d(t) ≡ d
dt
xi,d(t) denotes the temporal derivative of the variable xi,d(t), and ξi,d(t)

represents noise with zero average.

Driving the system with signals I(m)
i,d yields

ẋ
(m)
i,d = Fi,d(x

(m)) + I
(m)
i,d + ξ

(m)
i,d (2)

where I(0)i,d ≡ 0 for all i and d, and m ∈ {1, . . . ,M}. We consider an ND-dimensional vector

observable based on long-term averaging of the dynamics, specifically, the center of mass of

the vector x(m), z(m) = 〈x(m)〉ρ, where ρ is an invariant density generated by the trajectories of

the system.

If the recorded state space points sample this density well, the center of mass can be ap-

proximated by the temporal average z(m) = 〈x(m)(t)〉t∈T . Here T is the set of time points at

which the data are recorded. These data may be available without known temporal order, have

been recorded at varying sampling intervals and even come from several experiments under the

same conditions. Furthermore, different units of the same system may in principle be recorded

separately and at different times.

Expanding equation (2) relative to z(0) up to first order yields

ẋ
(m)
i,d ≈ Fi,d(z

(0)) +
N∑
j=1

D∑
k=1

∂Fi,d
∂xj,k

∣∣∣
z(0)

(x
(m)
j,k − z

(0)
j,k ) + I

(m)
i,d + ξ

(m)
i,d (3)



This approximation is justified as long as higher orders of the term (x
(m)
j,k − z

(0)
j,k ) decay

sufficiently fast. Thus either the activity patterns of the nodes in the network are sufficiently

close to the center of mass of the unperturbed invariant density or Fi,d deviates sufficiently

slowly beyond its first order approximation.

Now, averaging over the measurement domain T

˙zi,d
(m) ≈ Fi,d(z

(0)) +
N∑
j=1

D∑
k=1

∂Fi,d
∂xj,k

∣∣∣
z(0)

(z
(m)
j,k − z

(0)
j,k ) + Ī

(m)
i,d (4)

where Ī(m)
i,d := 〈I(m)

i,d 〉t∈T are the temporal averages of the driving signals.

We notice that

˙zi,d
(0) ≈ Fi,d(z

(0)) (5)

Plugging in the expression for Fi,d(z(0)) from equation (5), equation (4) becomes

˙zi,d
(m) − ˙zi,d

(0) ≈
N∑
j=1

D∑
k=1

Jij,dk(z
(m)
j,k − z

(0)
j,k ) + Ī

(m)
i,d (6)

where Jij,dk =
∂Fi,d

∂xj,k

∣∣∣
z(0)

are the elements of the Jacobian J = Df |z(0) ∈ RND×ND.

We take ˙zi,d
(m) = ˙zi,d

(0) = 0, since the centers of mass do not change in time if the recorded

points sample the density well.

This yields the first order approximation

−Īi,d ≈ ∆z JT
i,d (7)

where Ii,d ∈ RM is the vector of driving signals I(m)
i, d and ∆z ∈ RM×ND the matrix of dif-

ferences z(m)
j,k −z

(0)
j,k of the centers of mass. Sufficiently many driving-response experiments thus

yield a linear set of equations (7) for each node, restricting the potential interaction networks



estimated by J . Here Jij,dk 6= 0 if the kth dimension of unit j directly acts on the dth dimension

of i and Jij,dk = 0 if there is no such direct interaction. Notice that since the Jacobian is eval-

uated at the center of mass of the unperturbed invariant density, the reconstruction approach is

expected to recover the correct interactions if they consistently exist across the relevant frac-

tions of state space which include the observed driven dynamics and the unperturbed centers of

mass.

2 Error estimates for observables from sampled invariant

The main manuscript (equation (6)) uses that the center of mass of the invariant measure is

time independent and unique. For a finite number of sampling points, the center of mass will

actually depend on the exact collection of sampling points realized. So the problem boils down

to estimating the mean z(m) = 〈x(m)〉ρ of a distribution (here: the invariant measure ρ) by the

finite sample mean 〈x(m)(t)〉t∈T = |T |−1
∑

t∈T x
(m)(t). We expect the variance of the sample

center of mass (or, the sample mean) Var(〈x(m)(t)〉t∈T ) to equal to Var(x(m))/T . Figure S1

density

confirms this view. The actual scaling yields an order of magnitude estimate for the response

to driving needed to reliably distinguish experiments under different driving conditions.
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(a) Histograms of the center of mass of variables x, y and z of one oscillator in a network of
Goodwin oscillators, computed from random samplings of 100 time points. (b) The variance of
the sample center of mass (here shown for the variable x) (blue marks connected by a blue line)
is decreasing with the number of observations T , and fits well to the variance of the variable x
(estimated from 30,000 time points) over T (red circles). Data shown for random networks of
N = 50 Goodwin oscillators with regular incoming degree 4, noise level 0.1.

3 Reconstruction evaluation

Reconstructing the network according to equation (7), considering for simplicity the case of

1-dimensional state variables, yields the entries of the estimated interaction network Jij =

∂Fi

∂xj

∣∣∣
z(0)

. The values |Jij| induce a ranking of all potential interactions. In order to evaluate the

consistency between this reconstructed ranking and the original network, we use the notion of

a receiver operating characteristic (ROC) curve. A ROC curve illustrates the performance of a

binary classifier by presenting the tradeoff between the true positive rate (fraction of true posi-

tives out of the total actual positives) and the false positive rate (fraction of false positives out of

the total actual negatives). An example of a ROC curve for the invariant-based reconstruction

of a Goodwin oscillator network is shown in fig. S2b in the main text.

The ROC curve, in our case, can be interpreted as follows; given a ranked list of potential

edges (ordered node pairs), they are gradually chosen as existing edges according to their rank.

If the chosen potential edge corresponds to a real edge in the original network, the true positive

fig. S1. Approximating



count increases by 1. Otherwise, the false positive count increases by 1. If all existing edges in

the network are ranked highest in the reconstructed network, the ROC curve will be plotted as a

step function, rising to true positive rate of 1 while the false positive rate is kept at 0. In general,

the ROC curve will saturate more quickly as more highly ranked potential edges are within the

set of actual existing edges in the original network. The quality of reconstruction can therefore

be evaluated by the area under the ROC curve (AUC), which measures, in a parameter-free

manner, the consistency between the reconstructed and the original network.

4 Moderate influence of link density

In the main manuscript, we studied a range of systems and systematically evaluated the influ-

ence of noise and network size on reconstruction quality. Here we highlight that reconstruction

is also possible across a range of average degrees, illustrated for random networks of N=50

Goodwin oscillators with a number of incoming edges ranging from 1 to 10. The lower the

degree, the lower the number of required driving response experiments (fig. S2) for high quality

reconstruction.

The num-
ber of experiments required for high quality reconstruction (here AUC > 0.95) grows roughly
linearly with the number of incoming edges to each unit in the network. Results are shown
for random networks of N = 50 Goodwin oscillators , number of sampled time points is 100;
shading indicates standard deviation across ensembles of network realizations.

fig. S2. Sparser networks require fewer experiments for robust reconstruction.



5 Reconstructing homogeneous and heterogeneous networks

The invariants-based reconstruction approach is robust for various network topologies, includ-

ing homogeneous and heterogeneous structures, as shown in fig. S3 for regular, binomial and

scale-free networks. Here we use least-squares solution to equation (7), in order for the recon-

struction to not be biased by the sparsity of the solution, which is changing across the different

topologies.
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ig The quality of reconstruction
(AUC score) for networks with regular (each node is connected to 4 other nodes), binomial
(mean degree 4, standard deviation 1) and power-law (exponent value 2.5) degree distributions.
The respective mean AUC scores are 0.905, 0.912, 0.924 and their standard deviations are
0.134, 0.105, 0.104, respectively. Results are shown for random networks of N = 40 Goodwin
oscillators, noise level 0.1, number of experiments 40, number of sampled time points 100;
error bars indicate standard deviation across ensembles of network realizations.

In addition, the invariants-based approach is robust for heterogeneous coupling strengths

between the network’s units. When randomly sampling coupling strengths from a uniform

distribution with constant lower bound 0, and varying upper bound (1,2,3,4 and 5), no significant

changes in reconstruction AUC score were found (mean AUC score 0.963 across ensembles

of network realizations for the five different upper bound values, standard deviation 0.017).

Results were obtained for random regular (incoming degree 4) networks of N = 40 Goodwin

3.  Reconstruction is robust across network topologies..f S 



oscillators (noise level 0.1, number of experiments 20, number of sampled time points 100).

6 Reconstruction of systems near fixed points

Our reconstruction approach can be used to reconstruct the topology of networks underlying

noisy dynamic processes found near fixed points. For example, we consider a biological net-

work of transcription factor regulators, including both activators and repressors (equations (11)-

(13)), whose collective dynamics is near a fixed point. Reconstruction is robust, both for the

noiseless and noisy systems (fig. S4).

ig 4
network of genetic regulators. Reconstruction quality (AUC score) is higher for noiseless
systems (blue curve, dynamics shown on top right panel) than for noisy systems (red curve,
dynamics shown on bottom right panel). Results are shown for a Erdős Rényi random network
of N = 50 genetic regulators, with edge probability p = 0.01. A genetic regulator is chosen to
be either an activator or a repressor with equal probability. Noise level for noisy case is 0.05,
number of sampled time points is 100; shading indicates standard deviation across ensembles
of network realizations.

7 Reconstruction of chaotic systems

Reconstruction can be achieved using our approach as long as the temporal trajectories of the

system (after potential transients) exhibit collective dynamics that generate a defined statistics

of points in state space. This means that the approach is suitable for systems exhibiting different

S . The quality of reconstruction increases with the number of experiments for a.f



types of dynamics, including chaotic collective dynamics. We demonstrate this on a network of

Rössler oscillators (equation (10)), whose reconstruction is robust with increasing quality as a

function of the number of driving-response experiments (fig. S5).
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ig 5 Reconstruction of a network of Rossler oscillators exhibiting chaotic dynam-¨
ics. The quality of reconstruction (AUC score) increases with the number of driving-response
experiments of a network of Rössler oscillators. Results are shown for random networks of
N ∈ {50, 60, 70, 80} oscillators with 10 incoming connections per node. Number of sampled
time points is 6000; shading indicates standard deviation across ensembles of network realiza-
tions.

8 Performance compared with available standard baselines

Here we evaluate the results of the invariants-based reconstruction approach relative to other

available standard reconstruction methods. To the best of our knowledge, a method capable of

inferring physical interaction networks given asynchronous, low-resolution, temporally disor-

dered measurements, with no prior knowledge of the system’s model, does not exist to date.

Therefore, we have compared our invariants-based reconstruction results to heuristic statistical

baselines, specifically, measures of mutual information, correlation and transfer entropy be-

tween the activity patterns of every two nodes in the network, and partial correlation between

the pairwise activity patterns, given the activity patterns of all other nodes in the networ Notice

that the invariants-based approach requires driving-response experiments or observa-

.S. f

k. 

 while 

tions, the heuristic statistical baselines require synchronous measurements from all nodes

in the network, and in addition, transfer entropy requires temporally ordered measurements.



As shown in fig. S6 and fig. S7, the invariants-based reconstruction approach significantly

outperforms available reconstruction baselines. As fig. S7(b) illustrates, the invariants-based

method performs better than transfer entropy, in particular for small number of sampled time

points. While the  gap  in performance decreases for increasing sampled time points, it stays 
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The quality of
reconstruction (AUC score) given by the invariants-based approach, mutual information, corre-
lation and partial correlation measures is shown. The respective mean AUC scores are 0.992,
0.627, 0.776, 0.725 and their standard deviations are 0.008, 0.015, 0.018, 0.020 , respectively.
Reconstruction is performed on random networks of N = 40 Goodwin oscillators with regular
incoming degree 4, noise level 0.1, number of experiments 20, number of sampled time points
100; error bars indicate standard deviation across ensembles of network realizations.

fig. S6. Comparison of reconstruction quality across different approaches.

s  ubstantial (fig. S7(b), inset).
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ig 7 The quality
of reconstruction (AUC score) given by the invariants-based approach and transfer entropy.
Reconstruction is performed on random networks of N = 40 Goodwin oscillators with regular
incoming degree 4, noise level 0.1, number of experiments 20, number of sampled time points
100; error bars indicate standard deviation across ensembles of network realizations. (b) Quality
of reconstruction for both approaches versus the number of sampled time points. The inset
shows the quality of reconstruction of both methods with 1000 time points sampled.

9 Distinguishing activating from inhibiting interactions

We define an interaction from unit j to unit i to be consistently activating if for all x ∈ RN

relevant for the system’s function, ∂Fi

∂xj

∣∣∣
x
> 0. Analogously, we define an interaction to be

consistently inhibiting if ∂Fi

∂xj

∣∣∣
x
< 0 for those relevant states. Therefore, one could potentially

distinguish between consistently activating and consistently inhibiting interactions, in addition

to distinguishing between existing and missing interactions. This distinction can be achieved

by simultaneously varying two thresholds (one starting from the largest value of reconstructed

Jij and one from the smallest, without applying absolute value to the resulting Jij entries)

to produce two ROC curves, one for correctly identifying activating interactions (as opposed

to inhibiting or missing interactions) and one for correctly identifying inhibiting interactions.

This approach not only reveals more information regarding the functional properties of the in-

f . S . Comparison of reconstruction quality against transfer entropy. (a)



teractions in the network (in addition to their existence), it can even enhance the quality of

reconstruction. The source for such enhancement is schematically exemplified in fig. S8, where

separately ranking and identifying activating and inhibiting interactions would yield perfect

AUC score (AUC= 1, meaning, perfect ranking of reconstructed interactions). On the other

hand, jointly ranking |Jij| entries to identify existence of interactions would reduce the qual-

ity of reconstruction (AUC< 1), as reconstructed values of absent and repressing interactions

overlap in this case.

Jij
-20 0 20 40

|Jij |
-20 0 20 40

Missing
Activators
Repressors

ba

ig 8
quality of reconstruction. (a) The schematic histograms of reconstructed network entries Jij
do not overlap and their ranking matches activating, repressing, and absent interactions in the
original network. (b) Once joint reconstruction of existing and missing interactions is attempted
(through |Jij|), the missing and repressing interactions largely overlap, thus decreasing the qual-
ity of reconstruction.

10 The effect of missing information

Here we test systematically the effect of missing information (hidden units with no access to

their dynamics) on the quality of reconstruction of a network of Goodwin oscillators. We find

that our ability to infer the existence of interactions between observed units decreases gradually,

. Separate reconstruction of activating and inhibiting interactions enhances the. S f



as the fraction of random hidden units in the network increases (fig. S9). However, adequate

reconstruction is achieved even when a substantial fraction of the network is hidden. Here we

use least-squares solution to equation (7), in order for the reconstruction to not be biased by the

sparsity of the solution, which is changing with the number of hidden units.

hidden units in the network. Data shown for random networks ofN = 40 Goodwin oscillators
with regular incoming degree 4, noise level 0.1, number of experiments 40, number of sampled
time points 100; shading indicates standard deviation across ensembles of network realizations.

11 Models descriptions

Circadian clock

The circadian clock in Drosophila is driven by two proteins, PER and TIM. The circadian

oscillations in their levels result from the negative feedback exerted by a PER-TIM complex on

the expression of the per and tim genes which code for the two proteins. The time evolution of

the 10-variable model of the circadian clock is governed by the following rate equations (based

fig. S9. Quality of reconstruction (AUC score) decreases gradually with the fraction of



on (45))

dMP

dt
= vsP

Kn
IP

Kn
IP + Cn

N

− vmP
MP

KmP +MP

− kdMP (8a)

dP0

dt
= ksPMP − V1p

P0

K1P + P0

+ V2p
P1

K2P + P1

− kdP0 (8b)

dP1

dt
= V1p

P0

K1P + P0

− V2p
P1

K2P + P1

− V3p
P1

K3P + P1

+ V4p
P2

K4P + P2

− kdP1 (8c)

dP2

dt
= V3P

P1

K3P + P1

− V4p
P2

K4P + P2

− k3P2T2 + k4C − vdP
P2

KdP + P2

− kdP2 (8d)

dMT

dt
= vsT

Kn
IT

Kn
IT + Cn

N

− vmT
MT

KmT +MT

− kdMT (8e)

dT0
dt

= ksTMT − V1T
T0

K1T + T0
+ V2T

T1
K2T + T1

− kdTo (8f)

dT1
dt

= V1T
T0

K1T + T0
− V2T

T1
K2T + T1

− V3T
T1

K3T + T1
+ V4T

T2
K4T + T2

− kdT1 (8g)

dT2
dt

= V3T
T1

K3T + T1
− V4T

T2
K4T + T2

− k3P2T2 + k4C − VdT
T2

KdT + T2
− kdT2 (8h)

dC

dt
= k3P2T2 − k4C − k1C − k2CN − kdCC (8i)

dCN
dt

= k1C − k2CN − kdNCN (8j)

where MT and MP are tim and per mRNAs, respectively. T0, T1 and T2 are different forms of

TIM protein. P0, P1 and P2 are different forms of PER protein. C and CN are different forms

of PER-TIM complex.

The total (non-conserved) quantity of PER and TIM proteins, Pt and Tt, are given by

Pt = P0 + P1 + P2 + C + CN (9a)

Tt = T0 + T1 + T2 + C + CN (9b)

Parameter values used for the dynamic simulations performed for the current work are based

on (45).



Network of Rössler oscillators

We tested the reconstruction method on an N unit Rössler oscillator system (48), where each

oscillator’s dynamics is given by the three ordinary differential equations

ẋi = −yi − zi +
N∑
j=1

Jijf(xi, xj) (10a)

ẏi = xi + aiyi (10b)

żi = bi + zi(xi − ci) (10c)

where i ∈ {1, . . . , N}. ai, bi and ci are local parameters (assuming in our simulations the values

0.2, 1.7 and 14 ∀i ∈ {1, . . . , N}, respectively). The coupling functions were assumed to induce

synchronization, f(xi, xj) = xj − xi (23).

Transcriptional regulatory network

Consider a network of N interacting units, each represents a transcription factor protein that

can affect the synthesis rate of each of its targets either positively or negatively. Unit i evolves

in time according to

ẋi = gmi

N∏
j=1

Aijg(xi, xj)− dmi
xi (11)

where A is the adjacency matrix, gmi
is the synthesis rate of unit i and dmi

is its degradation

rate.

In case unit j positively regulates unit i

g(xi, xj) = g(xj) =
xj
n

xjn + kn
(12)

and in case unit j negatively regulates unit i

g(xi, xj) = g(xj) =
kn

xjn + kn
(13)



where n is the hill coefficient. The parameter values used for the dynamic simulations per-

formed for the current work are gmi
= 0.2 sec−1, dmi

= 0.07 sec−1, k = 0.5, n = 1.

12 The effect of various driving conditions on reconstruction
quality

The driving signals in the experiments presented in this manuscript are distributed randomly

over the different nodes in each network. As shown in fig. S10, although no fine-tuning of the

driving signals is needed, driving has to be sufficiently large to outweigh the effects of noise

and finite sampling in order to yield robust reconstruction.

ig 10
sampling effects. The quality of reconstruction (AUC score) increases with the amplitude of the
random driving signals for a network of Goodwin oscillators. Data shown for random networks
of N = 40 Goodwin oscillators with regular incoming degree 4, default noise level 0.1, number
of experiments 20, number of sampled time points 100; shading indicates standard deviation
across ensembles of network realizations.

f . S . Quality of reconstruction increases as driving signals overcome noise and finite



13 Compressed sensing

In order to reconstruct a network using our approach, we need to solve a linear set of equations,

as appears in equation (7) (or equation (6) in the main text)

−Īi ≈ ∆z JT
i (14)

separately for each node in the network, or equivalently, for each row of the adjacency matrix.

For each such set, the number of unknowns is N , the number of nodes in the network, while the

number of equations is M , the number of driving-response experiments, where for simplicity

we refer to the case of 1-dimensional state variables. In many realistic natural or experimental

scenarios, M � N , rendering the problem severely underdetermined. In order to restrict the

space of possible network configurations that are consistent with equation (14), one possible

approach would be to use prior knowledge for the structure of the network we are interested

in reconstructing. Since many real-world networks are sparse (both globally and row-wise in

terms of their adjacency matrix), it seems natural to use sparsity as our prior knowledge. If JT
i

is k-sparse (‖ JT
i ‖0≤ k) and any 2k columns of ∆z are linearly independent, then the solution

to the optimization problem
minimize ‖ J̃T

i ‖0

subject to − Īi = ∆z J̃T
i

yields JT
i . This combinatorial optimization problem is NP-hard (49) and therefore inefficient

to solve. However, recent developments in the paradigm of compressed sensing (34–38) show

that it can be convexly approximated by the optimization problem

minimize ‖ J̃T
i ‖1

subject to − Īi = ∆z J̃T
i

(15)

If the measurement matrix ∆z obeys the restricted isometry property with δ2k <
√

2− 1, then

the solution to equation (15) recovers the structure J of the network (34). In the more realistic



case, given noisy measurement, it can be shown that if δ2k <
√

2− 1, then the solution to

minimize ‖ J̃T
i ‖1

subject to ‖ Īi + ∆z J̃T
i ‖2≤ ε

obeys

‖ J̃T
i − JT

i ‖2≤ C1ε

for some constant C1 (34). If the entries of ∆z were sampled i.i.d from a Gaussian or a

sub-Gaussian distribution, then with overwhelming probability, ∆z would obey the restricted

isometry property, provided that

M ≥ Ck̇ log(N/k)

where C is some constant, M is the number of driving-response experiments and N is the size of

the network. This means that with high probability, the entire network J can be reconstructed

using a number of driving-response experiments on the order of the sparsity of incoming con-

nections to each node, k, instead of the number of nodes in the network (34). These results allow

us to efficiently reconstruct large networks using only a few driving-response experiments, as

are often available for real systems.

Finally, given a measurement matrix ∆z, we can directly evaluate its coherence properties

to check whether exact reconstruction is guaranteed. Specifically, the mutual incoherence is

defined by

µ = max
i 6=j
| < ∆zi,∆zj > | (16)

where ∆zi denotes the ith column of ∆z. If

µ <
1

2k − 1
(17)

then the network structure J can be recovered exactly (50). In our set up, this means that the

response profiles of different nodes to different perturbations should be sufficiently distinguish-

able, which is a reasonable requirements for real systems.




