Primers	Sequences
rpoB_r1f	5'-AGGTCAACTAGTTCAGTATGG-3'
rpoB_r1r	5'-TAATTCAGCAAGCGGGTTCG-3'
rpoB_r2f	5'-TCAGCTACTTCTTCAACCTC-3'
rpoB_r2r	5'-TTACCTACGAGAAGGTCTCC-3'
rpoB_r3f	5'-AGATCACCCGTGATATTCC-3'
rpoB_r3r	5'-TACTCTTTCGTTACTGCGTC-3'

Table S2. Primers used for PCR amplification of the sequence containing the point mutation in the *rpoB* gene of each mutant

Primer	Sequences
PMRif1	5'-TTAACTAGACAGATCT <u>GATTCTCGATCTCATTGGTGAGAACG-3'</u>
PMRif2	5'-GAAGCTTCTAGAATTCTACCTACGAGAAGGTCTCCGTCGTTG-3'
PMRif3	5'-CCTGTTTAGGA <u>A</u> ATACGTCCATG <u>-3'</u>
PMRif4	5'-TAT <u>T</u> TCCTAAACAGGTTGTATCTGCTGCGACAGCATG <u>-3'</u>

Underline indicates the sequences are homologous to the sequence of *rpoB* gene in *B. velezensis* CC09. The sequences without underline in PMRif1 and PMRif2 indicate these sequences are homologous to the left and right tails of the digested fragment of pMAD. The bold underlines in PMRif3 and PMRif4 indicate the point nucleotide mutation of S617F was prepared by PCR application using two pairs of primers PMRif1/PMRif3 and PMRif4 and PMRif2. The PCR product containing S617F was further ligated to pMAD and introduced into competent cells of *B. velezensis* CC09 to create a new point mutation.

No.	Primer	Primer sequences	Gene	Protein	Related Function
1	degS-qf	GCATTTGTGACGGCTTCCTGAG	1 C	Two-component sensor histidine kinase	Swarming motility, biofilm formation (Shemesh and Chai, 2013)
	degS-qr	AAGAAATTCGCAACGCCTATGA	aegs		
2	degU-qf	ATTGCCGGTTATCTGCTTCACG	- degU	Two-component sensor histidine kinase	Swarming motility, biofilm formation (Shemesh and Chai, 2013)
	degU-qr	GTTCAATGCGGTTGTCTTCCTC			
3	ituA-qf	TGCGCCAGACCTTCAGTTTATG	:A	Iturin A synthetase A	Antimicrobial cyclic lipopetides Itruin A (NCBI gene database)
	ituA-qr	GGGTATCTTGGCTATTTACAGCATCT	πυΑ		
4	ituB-qf	CCCGAATGACATCTACTAAGGTTTG	:D	Iturin A synthetase B	Antimicrobial cyclic lipopetides Itruin A (NCBI gene database)
	ituB-qr	ATGCATCTGCCGTTCCTTATCT	пив		
5	pgdS-qf	TGCTTGGATGAACCTTCCCTCT		γ-DL-glutamyl hydrolase	Swarming motility, biofilm formation (Stanley and Lazazzera,
	pgdS-qr	AGCCGCCGTTTCACATTTACCT	pgas		2005)
6	srfAA-qf	TGCTTGGATGAACCTTCCCTCT	ant A	Surfactin synthetase SrfAA	Antimicrobial lipopetides surfactin (NCBI gene database)
0	srfAA-qr	AGCCGCCGTTTCACATTTACCT	SIJAA		
7	srfAB-qf	GCAAGCATTGATTGAACACCAT	surf A B	Surfactin synthetase SrfAB	Antimicrobial lipopetides surfactin (NCBI gene database)
	srfAB-qr	GCTTTTCAGCATATCCTCGTCAG	SIJAD		
8	yczE-qf	GGTGCTGATGGGAATGTTTATTG	var F	<i>E</i> Transmembrane protein	Biosynthesis of bacillomycin D (Koumoutsi et al. 2007)
	yczE-qr	CTGCGGCAAGAATCGTCAGCTC	yez <u>e</u>		
0	abrB-qf	AAGTGCGATACCTTGCTGGTCA	abrB	<i>brB</i> Transition state regulatory protein	Biofilm formation (Hamon et al. 2004)
	abrB-qr	CACTGCTTATGCTCGGAGATGA	uorb		
10	sinI-qf	CAGAAAGGATTTACGGTATGAC	sinI	Transcriptional regulator	Biofilm formation(Verhamme et al. 2009)
10	sinI-qr	TCGCAATTAGATAAGGAATGG	sini		
11	sinR-qf	TAACTTCACGGACAAACACCACTG	- sinR	Transcriptional regulator	Biofilm formation(Verhamme et al. 2009)
	sinR-qr	GAGCTTAAATAAGACTTCGCTACC			
12	cheV-qf	CAATCGCCTCCCAGGACACC	cheV	Response regulator for CheA activity	Chemotaxis, swarming motility (Kearns and Losick, 2003)
	cheV-qr	CGAAATTCTTCCCGTCATCAGT	Chev		

Table S3. Pairs of primers targeting selected genes used for quantitative real-time PCR analysis

13	spo0A-qf	AGGTAAGCGGAAATGTCAGCAGT	– spo0A	Response regulator	Biofilm and spore formation, etc. (Verhamme et al. 2009)
	spo0A-qr	TTTGGCGATGTCGGGATAAAGGA			
14	kinC-qf	GCAAGGCGTTCGTTCGTTTCCAG	– kinC	Two-component sensor histidine kinase	Swarming motility, biofilm formation (Shemesh and Chai, 2013)
	kinC-qr	CTCCCAAATCAAGCAGCAGTCC			
15	kinE-qf	AGCTGACCATGAGACCGAGACC	– kinE	Two-component sensor histidine kinase	Swarming motility, biofilm formation (Shemesh and Chai, 2013)
	kinE-qr	GCGGCAATATCTACGTGACCATTC			
16	16S-qf	TGTGGGATTGGCTTAACCTCG	16S	16S ribosomal RNA	16S ribosomal RNA
	16S-qr	TGTCGTCAGCTCGTGTCGTG	rDNA		

Hamon, M. A., Stanley, N. R., Britton, R. A., Grossman, A. D., and Lazazzera, B. A. (2004). Identification of abrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol. Microbiol. 52, 847-860. doi: 10.1111/j.1365-2958.2004. 04023.x

Kearns, D. B., and Losick, R. (2003). Swarming motility in undomesticated Bacillus subtilis. Mol. Microbiol. 49, 581-590. doi: 10.1046/j.1365-2958.2003.03584.x Koumoutsi, A., Chen, X. H., Vater, J., and Borris, R. (2007). DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl. Environ. Microbiol. 73, 6953-6964. doi: 10.1128/AEM.00565-07

Shemesh, M., and Chai, Y. (2013). A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling. J. Bacteriol. 195, 2747-2754. doi: 10.1128/JB.00028-13

Stanley, N. R., and Lazazzera, B. A. (2005). Defining the genetic differences between

wild and domestic strains of Bacillus subtilis that affect poly-g-DL-glutamic acid production and biofilm formation. Mol. Microbiol. 57, 1143-1158. doi: 10.1111/j.1365-2958.2005.04746.x

Verhamme, D. T., Murray, E. J., and Stanley-Wall, N. R. (2009). DegU and SpoOA jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J. Bacteriol. 191, 100-108. doi: 10.1128/JB.01236-08

Fig. S1 Primer design covering each point mutation in the rpoB gene of B. velezensis CC09

Fig. S2 Sporulation curves of the WT strain and Rif^r mutants

Fig. S3 Quantity of pellicle formed by the WT strain and Rif^r mutants

Fig. S4 Correlation between iturin A production and inhibition of fungal spore germination

Fig. S5 Dendrogram of hierarchical clustering based on the relative expression of the selected genes