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Abstract 
 
Despite extensive research into executive function (EF), the precise relationship between 

brain dynamics and flexible cognition remains unknown. Using a large, publicly 

available dataset (189 participants), we find that functional connections measured 

throughout 56 minutes of resting state fMRI data comprise five distinct connectivity 

states. Elevated EF performance as measured outside of the scanner was associated with 

greater episodes of more frequently occurring connectivity states, and fewer episodes of 

less frequently occurring connectivity states. Frequently occurring states displayed 

metastable properties, where cognitive flexibility may be facilitated by attenuated 

correlations and greater functional connection variability. Less frequently occurring states 

displayed properties consistent with low arousal and low vigilance. These findings 

suggest that elevated EF performance may be associated with the propensity to occupy 

more frequently occurring brain configurations that enable cognitive flexibility, while 

avoiding less frequently occurring brain configurations related to low arousal/vigilance 

states. The current findings offer a novel framework for identifying neural processes 

related to individual differences in executive function. 
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Executive function (EF) allows individuals to plan for, and flexibly adjust to, 

changes in the environment and pursue certain courses of action over others. Neural 

networks underlying EF have traditionally been investigated using static functional 

network connectivity approaches (sFNC) that assume invariant temporal coupling 

between brain areas throughout a functional magnetic resonance imaging (fMRI) scan. 

Such approaches have identified several brain networks related to EF processes. These 

include the attention, salience, and cognitive control networks (Dajani and Uddin, 2015) 

that are composed of frontal, insular, cingulate, and parietal regions (Niendam et al., 

2012) engaged during working memory, interference control, and cognitive flexibility 

(Diamond, 2013). Additionally, the default mode network (DMN) tends to disengage 

during cognitively demanding tasks (Shulman et al., 1997), and individual differences in 

behavioral performance variability are related to competitive relationships between the 

DMN and “task-positive” networks (Kelly, Uddin et al, 2008 Neuriomage). Just as earlier 

models proposed that distributed brain networks give rise to neurocognitive functions 

such as attention, language, and memory (Mesulam, 1990), EF appears to rely on several 

large-scale brain networks working in cooperation or opposition to execute goal-directed 

behaviors (Dajani and Uddin, 2015). 

Although sFNC analyses have increased our understanding of the neural 

substrates of EF, temporal coupling between brain regions is increasingly viewed as time-

variant rather than time-invariant (Hutchison et al., 2013a). New techniques such as 

dynamic functional network connectivity (dFNC) take into account the mutability of 

functional connections across time, rather than focusing only on the dominant patterns of 

connectivity for any particular brain region or network (Allen et al., 2014; Chang and 
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Glover, 2010). This network science approach that identifies time-varying functional 

relationships between brain regions has recently been described as the “chronnectome” 

approach (Calhoun et al., 2014). Due to multifarious neural network involvement 

underlying EF, chronnectomic approaches are vital for a more nuanced understanding of 

network interactions supporting these abilities.      

A limited number of studies have investigated the relationship between dynamic 

brain organization and EF by focusing on individual networks and brain areas. Recently, 

Braun et al. (2015) applied dynamic graph theoretical metrics to fixed-length sliding 

windows to investigate dynamic functional coupling across working memory tasks. They 

demonstrate similar node network allegiance changes across occipital-parietal and frontal 

networks during a 0-back task, but increased node network allegiance changes in frontal 

compared to occipital-parietal networks in a 2-back task. Jia et al. (2014) used multi-level 

adaptive evolutionary clustering of variable-length sliding windows to examine how 

dynamic functional coupling between individual brain areas during resting state fMRI 

(rsfMRI) was related to EF task performance completed outside of the scanner. They 

found that lower functional coupling transition time between brain areas, indicating 

greater functional dynamics or neural flexibility, predicted more variance in EF 

performance than sFNC functional coupling measures. Yang et al. (2014) used 

hierarchical clustering of fixed sliding windows to examine how dynamic functional 

connections of the posteromedial cortex during rsfMRI were related to an EF task 

completed outside of the scanner. They found that individuals who spent a greater 

amount of time in a dynamic state indexing the functional connections of a visual 

subregion of the posteromedial cortex performed better on a mental flexibility task. 
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The current study explores how chronnectomic characteristics of whole brain 

functional connectivity states are related to individual differences in EF. We applied k-

means clustering to fixed-length sliding windows utilizing functional coupling metrics 

derived from a data-driven whole brain independent component analysis (ICA) 

parcelletion to identify brain states comprised of large-scale neural networks. Brain state 

characteristics such as frequency of occurrence, dwell time, and number of transitions 

between states were identified, and the neural flexibility of each state was quantified by 

measuring the variability of functional coupling between independent components 

within that state. Based on previous work showing that neural flexibility is related to 

cognitive performance (Braun et al., 2015; Jia et al., 2014), we predicted that 

characteristics of brain states showing greater functional coupling variability would be 

related to individual differences in EF performance. This approach allows examination of 

the hypothesis that individuals exhibiting specific intrinsic neural flexibility signatures as 

indexed by dFNC may be more adept at behaviors requiring flexible cognition. 

 

Materials and Methods 

Participants and Data 

Data from a parcellated connectome consisting of 489 subjects was downloaded 

from the Human Connectome Project (HCP) website 

(https://db.humanconnectome.org/data/projects/HCP_500, labeled as the “HCP 

Parcellation+Timeseries+Netmats (PTN)” release). Subjects that were left-handed or 

related to each other were eliminated from the subject pool, resulting in 189 subjects (all 

right-handed; 97 female; 22-35 years old, M = 28.62, SD = 3.86). The data were pre-
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processed and subjected to an independent component analysis (ICA) by the HCP team 

as briefly described below.  

The resting state fMRI (rsfMRI) data were acquired on a 3T Siemens 

“Connectome Skyra” scanner (TR = 0.72 secs) while participants were instructed to lie 

still with their eyes open and fixated on a cross in the center of a screen. Multiband slice 

acquisition was utilized (9 groups of 8 slices were acquired simultaneously for a total of 

72 slices; TE = 33ms; field of view = anterior –posterior at 208 mm, left-right or right-

left using a 104 x 90 matrix, inferior-superior at 144 mm; resolution = 2 x 2 x 2 mm) to 

acquire 4 separate 14 minute sessions (1200 volumes per session; 4800 volumes total); 

phase encoding was counterbalanced so that 1 left-right and 1 right-left session was 

acquired on day one (28 mins), and another left-right and right-left pair was acquired on 

day two (28 mins). For more details, see (Smith et al., 2013).  

Minimal data preprocessing was applied consisting of removal of spatial 

distortions, realignment, co-registration to a structural image, bias field reduction, and 

standardization to MNI 2 x 2 x 2 mm space. ICA-Fix was also applied to remove non-

neuronal noise signals from the resting state data. Additional regression of 24 movement 

parameters (6 rigid-parameter time series, their temporal derivatives, plus all 12 

regressors squared) was also conducted. For more details, see (Glasser et al., 2013; 

Salimi-Khorshidi et al., 2014). 

Independent Component Analysis  

The data from 489 subjects were subjected to an ICA in FSL using various model 

orders of 25, 50, 100, 200, and 300 independent components (ICs) by the HCP team. The 

100 model order ICA was chosen for this study as it consisted of ICs that represented 
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individual brain areas of networks that were not separated in lower model orders of 25 

and 50, but were not extremely parcellated as in model orders of 200 and 300. The main 

difference between model orders of 100, 200, and 300 was the observation of additional 

extreme parcellation of visual and cerebellar areas in model orders of 200 and 300. 

Additionally, previous research shows that ICA model orders over 100 show lower 

repeatability than lower model order numbers (Abou‐Elseoud et al., 2010). Thus, the 

model order of 100 ICs was chosen for this study as it represented a balance between a 

necessary parcellation of major neural networks in order to map the dynamic connections 

between individual brain areas, and the avoidance of the extreme parcellation of visual 

and cerebellar brain areas. Finally, the FSL dual-regression function was used to extract 

individual time series from each subject related to each component (see 

http://humanconnectome.org/documentation/S500/HCP500_GroupICA+NodeTS+Netmat

s_Summary_28aug2014.pdf).  

Post-Processing 

Time courses were downloaded as a 4800 (volumes) x 100 (independent 

components) matrix for each of the 189 subjects of interest and were post-processed 

using the GIFT toolbox (http://mialab.mrn.org/software/gift/) that included detrending, 

despiking (using AFNI’s 3dDespike algorithm), and lowpass filtering (0.15 Hz). 

Despiking replaces data points larger than the absolute median deviation with a third 

order spline fit to the clean portions of the data. This is similar to the “scrubbing” method 

(Power et al., 2012) with the advantage that it does not eliminate volumes that would 

disrupt temporal continuity that is vital for a dFNC analysis. Previous research has shown 

that despiking decreases outlier impact on functional connectivity analyses (Allen et al., 
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2014). An average of 0.0415% of volumes were despiked for each subject. The average 

percent of consecutive windows despiked across all subjects can be found in 

Supplementary Table 1. In order to determine the influence of these post-processing 

steps, additional analyses were conducted without detrending, despiking, or filtering 

(See supplementary materials).  

Static Functional Network Connectivity 

Pearson correlations were calculated between independent components using the 

post-processed data, resulting in 4,950 functional connections that were fit into a 100 x 

100 correlation matrix.  

Dynamic Functional Network Connectivity  

Dynamic functional network connectivity (dFNC) was calculated using the GIFT 

toolbox using sliding windows of 64 volumes (46.08 seconds) and slid in steps of 1 TR. 

The choice of window length was based on previous research also utilizing window sizes 

between 30-60 seconds (Allen et al., 2014; Hutchison and Morton, 2015; Nomi et al., 

2016; Rashid et al., 2014; Yang et al., 2014), and research showing that such window 

sizes capture variability not found in longer windows (Allen et al., 2014; Hutchison et al., 

2013b). All dFNC analyses were repeated using sliding windows of 128 volumes (See 

Supplementary Materials). To account for possible noise due to limited time points in 

each window, a tapered window (rectangle convolved with a Gaussian) was utilized to 

calculate covariance values (Allen et al., 2014; Nomi et al., 2016; Rashid et al., 2014; 

Yang et al., 2014). This produced a covariance matrix that was 4,736 (sliding windows) x 

4,950 (paired connections) per subject. To further account for possible noise due to 

limited time points, the covariance matrix was regularized using a L1 constraint by 
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optimizing the regularization parameter lamba (λ) to each subject in a cross-validation 

framework where the log-likelihood of unseen data (windowed covariance matrices) was 

evaluated separately for each subject in order to produce a correlation matrix (Allen et al., 

2014; Nomi et al., 2016; Rashid et al., 2014; Yang et al., 2014). Correlation matrices of 

all sliding windows were then concatenated across subjects and subjected to k-means 

clustering.  

The optimal number of clusters (k) was chosen by applying the elbow criterion to 

a subset of sliding windows called subject exemplars. Subject exemplars are defined as 

the sliding windows from each subject representing local maxima of functional 

connectivity variance, resulting in 178.92 +/- 11.67 (mean, SD) windows per subject 

(range: 144 – 212) for 33,816 windows. Subject exemplars are used in order to cut down 

on processing costs associated with choosing the optimal number of k. Random subsets 

of subject exemplars were subjected to k-means clustering using values of 2-20. The 

elbow criterion was then applied to the cluster validity index, the ratio comparing within- 

and between-cluster distances, to identify the optimal number of k. This method has 

identified the optimal number of clusters in simulated and real data using bootstrap and 

split-half resampling approaches (Allen et al., 2014). Twenty iterations of k-means 

clustering using values 2-20 were conducted with each iteration identifying the optimal 

number of clusters as being k=5. K-means clustering using k=5 (see Supplementary 

Materials for results obtained with 4, 6, and 7-10 cluster solutions) was then conducted 

on the concatenated matrix consisting of all sliding windows from all 189 subjects using 

the “city block” distance function (Allen et al., 2014). This produced 5 brain states found 

throughout the 56 minute rsfMRI data, with each sliding window being assigned to a 
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particular brain state. Importantly, this approach has been shown to reliably identify 

clusters of meaningful information, as this exact methodology applied to Fourier domain 

phase randomized IC time-courses produces unstructured clusters of brain states (Allen et 

al., 2014).    

Additional dFNC measures were then calculated on the resulting brain states for 

each participant consisting of a) frequency of occurrence, b) dwell time, c) the number of 

overall transitions between states, and d) the probability of transitions between specific 

states. Frequency was calculated as the percent that a brain state occurred throughout the 

duration of the rsfMRI data. Dwell time was calculated as the average length of time, 

measured in sliding windows, that a participant stayed in a given brain state. The number 

of transitions signifies the average amount of times that individuals switched between 

each brain state during the rsfMRI scan. Finally, the probability of transitions between 

specific states is the likelihood of switching from a specific state to another specific 

state (e.g., the probability of switching from state 1 to state 2).  

Within-subject variance was calculated by acquiring individual subject standard 

deviation values of Fisher-z transformed correlations for each sliding window for each 

brain state. For each subject, five matrices each consisting of n (sliding windows that 

assigned to a particular state) x 4950 (connections) were calculated representing each 

brain state. The standard deviation for each connection was then calculated for each 

subject for each state resulting in five 1 (standard deviation) x 4950 (connections) 

vectors. For each state, standard deviations for each connection pair were then averaged 

across all subjects to create five standard deviation matrices.  

Correlation between behavioral measures and dFNC measures 
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Five behavioral measures related to executive function were correlated with the 

results of the dFNC results. The 5 cognitive tasks measure executive function/cognitive 

flexibility (Dimensional Change Cart Sort), executive function/inhibition (Flanker Task), 

fluid intelligence (Penn Progressive Matrices), processing speed (Pattern Completion 

Processing Speed), and working memory (List Sorting).  Fluid intelligence and 

processing speed were included in the behavioral tests because it is still unclear exactly 

how these processes are related to executive function; some researchers have argued for a 

relationship with executive function (Duncan et al., 1996; Obonsawin et al., 2002; 

Salthouse, 2005), while others have argued that they are separate constructs (Ardila et al., 

2000; Crinella and Yu, 1999; Friedman et al., 2006) (for a review see, (Jurado and 

Rosselli, 2007)). More information on each task can be found in (Barch et al., 2013). 

Age-adjusted values (except for Penn Progressive Matrices) acquired from the HCP 

website were utilized in the current study.  

Pearson correlations were calculated between behavioral values and the dFNC 

measures related to frequency of occurrence, dwell time, overall number of transitions, 

and the probability of transitioning between specific states. Alpha values were 

Bonferroni corrected for each comparison; frequency of occurrence (5 states x 5 

behavioral tests, 0.05/25 = 0.002), dwell time (5 states x 5 behavioral tests, .05/25 = 

0.002), number of transitions (5 states, 0.05/5 = 0.01), and transition probability (25 

transitions, 0.05/25 = 0.002). Because all scores were age adjusted and the age range of 

participants was small, only gender was utilized as a nuisance covariate in the correlation 

analysis. 

First- and Second-Half Analyses 
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The 56 minute resting state data used in the current study was collected over 2 

days with 28 minutes of rsfMRI data collected on the first day and 28 minutes collected 

on the second day. Separate analyses were conducted to determine if correlations found 

in the overall analysis were replicated in each 28-minute data set. In order to assess 

possible differences between dFNC brain states between the first and second days, test-

retest reliability intra-class correlations (ICC) (Shrout and Fleiss, 1979) were calculated 

using the Statistical Package for the Social Sciences (SPSS) for frequency of occurrence, 

dwell time, and number of transitions. 

Results 

Independent Component Analysis 

The efficient reduction of non-neuronal signals from ICA + Fix resulted in no 

visible noise components produced from the ICA related to movement, white matter, or 

cerebral spinal fluid. Thus, all 100 components were analyzed, as each IC represents a 

functionally relevant brain area.  Spatial maps representing the 100 independent 

components (ICs) can be seen in Figure 1 and have been grouped into ten functional 

domains to facilitate correlation matrix interpretation: subcortical, default mode network 

(DMN), sensorimotor, temporal/parietal, brain stem, visual, frontal, salience network 

(SN), central executive network (CEN), and the cerebellum, mirroring the groupings used 

in previous dFNC studies utilizing ICA approaches (Allen et al., 2014; Nomi et al., 2016; 

Rashid et al., 2014). 

________________________________________________________________________ 
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Figure 1: Spatial maps of the 100 independent components.  
 
Static Network Functional Connectivity 

The sFNC analysis replicates previous work showing positive within-network 

correlations for ICs within somatosensory, visual, default mode network (DMN) and 

cerebellar networks and anti-correlations between DMN/cerebellar components with 

other brain systems (Allen et al., 2014; Damaraju et al., 2014; Nomi et al., 2016) 

(Supplementary Figure 1). 

Dynamic Functional Network Connectivity 

The dFNC analysis results are depicted in Figure 2. Frequency of occurrence, 

mean dwell times, and number of transitions for the overall 56-minute data set can be 

found in Figure 3. In general, more frequently occurring states have a larger number of 

correlations centered around zero, while less frequently occurring states have more 
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dispersed correlation distributions. That is, correlation magnitudes are attenuated in more 

frequently occurring states and stronger in less frequently occurring states. Additionally, 

the functional connections within each dynamic state showed marked differences within 

and across networks. For example, the positive and negative DMN connections with 

other networks are similar in states 1 and 2, but are different in the other three states. 

Strong anti-correlations between the subcortical network with temporal, sensorimotor, 

and visual networks appear in states 4 and 5 while strong positive correlations appear 

with the cerebellar network in state 5. Strong integration can be seen for the sensorimotor 

and temporal network in states 4 and 5, the cerebellar network in state 5, and the visual 

network in states 3, 4, and 5. Finally, different sub-clusters of the cerebellar network 

appear in states 1 and 2 as opposed to the other three states.  

 

________________________________________________________________________
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Figure 2: Dynamic functional network connectivity matrices, histograms, and 
standard deviation matrices for the overall analysis. Five reoccurring brain states are 
ordered from most frequently occurring (state 1) to least frequently occurring (state 5) 
(top); percent occurrence is listed next to each state in parenthesis. Histograms (middle) 
represent Fisher-z transformed correlation distributions demonstrating that more 
frequently occurring states have distributions centered around zero while less frequently 
occurring states have more dispersed distributions. Standard deviation matrices (bottom) 
show the average standard deviation for each subject is generally larger for more 
frequently occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; 
CEN, central executive network; SN, salience network; DMN, default mode network; 
CB, cerebellum; BS, brainstem.  
 

 

Figure 3: Group averages for frequency of occurrence, dwell time, and number of 
transitions for the overall, first-half, and second-half analyses. Frequency of occurrence, 
dwell time, and number of transitions are similar for the first- and second-half analyses. 
Error bars represent standard error of the mean.   
________________________________________________________________________ 

Within subject variability was calculated by acquiring the standard deviation 

across all sliding windows related to a specific brain state for each functional connection, 
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then averaging SD values across subjects. Standard deviation matrices show that 

frequently occurring states tend to have greater variance for any given connection than 

less frequently occurring states. More specifically, standard deviations within and across 

higher-level cognitive networks such as frontal, CEN, SN, and DMN networks are larger 

in states 1 and 2 compared with the other three states. Additionally, standard deviations 

within the cerebellar and visual networks as well as between cerebellar and visual 

networks are much lower in state 5 compared with other states.  

Correlations between dFNC and behavioral measures 

Behavioral scores consisted of correct responses (Penn Progressive Matrices and 

Processing Speed), correctly recalled items (List Sort), and a combination of accuracy 

and reaction time (Card Sort and Flanker). For all tasks, higher scores represent better 

performance (Table 1). Correlations between behavioral measures showed that the 

Flanker Task, Processing Speed, and Card Sort had higher correlations with each other 

than with other tasks (r’s > 0.40) (Table 2).  

Table 1: The five tasks of interest are listed with their task name and associated cognitive 
process that is measured. 
 
Cognitive Process Task Mean (SD) Range 

 
Processing Speed    Processing Speed      100.02 (18.13)  47.35-144.38 
 
Inhibition/Attention    Flanker       102.72 (9.89)  73.64-123.56 
 
Cognitive Flexibility    Card Sort       102.18 (9.92)  67.32-122.65 
 
Fluid Intelligence    Penn Progressive          16.84 (4.68)  6-24 
      Matrices  
 
Working Memory    List Sort       102.11 (13.80)  60.09-132.49 
 
Note: all means are age adjusted (M = 100) except for Progressive Matrices 
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Table 2: Correlations between cognitive measures show that the Flanker Task, Card Sort 
Task, and Processing Speed Tasks have higher correlations with each other than other 
tasks.   
 
________________________________________________________________________  
 

 

Processing 
Speed Flanker Card Sort 

Progressive 
Matrices List Sort 

Processing Speed             - 
     

Flanker 0.41 ***       - 
    

Card Sort 0.45 *** 0.48 ***         - 
   

Progressive 
Matrices 0.17 * 0.19 ** 0.15 *         - 

  
List Sort 0.15 * 0.18 * 0.14 0.33 ***          - 

 
________________________________________________________________________ 
*p < .05; **p < .01; ***p < .001; bold is Bonferroni corrected at p < .005  
 

________________________________________________________________________ 

Card Sort task performance was negatively correlated with frequency of 

occurrence for state 3 (r = -0.226; p = 0.002) and marginally positively correlated with 

frequency of occurrence for state 2 (r = 0.209; p = 0.004). In other words, better Card 

Sort task performance was correlated with increased state 2 and decreased state 3 

occurrences.  

List Sort task performance was positively correlated with frequency of occurrence 

for State 1 (r = 0.228; p = 0.002) and negatively correlated with frequency of occurrence 

for state 5 (r = -0.236; p = 0.001). Thus, better List Sort task performance was correlated 

with increased state 1 and decreased state 5 occurrences (Supplementary Figure 2). 

 The probability of transitioning between specific states showed two significant 

correlations with EF performance (Supplementary Figure 3). There was a positive 
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correlation with the transition from state 1 to state 2 for the Card Sort task (r = 0.222, p 

= 0.002) and a positive correlation when participants remain in state 1 for the List Sort 

task (r = 0.216, p = 0.003). Thus, participants who performed better on the Card Sort 

task were more likely to transition into state 2 from state 1. This is in accordance with 

the state frequency correlation where participants who performed better in the Card 

Sort task had greater incidences of state 2. Participants who performed better on the 

List Sort task were more likely to stay in state 1 and is in accord with the state 

frequency correlation where participants who performed better on the List Sort task 

had greater incidences of state 1.  

Correlations between behavioral performance and dynamic brain state 

characteristics revealed no significant relationships with the number of state transitions 

(p’s > 0.01) or dwell time (p’s > 0.006) for any measure (Bonferroni corrected at 5 states 

x 5 behavioral tasks: 0.05/25 = 0.002). All other correlations between tasks and state 

frequency (p’s ≥ 0.008) or between specific state transition probabilities ( p’s ≥ 0.006) 

did not survive multiple comparison correction.   

Relationship Between States 

To investigate the relationship between states 2 and 3 (implicated in the Card Sort 

task), and between states 1 and 5 (implicated in the List Sort task), correlations were 

calculated between state-pairs across all 189 subjects. This is because one set of subjects 

could be responsible for the positive correlations and another set of subjects could be 

responsible for the negative correlations in the previous analysis. Calculating a difference 

score ensures that the increase in one state frequency and the decrease in another state 

frequency, and its relation to EF performance, is consistent across subjects. Both state-
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pairs showed strong negative correlations (states 2 and 3 were negatively correlated: r = -

0.619, p = 2.65e-21; states 1 and 5 were negatively correlated: r = -0.687, p = 1.44e-27) 

demonstrating that as state 2 frequency went up, state 3 frequency went down, and as 

state 1 frequency went up, state 5 frequency went down across all subjects.  

To determine the relationship of these correlations with cognitive performance, 

frequency of occurrence difference scores were calculated by subtracting state 3’s 

frequency values from state 2 and also by subtracting state 5’s frequency values from 

state 1 for each subject. These difference scores were then correlated with cognitive 

performance to directly relate cognitive performance with the relationship between states 

2 and 3 (Figure 4), and between states 1 and 5 (Figure 5). As expected, there was a 

positive difference score correlation for states 2 and 3 with Card Sort task performance (r 

= 0.242, p = 0.001) (Bonferroni corrected to an alpha level of 0.5/5 = 0.01) and a positive 

difference score correlation for states 1 and 5 with List Sort task performance (r = 0.25, p 

= 0.001). This demonstrates that larger difference scores were related to better task 

performance. That is, state 2’s increase in frequency was related to state 3’s decrease in 

frequency across subjects, with larger differences between states related to better Card 

Sort task performance. Similarly, the state 1’s increase in frequency was related to state 

5’s decrease in frequency across subjects, with larger differences between states related 

to better List Sort task performance.  
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________________________________________________________________________ 

 

Figure 4: Frequency of occurrence difference scores. State 2 minus state 3 (x axis) 
correlated with behavioral performance (y axis) for the overall, first-half, and second-half 
analyses for all 189 subjects. Greater difference scores are positively correlated with 
better performance on the Card Sort task for all three analyses. 
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Figure 5: Frequency of occurrence difference scores. State 1 minus state 5 (x axis) 
correlated with behavioral performance (y axis) for the overall, first-half, and second-half 
analyses for all 189 subjects. Greater difference scores are positively correlated with 
better performance on the List Sort task for all three analyses.  
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First- and Second-half Analyses 

As in the overall dFNC analysis, the optimal cluster solution for each 28 minutes 

of data was determined by applying the elbow criterion to random subject exemplar 

subsets producing an optimal cluster solution of k=5 for each half of data. The resulting 

correlation matrices are virtually indistinguishable from the overall correlation matrices 

(Supplementary Figures 3 and 4).  

Test-retest correlations for frequency of occurrence, dwell time, and number of 

transitions (Table 3) show that frequency had higher test-retest correlations than dwell 

time and number of transitions. This suggests that how often a brain state appears 

(frequency) is more stable across days than the average time spent in a brain state, or 

transitions between states.  

________________________________________________________________________ 

Table 3: Test-retest intra-class correlations for frequency of occurrence, dwell time, and 
number of transitions between the 1st 28 minutes and 2nd 28 minutes of resting state data 
for all 189 subjects. 

 
 
   State 1  State 2  State 3  State 4  State 5 
 
Frequency (r)    0.74    0.83    0.73                 0.62                 0.72      
       95% CI          0.65, 0.80        0.77, 0.87        0.64, 0.80         0.50, 0.72        0.62, 0.79                
 
 
Dwell Time (r)    0.60    0.70             0.60                 0.57    0.60     
       95% CI          0.46, 0.70         0.60, 0.78       0.47, 0.70         0.43, 0.68       0.46, 0.70                
 
   
            Overall 
 
Transitions (r)   0.54 
        95% CI         0.40, 0.66 

_________________________________________________________________________________________________	  
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Correlations between frequency of occurrence and behavioral scores 

demonstrated the same general trends found in the overall analysis in both the first- and 

second-half of the data (Supplementary Figure 2). Performance on the Card Sort task 

was negatively correlated with frequency of occurrence for state 3 and positively 

correlated with state 2, while List Sort task performance was positively correlated with 

frequency of occurrence for state 1 and negatively correlated with state 5. 

The main results of interest were the difference score correlations that were 

applied to each half of the data replicating the overall results. The first 28 minutes 

showed negative correlations between states 2 and 3 (r = -0.610, p = 1.64e-20) and 

between states 1 and 5 (r = -0.672, p = 4.27e-26) across subjects. Correlations between 

difference scores and cognitive performance also showed the same patterns in the overall 

analysis. Difference scores between states 2 and 3 were positively correlated with Card 

Sort task performance (r = 0.219, p = 0.002) while difference scores between states 1 and 

5 were positively correlated List Sort task performance (r = 0.256, p = 0.0004) (Figures 

4 and 5).  

The second 28 minutes showed the same pattern with negative correlations 

between states 2 and 3 (r = -0.581, p = 2.16e-18) and between states 1 and 5 (r = -0.635, 

p = 1.37e-22) across subjects. The difference scores between states 2 and 3 were 

positively correlated with Card Sort task performance (r = 0.224, p = 0.002) while 

difference scores between states 1 and 5 were positively correlated with List Sort task 

performance (r = 0.186, p = 0.011) (Figures 4 and 5). This demonstrates the same 
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pattern of results in each half of data as in the overall analysis that included all 56 

minutes of data. 

Additional Cluster Solutions, Window Size, Alternate K-means Distance Functions, and 

Post-processing 

 Because both optimal cluster solution amount (Leonardi et al., 2014) and window 

size (Leonardi and Van De Ville, 2015) and can influence results, additional analyses 

were conducted using different cluster solutions for the original analysis (4, 6, and 7-10 

cluster solutions), and a different window size (92 seconds; 128 volumes with cluster 

solutions of 4, 5 and 6). To examine how different k-means algorithms influence the 

results, alternate k-means distance functions (Euclidean, correlation, cosine) were also 

employed for the overall 56 minutes of data using a cluster solution of five. Finally, in 

order to determine if the inclusion of post-processing steps in conjunction with the 

already applied ICA-FIX denoising influenced the results, additional analyses were 

conducted for the 46 second windows using cluster solutions of 4, 5, and 6 (cityblock k-

means distance function) without the inclusion of despiking, detrending, and filtering.  

Correlation matrices, histogram distributions of correlations, and standard 

deviation matrices for each analysis replicated the main findings showing that more 

frequently occurring states tend to have more correlations centered around zero with 

larger standard deviations (Supplementary Figures 5-20). Follow up analyses replicated 

the overall findings where individuals who perform better on Card Sort and List Sort 

tasks have increased incidences of more frequently occurring states and decreased 

incidences of less frequently occurring states (Supplementary Figures 21-36) The main 

difference was that processing speed showed similar patterns of significance as the Card 
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Sort task in some analyses. These additional results demonstrate that the general findings 

of the current study are not restricted to a particular window size, specific cluster 

solution, specific k-means distance function, or the presence of the despiking, 

detrending, and filtering post-processing steps.  

Consideration of Motion Artifacts 

 As previous research has shown that motion artifacts can impact the strength of 

functional connections (Power et al., 2012), relative root mean square (RMS) motion 

parameters for each subject were acquired from the HCP database and compared to 

executive function performance and dynamic brain states. Relative RMS was negatively 

correlated with executive function performance for all 5 tasks (r’s = -0.109 to -0.069) 

such that individuals who perform better on executive function tasks have less scanner 

movement, but these correlations were not significant (p’s > .08). Additionally, the 

proportion of windows exhibiting relative RMS values greater than the mean (M = 

0.0895) for each state was calculated (Supplementary Table 2). There were no 

systematic relationships between state frequency and relative RMS (i.e., more frequent 

states were not characterized by increased movement, and vice versa) indicating that 

movement was not a confounding factor in the analysis.  

Discussion 

Individuals vary widely in their ability to flexibly adapt their behaviors. We tested 

the hypothesis that EF ability is related to the intrinsic ability of the brain to dynamically 

reconfigure into states characterized by greater variability and flexibility of functional 

connections. The current study utilized a chronnectomic systems approach where whole-

brain states are determined by both positive and negative functional connections across 
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brain regions. Such an approach offers insights into how intrinsic dynamic shifts within 

and between large-scale brain networks are related to executive function abilities across 

neurotypical individuals.  

The analysis revealed 5 distinct brain states in neurotypical adults across 56 

minutes of rsfMRI data. Results show that the brains of individuals who perform better 

on measures of cognitive flexibility and working memory are characterized by the 

tendency to occupy more frequently occurring states that presented with a larger number 

of correlations near zero and larger variability, rather than less frequently occurring states 

with more dispersed correlation distributions and lower variability. Additionally, there 

were no strong relationships with dwell time or the number of transitions between brain 

states with measures of behavioral performance. This suggests that the frequency of brain 

state occurrence is important for certain EF tasks, rather than time spent in a state, or the 

amount of switching between states. Finally, cognitive flexibility (Card Sort), processing 

speed, and working memory tasks (List Sort) were associated with brain state frequency, 

while fluid intelligence (Ravens) and inhibition/attention (Flanker Task) tasks were not, 

demonstrating the specificity of the brain state findings to measures of EF.  

Brain State Frequency, Metastability, and Arousal 

 The frequently occurring states implicated in EF performance were generally 

characterized by distributions consisting of a larger number of correlations centered 

around zero and larger standard deviations than less frequently occurring states. One 

explanation for why these characteristics may enable better EF task performance is that 

they allow for more flexible functional coupling configurations between brain regions. 

This is because correlations near zero with greater standard deviations allow for a range 
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of connections from positive to negative, as opposed to correlations further from zero 

with smaller standard deviations. That is, correlations far from zero with less variability 

are less likely to fluctuate from positive to negative and are likely to stay either positive 

or negative. Thus, the more frequently occurring brain states allow for a greater range of 

either integration (positive correlations) or segregation (negative correlations) between 

neural networks and individual brain areas. This in turn allows for greater neural 

flexibility via reconfiguration of general brain state organization.  

This proposal mirrors previous findings showing that neural flexibility during a 

task is advantageous for cognitive processes such as learning (Bassett et al., 2011; Braun 

et al., 2015; Cole et al., 2013). It is also in line with previous reports showing that 

intrinsic flexibility of individual brain areas can be related to cognitive performance (Jia 

et al., 2014; Yang et al., 2014). The current study extends these findings to intrinsically 

occurring dynamic brain states, suggesting that the flexibility in the general organization 

of the brain facilitates cognitive performance on certain EF tasks. 

The characteristics of the more frequently occurring brain states also relate to a 

field called Coordination Dynamics (Tognoli and Kelso, 2014) that is concerned with 

how metastable properties of functional brain networks are related to cognitive function 

(Kringelbach et al., 2015). Metastable brain states allow for the flexible reconfiguration 

of neural networks while avoiding extreme integrative or segregative brain configurations 

(Hellyer et al., 2015). Thus, a metastable brain state resides in the middle of a continuum 

situated between chaos and extreme rigidity. In the current study, more frequently 

occurring states have characteristics of metastable brain states, as they fluctuate between 

weak and moderate integrative and segregative neural network configurations 
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(correlations close to zero and increased variation in functional connections), while less 

frequently occurring states have characteristics of extreme rigidity (extreme correlations 

representing high segregation and integration, and small variations in functional 

connections). Thus, the current study supports the notion that metastability and cognitive 

flexibility may arise from similar brain configurations, as brain states exhibiting 

metastable tendencies are also those states that allow for greater cognitive flexibility 

necessary for successful completion of executive function tasks.  

Dynamic-FNC investigations utilizing simultaneous EEG-rsfMRI data have 

shown that less frequently occurring brain states characterized by strong visual-

sensorimotor integration and subcortical-cortical segregation are associated with EEG 

signatures of low arousal states (Allen, Submitted). Other research investigating arousal 

states in monkeys has shown local field potentials and eyelid behavior indexing reduced 

arousal is also characterized by cortical integration and subcortical-cortical segregation 

(Chang et al., 2016). These findings are consistent with other research showing 

subcortical-cortical segregation is associated with states of increased daytime sleepiness 

(Killgore et al., 2015). Because optimal EF requires sustained attention and focus, 

entering into states of low arousal and vigilance would most likely be detrimental to task 

performance. In the context of the current study, it may be the case that brains 

intrinsically avoiding low arousal states at rest may be better equipped to avoid entering 

low arousal states that would interfere with EF task performance. This suggests that one 

trait of intrinsic brain function enabling elevated EF performance is the propensity of the 

brain to be in configurations enabling cognitive flexibility, while also avoiding 

configurations related to lower states of arousal.  
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Differences Among Tasks 

 Although the cognitive flexibility task (Card Sort), inhibition/attention task 

(Flanker), and processing speed tasks showed correlations with each other (r’s = 0.41 to 

0.48), only cognitive flexibility task performance and processing speed were related to 

brain state frequency. While arguments exist for a single ability underlying all EF 

abilities (de Frias et al., 2006), the current study suggests that this underlying feature is 

not related to individual intrinsic dynamic brain state organization, and parallels other 

views proposing that contradistinctive constructs regulate various EF abilities (Godefroy 

et al., 1999). Also, there were no relationships between fluid intelligence (Penn 

Progressive Matrices) and any of the dFNC measures. This is in accord with previous 

work suggesting that the EF and fluid intelligence can be both related (Duncan et al., 

1996; Obonsawin et al., 2002; Salthouse, 2005) and unique constructs (Ardila et al., 

2000; Crinella and Yu, 1999; Friedman et al., 2006).  

First- and Second-Half Analyses 

 The correlations linking overall brain state difference scores to EF tasks 

completed outside of scanner were replicated in each half of the data. This demonstrates 

that the overall pattern of results could be reproduced on separate days using smaller 

rsfMRI data sets. This supports the argument that it is the propensity of certain flexible 

brain states to occur that relates to EF performance, and not random day-to-day brain 

state frequency fluctuations. Accordingly, the test-retest reliability calculations for 

frequency of occurrence (r’s = 0.62 - 0.83) were higher than dwell time (r’s = 0.57 – 

0.70) and the number of transitions (r = 0.54), suggesting that frequency was the most 

reliable measure. This may be why EF task performance was correlated with frequency 
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but not dwell time or number of transitions. These findings also build on previous 

research showing reproducibility of static neural networks (Zuo and Xing, 2014) and 

dynamically reoccurring brain states (Yang et al., 2014).  

Limitations 

 One limitation of the current study is that a context-based approach that explores 

brain states does not identify any specific brain area or brain network that would be most 

important in driving the effects in the current study. However, it has previously been 

suggested that the function of any single brain area or neural network relies on the 

functional connections of adjacent brain areas and neural networks (McIntosh, 2004; 

Pessoa, 2014) emphasizing the importance of a brain state approach. Recent work has 

also shown that graph-theory measures of brain areas during a rsfMRI scan, found 

outside of the frontal-parietal network, are associated with EF task performance outside 

of the scanner (Reineberg and Banich, 2016) showing the importance of a whole brain 

approach to investigating EF. Thus, if EF performance relies on general whole brain 

dynamics, then ignoring the context of the entire brain would be detrimental to 

identifying general mechanisms of cognitive performance. Additionally, EF relies on a 

number of neural networks related to maintenance, manipulation, attention, switching, 

and inhibition processes. The current study cannot determine if one specific aspect of 

performance related to EF tasks were driving the relationship between brain state 

frequency and task performance.  

Another limitation is that we chose a parcellation scheme based on an ICA. 

Although ICA has multiple benefits including the identification of only functionally 

independent brain areas specifically related to the current data set, the ability to account 
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for overlapping networks, and the filtering of artifacts. Alternative functional parcellation 

schemes (Craddock et al., 2012; Gordon et al., 2014; Power et al., 2011; Yeo et al., 2011) 

should be explored in the future.   

Finally, the current fixed-sliding window dFNC approach adopted in the 

current study uses the k-means clustering algorithm and focuses on metrics such as 

state frequency, dwell time, probability of state transitions, and number of overall 

transitions. All of these metrics are based on identifying differences among sliding 

windows within a single dimension (i.e., the cluster that each sliding window belongs 

to). Other fixed-sliding window dFNC approaches have utilized methods to recast each 

sliding window as a weighted sum of connectivity patterns that places each sliding 

window in the context of a multi-dimensional state-space. In this approach, the 

trajectory of sliding-windows can be traced through more than one dimension 

(Yaesoubi et al., 2015). This would allow one to investigate if a subject has a smaller 

multi-dimensional state space than another subject, or if they traverse smaller 

distances through multi-dimensional state space than another subject. Smaller multi-

dimensional state space and restricted movement through multi-dimensional state 

space has been associated with schizophrenia compared to typical controls, along with 

additional advanced concepts such as that of an “absorbing hub”, which has been 

found to be associated with negative symptoms in schizophrenia (Yaesoubi et al., 2015). 

Future work should consider how different types of dFNC approaches identify 

different aspects of brain function related to executive function.  

Conclusions 
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The current study demonstrates a relationship between EF abilities and the brain’s 

propensity to occupy a specific functional connectivity configuration, or state. Thus, 

performance on a cognitive task may not be based entirely on the changes occurring 

during the specif(Allen et al., 2014) task itself, or the dynamic functional coupling of any 

single brain area, but it may also depend on the intrinsic organization of dynamic shifts 

between entire brain states or systems. Additionally, not all behavioral measures were 

related to brain state frequency, demonstrating differences in the relationship between 

various EFs and intrinsic dynamic brain states. Finally, the current study suggests an 

intrinsic brain trait enabling elevated EF performance may be the propensity to occupy 

brain configurations enabling cognitive flexibility and avoid configurations related to low 

arousal/vigilance. Taken together, these results demonstrate the unique way that 

chronnectomic approaches contribute to our understanding of the neural basis of 

individual differences in EF in the neurotypical population and can serve as a framework 

for future investigations exploring EF in clinical populations.  
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Supplementary Table 1: Number of consecutive volumes despiked and the average 
percent of those consecutive volumes interpolated across subjects out of the total number 
of volumes for each subject. CWI = consecutive windows interpolated. NaN = no 
interpolation occurred across this amount of consecutive windows.  

 
 CWI   % of windows    CWI           % of windows       CWI        % of windows 
   
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  
11	  
12	  
13	  
14	  
15	  
16	  
17	  
18	  
19	  
20	  
21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  

 

0.0070252866	  
0.0039043651	  
0.0026641093	  
0.0019236662	  
0.0014425926	  
0.0010665123	  
0.0008207231	  
0.0005876984	  
0.0004411376	  
0.0003479938	  
0.0002771164	  
0.0002042230	  
0.0001653324	  
0.0001354779	  
0.0001074074	  
0.0000979167	  
0.0000868421	  
0.0000814286	  
0.0000741279	  
0.0000747115	  
0.0000618750	  
0.0000604663	  
0.0000575758	  
0.0000574713	  
0.0000722222	  
0.0000679688	  
0.0000641667	  
0.0000604167	  
0.0000625000	  

 

31	  
32	  
33	  
34	  
35	  
36	  
37	  
38	  
39	  
40	  
41	  
42	  
43	  
44	  
45	  
46	  
47	  
48	  
49	  
50	  
51	  
52	  
53	  
54	  
55	  
56	  
57	  
58	  
59	  

 

0.0000830357	  
0.0000666667	  
0.0000687500	  
NaN	  
NaN	  
0.0001125000	  
0.0000770833	  
0.0000791667	  
0.0001625000	  
0.0000833333	  
0.0000854167	  
0.0000875000	  
0.0000895833	  
0.0000916667	  
0.0000937500	  
0.0000958333	  
NaN	  
0.0001000000	  
0.0001020833	  
NaN	  
NaN	  
0.0002166667	  
NaN	  
NaN	  
0.0001145833	  
0.0001166667	  
0.0002375000	  
NaN	  
NaN	  

 

60	  
61	  
62	  
63	  
64	  
65	  
66	  
67	  
68	  
69	  
70	  
71	  
72	  
73	  
74	  
75	  
76	  
77	  
78	  
79	  

 

NaN	  
NaN	  
0.0001291667	  
NaN	  
NaN	  
NaN	  
NaN	  
NaN	  
0.0001416667	  
NaN	  
NaN	  
NaN	  
NaN	  
NaN	  
0.0003083333	  
NaN	  
NaN	  
NaN	  
NaN	  
0.0001645833	  
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Supplementary Table 2: Relative RMS motion parameters and their relation to the five 
dynamic brain states. There were no systematic relationships between state frequency and 
relative RMS.  

 
 
   State 1  State 2  State 3  State 4  State 5 
 
Mean RSM (SD)   0.087 (0.038)     0.84 (0.038)    0.104 (0.058)   0.084 (0.037)   0.092 (0.037)  
 
 
Proportion of   0.38                  0.34   0.44   0.32   0.39 
Windows with  
RMS > 0.0895     
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Supplementary Figure 1: Static functional connectivity matrix depicting fisher-z 
transformed correlations. There are strong within-network correlations and strong 
between network anti-correlations. SC, subcortical; T/P, temporal/parietal; SM, 
sensorimotor; CEN, central executive network; SN, salience network; DMN, default 
mode network; CB, cerebellum; BS, brainstem.  
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Supplementary Figure 2: Bar graphs showing correlations between state frequency 
and task performance. In general, the List Sort task (red bars) had positive correlations 
with state 1 and negative correlations with state 2 while the Card Sort task (black bars) 
had positive correlations with state 2 and negative correlations with state 5 across all 
three analyses. P values are represented by numerical values above and below each bar. 
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Supplementary Figure 3: State transition probability matrices (5 states, k-means 
city distance function) for the overall, (56 minutes), 1st, and 2nd half data analyses. 
Darker colors indicate a greater probability of a specific state transition while white 
squares indicate no transitions between respective states. The dark diagonal squares 
indicate a high probability of successive windows being the same state (e.g., if window t 
was state 1, it is highly likely that window t+1 was also state 1). Across all analyses, 
there were no transitions from state 5 to states 1 and 2 and also no transitions from state 1 
to state 5. Number 1: positive correlation with List Sort performance, Number 2: positive 
correlation with Card Sort performance, Number 3: negative correlation with List Sort 
performance, Number 4: positive correlation with processing speed (all p’s ≤ 0.004). 
Probabilities were color mapped on a log scale.  
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Supplementary Figure 4: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 5 using 46 
second windows (cityblock k-means distance function) on the first 28 minutes of 
data.  As in the overall analysis, more frequently occurring states generally have more 
correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 5: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 5 using 46 
second windows (cityblock k-means distance function) on the second 28 minutes of 
data. As with the overall, and first-half analyses, more frequently occurring states 
generally have more correlations centered near zero with greater standard deviations than 
less frequently occurring states. SC, subcortical; T/P, temporal/parietal; SM, 
sensorimotor; CEN, central executive network; SN, salience network; DMN, default 
mode network; CB, cerebellum; BS, brainstem.  
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Supplementary Figure 6: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 4 using 46 
second windows (cityblock k-means distance function) on the overall 56 minutes of 
data. In accordance with other analyses, more frequently occurring states generally have 
more correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 7: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 6 using 46 
second windows (cityblock k-means distance function) on the overall 56 minutes of 
data. In accordance with other analyses, more frequently occurring states generally have 
more correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 8: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 4 using 92 
second windows (cityblock k-means distance function) on the overall 56 minutes of 
data. In accordance with other analyses, more frequently occurring states generally have 
more correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 9: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 5 using 92 
second windows (cityblock k-means distance function) on the overall 56 minutes of 
data. In accordance with other analyses, more frequently occurring states generally have 
more correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 10: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 6 using 92 
second windows (cityblock k-means distance function) on the overall 56 minutes of 
data. In accordance with other analyses, more frequently occurring states generally have 
more correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 11: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 4 using 46 
second windows (cityblock k-means distance function) with no despiking, 
detrending, or filtering post-processing steps on the overall 56 minutes of data. In 
accordance with other analyses, more frequently occurring states generally have more 
correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 12: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 5 using 46 
second windows (cityblock k-means distance function) with no despiking, 
detrending, or filtering post-processing steps on the overall 56 minutes of data. In 
accordance with other analyses, more frequently occurring states generally have more 
correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 13: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 6 using 46 
second windows (cityblock k-means distance function) with no despiking, 
detrending, or filtering post-processing steps on the overall 56 minutes of data. In 
accordance with other analyses, more frequently occurring states generally have more 
correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 14: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 5 
(Euclidean distance) using 46 second windows on the overall 56 minutes of data. In 
accordance with other analyses, more frequently occurring states generally have more 
correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 15: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 5 
(Correlation distance) using 46 second windows on the overall 56 minutes of data. In 
accordance with other analyses, more frequently occurring states generally more have 
correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 16: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 5 (Cosine 
distance) using 46 second windows on the overall 56 minutes of data. In accordance 
with other analyses, more frequently occurring states generally have more correlations 
centered near zero with greater standard deviations than less frequently occurring states. 
SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central executive 
network; SN, salience network; DMN, default mode network; CB, cerebellum; BS, 
brainstem.  
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Supplementary Figure 17: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 7 
(cityblock distance) using 46 second windows on the overall 56 minutes of data. In 
accordance with other analyses, more frequently occurring states generally have more 
correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 18: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 8 
(cityblock distance) using 46 second windows on the overall 56 minutes of data. In 
accordance with other analyses, more frequently occurring states generally have more 
correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 19: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 9 
(cityblock distance) using 46 second windows on the overall 56 minutes of data. In 
accordance with other analyses, more frequently occurring states generally have more 
correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplementary Figure 20: Dynamic functional network connectivity matrices, 
histograms, and standard deviation matrices for a cluster solution of k = 10 
(cityblock distance) using 46 second windows on the overall 56 minutes of data. In 
accordance with other analyses, more frequently occurring states generally have more 
correlations centered near zero with greater standard deviations than less frequently 
occurring states. SC, subcortical; T/P, temporal/parietal; SM, sensorimotor; CEN, central 
executive network; SN, salience network; DMN, default mode network; CB, cerebellum; 
BS, brainstem.  
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Supplemental Figure 21: Bar graphs showing correlations between state frequency 
and task performance for 46 second windows using cluster solutions of 4 and 6. In 
general, the List Sort task (red bars) and Card Sort task (black bars) had positive 
correlations with more frequently occurring states and negative correlations with less 
frequently occurring states. P values are represented by numerical values above and 
below each bar. 
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Supplemental Figure 22: Bar graphs showing correlations between state frequency 
and task performance for 92 second windows using cluster solutions of 4, 5, and 6. 
In general, the List Sort task (red bars) and Card Sort task (black bars) had positive 
correlations with more frequently occurring states and negative correlations with less 
frequently occurring states. P values are represented by numerical values above and 
below each bar. 
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Supplemental Figure 23: Bar graphs showing correlations between state frequency 
and task performance for 46 second windows using cluster solutions of 4, 5, and 6 
with no detrending, despiking, or filtering post-processing steps. In general, the List 
Sort task (red bars) and Card Sort task (black bars) had positive correlations with more 
frequently occurring states and negative correlations with less frequently occurring states. 
P values are represented by numerical values above and below each bar. 
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Supplemental Figure 24: Bar graphs showing correlations between state frequency 
and task performance for 46 second windows using cluster solutions of 4, 5, and 6 
for Euclidean, correlation, and cosine k-means distance functions on the overall 56 
minutes of data. In general, the List Sort task (red bars) and Card Sort task (black bars) 
had positive correlations with more frequently occurring states and negative correlations 
with less frequently occurring states. P values are represented by numerical values above 
and below each bar. 
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Supplemental Figure 25: Bar graphs showing correlations between state frequency 
and task performance for 46 second windows using cluster solutions of 7-10 for the 
cityblock k-means distance functions on the overall 56 minutes of data. In general, 
the List Sort task (red bars) and Card Sort task (black bars) had positive correlations with 
more frequently occurring states and negative correlations with less frequently occurring 
states. P values are represented by numerical values above and below each bar. 
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Supplemental Figure 26: Frequency of occurrence difference scores for 46 second 
windows and 4 state cluster solution. The Card Sort task had significant positive 
correlations with difference scores for state 2 - state 3 while the List Sort task had a 
significant positive correlation with difference scores for state 1 – state 3.  
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Supplemental Figure 27: Frequency of occurrence difference scores for 46 second 
windows and 6 state cluster solution. The Card Sort and Processing Speed tasks had 
significant positive correlations with difference scores for state 2 - state 5 while the List 
Sort task had a significant positive correlation with difference scores for state 1 – state 6. 
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Supplemental Figure 28: Frequency of occurrence difference scores for 92 second 
windows and 4 state cluster solution. The Card Sort and Processing Speed tasks had 
significant positive correlations with difference scores for state 1 - state 4 while the List 
Sort task had a significant positive correlation with difference scores for state 1 – state 3. 
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Supplemental Figure 29: Frequency of occurrence difference scores for 92 second 
windows and 5 state cluster solution. The Card Sort and Processing Speed tasks had 
significant positive correlations with difference scores for state 2 - state 5 while the List 
Sort task had a significant positive correlation with difference scores for state 1 – state 4. 
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Supplemental Figure 30: Frequency of occurrence difference scores for 92 second 
windows and 6 state cluster solution. The Card Sort and Processing Speed tasks had 
significant positive correlations with difference scores for state 2 - state 3 while the List 
Sort task had a significant positive correlation with difference scores for state 1 – state 3. 
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Supplemental Figure 31: Frequency of occurrence difference scores for 46 second 
windows and 4 state cluster solution (cityblock distance) with no despiking, 
detrending, or filtering on the overall 56 minutes of data. The Card Sort and 
Processing Speed tasks had significant positive correlations with difference scores for 
state 1 - state 3 while the List Sort task had a significant positive correlation with 
difference scores for state 2 – state 3. 
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Supplemental Figure 32: Frequency of occurrence difference scores for 46 second 
windows and 5 state cluster solution (citblock distance) with no despiking, 
detrending, or filtering on the overall 56 minutes of data. The Card Sort and 
Processing Speed tasks had significant positive correlations with difference scores for 
state 2 - state 3 while the List Sort task had a significant positive correlation with 
difference scores for state 1 – state 5. 
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Supplemental Figure 33: Frequency of occurrence difference scores for 46 second 
windows and 6 state cluster solution (cityblock distance) with no despiking, 
detrending, or filtering on the overall 56 minutes of data. The Card Sort and 
Processing Speed tasks had significant positive correlations with difference scores for 
state 2 - state 6 while the List Sort task had a significant positive correlation with 
difference scores for state 1 – state 5. 
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Supplemental Figure 34: Frequency of occurrence difference scores for 46 second 
windows and 5 state cluster solution (Euclidean distance) on the overall 56 minutes 
of data. The Card Sort and Processing Speed tasks had significant positive correlations 
with difference scores for state 2 - state 3 while the List Sort task had a significant 
positive correlation with difference scores for state 1 – state 5. 
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Supplemental Figure 35: Frequency of occurrence difference scores for 46 second 
windows and 5 state cluster solution (Correlation distance) on the overall 56 minutes 
of data. The Processing Speed, Card Sort, and List Sort tasks had significant positive 
correlations with difference scores for state 2 - state 5. 
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Supplemental Figure 36: Frequency of occurrence difference scores for 46 second 
windows and 5 state cluster solution (Correlation distance) on the overall 56 minutes 
of data. The Processing Speed, Card Sort, and List Sort tasks had significant positive 
correlations with difference scores for state 2 - state 5. 

 


