

Supplementary Figure 1. The production of CF<sub>3</sub>I from the reaction of trifluoroacetic acid with I<sub>2</sub>



Supplementary Figure 2. The detection of TEMPO-CF<sub>3</sub> by <sup>19</sup>F NMR



**Supplementary Figure 3.** <sup>19</sup>F-decoupled NMR spectrum for observation of trifluoromethane (CF<sub>3</sub>H) and hexafluoroethane (CF<sub>3</sub>-CF<sub>3</sub>) by-products



**Supplementary Figure 4.** <sup>19</sup>F-coupled NMR spectrum for observation of trifluoromethane (CF<sub>3</sub>H) and hexafluoroethane (CF<sub>3</sub>-CF<sub>3</sub>)



Supplementary Figure 5. The determination of H<sub>2</sub> by GC



Supplementary Figure 6. The determination of  $CO_2$  by GC



**Supplementary Figure 7.** XRD patterns of anatase  $TiO_2$  nanocatalyst supported with different metals. (a) Rh/anatase  $TiO_2$ , (b) Ag/anatase  $TiO_2$ , (c) Pt/anatase  $TiO_2$ , (d) Cu/anatase  $TiO_2$ , (e) Au/anatase  $TiO_2$ , (f) Pd/anatase  $TiO_2$ , (g) standard profile of anatase  $TiO_2$  PDF No. 21-1272.



**Supplementary Figure 8.** the particle size distribution of Rh(0) nanoparticles on anatase TiO<sub>2</sub> nanocatalyst



Supplementary Figure 9. HRTEM image of Rh/anatase TiO<sub>2</sub> nanocatalyst after reaction. (The scale bar, 2 nm)



Supplementary Figure 10. EDS diagram of as prepared Rh/anatase TiO<sub>2</sub> nanocatalyst



Supplementary Figure 11. XPS full spectrum of Rh supported anatase TiO2



Supplementary Figure 12. XPS C<sub>1s</sub> scanning spectrum of Rh supported anatase TiO<sub>2</sub>



Supplementary Figure 13. XPS O<sub>1s</sub> scanning spectrum of Rh supported anatase TiO<sub>2</sub>



Supplementary Figure 14. XPS Ti<sub>2p</sub> scanning spectrum of Rh supported anatase TiO<sub>2</sub>



Supplementary Figure 15. XPS Rh<sub>3d</sub> scanning spectrum of Rh supported anatase TiO<sub>2</sub>



Supplementary Figure 16. Schottky barrier at the interface between Rh and  $TiO_2$ 



N-(4-chloro-3-(trifluoromethyl)phenyl)acetamide (20-C1)



 $N-(4-chloro-3-(trifluoromethyl) phenyl) acetamide ({\bf 20-}C1)$ 



N-(4-chloro-2-(trifluoromethyl)phenyl)acetamide (20-C2)



SupplementaryFigure22.<sup>19</sup>FNMRspectrumofN-(4-chloro-2-(trifluoromethyl)phenyl)acetamide (20-C2)



Supplementary Figure 23. <sup>1</sup>H NMR spectrum of 3,5-bis(trifluoromethyl)pyridin-2-ol (2q)



Supplementary Figure 24. <sup>13</sup>C NMR spectrum of 3,5-bis(trifluoromethyl)pyridin-2-ol (2q)



Supplementary Figure 25. <sup>19</sup>F NMR spectrum of 3,5-bis(trifluoromethyl)pyridin-2-ol (2q)



**Supplementary Figure 26.** <sup>1</sup>H NMR spectrum of 5-Chloro-4-(trifluoromethyl)-2-pyrimidinamine (2r)



5-Chloro-4-(trifluoromethyl)-2-pyrimidinamine (2r)



**Supplementary Figure 28.** <sup>19</sup>F NMR spectrum of 5-Chloro-4-(trifluoromethyl)-2-pyrimidinamine (**2r**)

1,3,7-trimethyl-8-(trifluoromethyl)-1*H*-purine-2,6(3*H*,7*H*)-dione (**2s**)



1,3,7-trimethyl-8-(trifluoromethyl)-1*H*-purine-2,6(3*H*,7*H*)-dione (**2s**)



1,3,7-trimethyl-8-(trifluoromethyl)-1*H*-purine-2,6(3*H*,7*H*)-dione (**2s**)



1,3,7-trimethyl-8-(trifluoromethyl)-1*H*-purine-2,6(3*H*,7*H*)-dione (**2s**)

1,3-dimethyl-8-(trifluoromethyl)-1*H*-purine-2,6(3*H*,7*H*)-dione (**2**t)







1,3-dimethyl-8-(trifluoromethyl)-1*H*-purine-2,6(3*H*,7*H*)-dione (**2**t)

3,7-dimethyl-1-(5-oxohexyl)-8-(trifluoromethyl)-1*H*-purine-2,6(3*H*,7*H*)-dione (**2u**)



3,7-dimethyl-1-(5-oxohexyl)-8-(trifluoromethyl)-1*H*-purine-2,6(3*H*,7*H*)-dione (**2u**)





3,7-dimethyl-1-(5-oxohexyl)-8-(trifluoromethyl)-1*H*-purine-2,6(3*H*,7*H*)-dione (**2u**)

3,7-dimethyl-8-(trifluoromethyl)-1*H*-purine-2,6(3*H*,7*H*)-dione (**2v**)





3,7-dimethyl-8-(trifluoromethyl)-1*H*-purine-2,6(3*H*,7*H*)-dione (**2v**)



3,7-dimethyl-8-(trifluoromethyl)-1H-purine-2,6(3H,7H)-dione (**2v**)

3-(trifluoromethyl)-1*H*-pyrazolo[3,4-*d*]pyrimidin-4(2*H*)-one (**2**w)





3-(trifluoromethyl)-1*H*-pyrazolo[3,4-*d*]pyrimidin-4(2*H*)-one (**2w**)





3-(trifluoromethyl)-1*H*-pyrazolo[3,4-*d*]pyrimidin-4(2*H*)-one (2w)



Supplementary Figure 44. <sup>1</sup>H NMR spectrum of 2-(trifluoromethyl)phenyl acetate (*o*-CF<sub>3</sub>-2k)



Supplementary Figure 45. <sup>13</sup>C NMR spectrum of 2-(trifluoromethyl)phenyl acetate (*o*-CF<sub>3</sub>-2k)



Supplementary Figure 46. <sup>19</sup>F NMR spectrum of 2-(trifluoromethyl)phenyl acetate (o-CF<sub>3</sub>-2k)



Supplementary Figure 47. <sup>1</sup>H NMR spectrum of 3-(trifluoromethyl)phenyl acetate (*m*-CF<sub>3</sub>-2k)



Supplementary Figure 48. <sup>13</sup>C NMR spectrum of 3-(trifluoromethyl)phenyl acetate (*m*-CF<sub>3</sub>-2k)



Supplementary Figure 49. <sup>19</sup>F NMR spectrum of 3-(trifluoromethyl)phenyl acetate (*m*-CF<sub>3</sub>-2k)



Supplementary Figure 50. <sup>1</sup>H NMR spectrum of 4-(trifluoromethyl)phenyl acetate (*p*-CF<sub>3</sub>-2k)



Supplementary Figure 51. <sup>13</sup>C NMR spectrum of 4-(trifluoromethyl)phenyl acetate (*p*-CF<sub>3</sub>-2k)



Supplementary Figure 52. <sup>19</sup>F NMR spectrum of 4-(trifluoromethyl)phenyl acetate (*p*-CF<sub>3</sub>-2k)



**Supplementary Figure 53. photo-driven C-H trifluoromethylation of substituted benzenes and nitrogen-containing heteroarenes using NaSO<sub>4</sub> in place of NaS<sub>2</sub>O<sub>8</sub>.** Reaction conditions: substrates (0.5 mmol), 0.1 wt% Rh/anatase TiO<sub>2</sub> NPs (20-40 mol%), Na<sub>2</sub>SO<sub>4</sub> (1 equiv.), TFA (10-15 mL), 365 nm UV, room temperature, 24-48 h. <sup>†</sup>Isolated yield.

## Supplementary Table 1. Selected screening results of photo-induced trifluoromethylation of caffeine<sup>a</sup>



| entry | Variation from the standard condition                                                        | yield <sup>b</sup> |
|-------|----------------------------------------------------------------------------------------------|--------------------|
| 1     | CF <sub>3</sub> CO <sub>2</sub> Li (1 equiv.) in TFA                                         | trace              |
| 2     | CF <sub>3</sub> CO <sub>2</sub> K (1 equiv.) in TFA                                          | trace              |
| 3     | TFA (1 mL) in DMF (14 mL) instead of TFA                                                     | n.r.               |
| 4     | TFA (1 mL) in DME (14 mL) instead of TFA                                                     | n.r.               |
| 5     | TFA (1 mL) in MeCN (14 mL) instead of TFA                                                    | n.r.               |
| 6     | TFA (1 mL) in DMSO (14 mL) instead of TFA                                                    | n.r.               |
| 7     | TFA (1 mL) in Toluene (14 mL) instead of TFA                                                 | n.r.               |
| 8     | TFA (1 mL) in MeOH (14 mL) instead of TFA                                                    | n.r.               |
| 9     | TFA (1 mL) in NMP (14 mL) instead of TFA                                                     | n.r.               |
| 10    | TFA (1 mL) in CHCl <sub>3</sub> (14 mL) instead of TFA                                       | n.r.               |
| 11    | TFA (1 mL) in CH <sub>2</sub> Cl <sub>2</sub> (14 mL) instead of TFA                         | n.r.               |
| 12    | TFA (1 mL) in H <sub>2</sub> O (14 mL) instead of TFA                                        | n.r.               |
| 13    | TFA (1 mL) in CCl <sub>4</sub> (14 mL) instead of TFA                                        | n.r.               |
| 14    | TFA (1 mL) in Nitrobenzene (14 mL) instead of TFA                                            | n.r.               |
| 15    | TFA (1 mL) in DCE (14 mL) instead of TFA                                                     | n.r.               |
| 16    | TFA (1 mL) in benzonitrile (14 mL) instead of TFA                                            | n.r.               |
| 17    | TFA (1 mL) in pentafluorobenzene (14 mL) instead of TFA                                      | n.r.               |
| 18    | TFA (1 mL) in CNCH <sub>2</sub> CO <sub>2</sub> Et (14 mL) instead of TFA                    | 3                  |
| 19    | TFA (1 mL) in CNCH <sub>2</sub> CO <sub>2</sub> Me (14 mL) instead of TFA                    | 3                  |
| 20    | TFA (1 mL) in pentafluorobenzonitrile (14 mL) instead of TFA                                 | 5                  |
| 21    | NaNO <sub>2</sub> (1 equiv.) as additive                                                     | 0                  |
| 22    | Ca(ClO) <sub>2</sub> (1 equiv.) as additive                                                  | 0                  |
| 23    | 2KHSO <sub>5</sub> •KHSO <sub>4</sub> •K <sub>2</sub> SO <sub>4</sub> (1 equiv.) as additive | 0                  |
| 24    | $K_2S_2O_8$ (1 equiv.) as additive                                                           | 39                 |
| 25    | NaBrO <sub>5</sub> (1 equiv.) as additive                                                    | 8                  |
| 26    | MnO <sub>2</sub> (1 equiv.) as additive                                                      | 40                 |
| 27    | KMnO <sub>4</sub> (1 equiv.) as additive                                                     | 28                 |
| 28    | Ce(NO <sub>3</sub> ) <sub>3</sub> (1 equiv.) as additive                                     | 0                  |
| 29    | Ce(NH <sub>4</sub> ) <sub>2</sub> (NO <sub>3</sub> ) <sub>3</sub> (1 equiv.) as additive     | 0                  |
| 30    | Ce(SO <sub>4</sub> ) <sub>2</sub> (1 equiv.) as additive                                     | 0                  |
| 31    | Ce(OAc) <sub>3</sub> (1 equiv.) as additive                                                  | 10                 |
| 32    | <i>m</i> -CPBA (1 equiv.) as additive                                                        | 6                  |
| 33    | <sup><i>t</i></sup> BuOOH (1 equiv.) as additive                                             | 7                  |
| 34    | <sup>t</sup> BuOO <sup>t</sup> Bu (1 equiv.) as additive                                     | 6                  |
| 35    | PhCO <sub>3</sub> <sup>t</sup> Bu (1 equiv.) as additive                                     | 0                  |

| 36 | DDQ (1 equiv.) as additive                                                 | 10    |
|----|----------------------------------------------------------------------------|-------|
| 37 | P <sub>2</sub> W <sub>24</sub> O <sub>77</sub> (1 equiv.) as additive      | 6     |
| 38 | Na <sub>2</sub> WO <sub>4</sub> (1 equiv.) as additive                     | 0     |
| 39 | $K_2WO_4$ (1 equiv.) as additive                                           | 0     |
| 40 | AgTFA (2 equiv.) as additive                                               | 38    |
| 41 | AgOTf (2 equiv.) as additive                                               | 26    |
| 42 | AgOTs (2 equiv.) as additive                                               | 7     |
| 43 | Ag <sub>2</sub> CO <sub>3</sub> (2 equiv.) as additive                     | 29    |
| 44 | AgBF <sub>4</sub> (2 equiv.) as additive                                   | 12    |
| 45 | $AgPF_6$ (2 equiv.) as additive                                            | 14    |
| 46 | Ag <sub>2</sub> O (2 equiv.) as additive                                   | 40    |
| 47 | AgF (2 equiv.) as additive                                                 | 24    |
| 48 | AgNO <sub>3</sub> (2 equiv.) as additive                                   | 0     |
| 49 | AgO (2 equiv.) as additive                                                 | 23    |
| 50 | Ag <sub>3</sub> PO <sub>4</sub> (2 equiv.) as additive                     | 46    |
| 51 | AgOAc (2 equiv.) as additive                                               | 31    |
| 52 | $K_2SO_4$ (2 equiv.) as additive                                           | 30    |
| 53 | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> (2 equiv.) as additive     | 26    |
| 54 | ZnSO <sub>4</sub> (2 equiv.) as additive                                   | 11    |
| 55 | MgSO <sub>4</sub> (2 equiv.) as additive                                   | 10    |
| 56 | CaSO <sub>4</sub> (2 equiv.) as additive                                   | 11    |
| 57 | NaHSO <sub>4</sub> (2 equiv.) as additive                                  | 10    |
| 58 | KHSO <sub>4</sub> (2 equiv.) as additive                                   | 8     |
| 59 | Li <sub>2</sub> SO <sub>4</sub> (2 equiv.) as additive                     | 29    |
| 60 | Cs <sub>2</sub> SO <sub>4</sub> (2 equiv.) as additive                     | 31    |
| 61 | Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> (2 equiv.) as additive     | 0     |
| 62 | $H_2SO_4 \bullet 0.5 SO_3(1 mL)$ as additive                               | 33    |
| 62 | 26W 365 nm UV instead of 250W 365 nm UV, $\rm Na_2S_2O_8$ (20              | trace |
| 05 | mol%) as additive                                                          |       |
| 64 | 100W 365 nm UV instead of 250W 365 nm UV, $\rm Na_2S_2O_8$ (20             | 39    |
|    | mol%) as additive                                                          |       |
| 65 | 400W 365 nm UV instead of 250W 365 nm UV, $Na_2S_2O_8$ (20                 | 48    |
|    | mol%) as additive                                                          |       |
| 66 | 1kW 365 nm UV instead of 250W 365 nm UV, $Na_2S_2O_8$ (20                  | trace |
|    | mol%) as additive                                                          |       |
| 67 | 24W visible light instead of 250W 365 nm UV, $Na_2S_2O_8$ (20              | n.r.  |
|    | mol%) as additive                                                          |       |
| 68 | 46W visible light instead of 250W 365 nm UV, $Na_2S_2O_8$ (20              | n.r.  |
|    | mol%) as additive                                                          |       |
| 69 | 300W visible light instead of 250W 365 nm UV, $Na_2S_2O_8$ (20             | trace |
|    | mol%) as additive                                                          | 25    |
| 70 | Cu/anatase 11O <sub>2</sub> instead of 0.1 wt% Kh/anatase 11O <sub>2</sub> | 30    |
| 71 | Au/anatase $11O_2$ instead of 0.1 wt% Rh/anatase $11O_2$                   | 39    |

| 72 | Pt/anatase TiO <sub>2</sub> instead of 0.1wt% Rh/anatase TiO <sub>2</sub> | 35 |
|----|---------------------------------------------------------------------------|----|
| 73 | Pd/anatase TiO <sub>2</sub> instead of 0.1wt% Rh/anatase TiO <sub>2</sub> | 36 |
| 74 | Ag/anatase TiO <sub>2</sub> instead of 0.1wt% Rh/anatase TiO <sub>2</sub> | 43 |

<sup>a</sup> standad conditions: benzene (0.5 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> as photocatalytst (20 mol%), distilled TFA (15 mL), room temperature, 365 nm irradiation(250 W), 24h.

<sup>b</sup> yield determined by <sup>19</sup>F NMR using 1-methoxy-4-(trifluoromethoxy)benzene as the internal standard. The yield includes benzotrifluoride (2a) and bi-trifluoromethyl-substituted benzene (3a)

## **Supplementary Methods**

General Information. All reagents for catalyst preparations and photo-induced trifluoromethylation experiments, including all substrates and some products, were purchased from commercial sources without further purification unless otherwise noted. Solvents including trifluoroacetic acid (TFA), acetonitrile (MeCN), N,N-dimethylformamide (DMF), dimethoxyethane (DME), dimethyl sulphoxide (DMSO), Toluene, methanol, N-methyl-2-pyrrolidone (NMP), CHCl<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, CCl<sub>4</sub>, nitrobenzene, dichloroethane (DCE), benzonitrile were used after distillation for purification.

**Instrument.** The 365 nm ultra-violet irradiation was obtained by using high pressure mercury lamp (100 W/250 W/400 W/1 kW). The visible light irradiation was provided by 300 W Xe lamp (PLS-SXE300C, Beijing Perfect Light Co.) equipped with a 420 nm cutoff filter. XPS analysis was carried out on a Thermofisher ESCALAB 250 X-ray photoelectron spectrometer with a chromatized Al Ka source (15 kV, 150W). XRD measurements were carried out on Rigaku MiniFlex II using Cu K $\alpha$  as radiation source ( $\lambda = 0.15064$  nm) at 30 kV and 15 mA. TEM and SEAD observation was made on JEOL JEM-2010. The preparations of TEM samples were carried out by depositing a drop of the nanoparticle suspension, which was redispersed by ultrasonics, onto a continuous carbon-coated copper grid and dried at room temperature under atmospheric pressure. Gas chromatographic (GC) analysis for H<sub>2</sub> determination was conducted using an Agilent 7820A gas chromatography equipped with a thermal conductivity detector (TCD) and a TD-01 packed column, using Ar as the carrier gas. <sup>1</sup>H, <sup>13</sup>C, and <sup>19</sup>F NMR spectra were recorded on Burker Avance 400 NMR spectrometer. Data for <sup>1</sup>H NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (Hz), integration. Data for <sup>13</sup>C NMR are reported in terms of chemical shift ( $\delta$ , ppm). <sup>19</sup>F NMR spectra are reported in terms of chemical shift ( $\delta$ , ppm).

**Preparation of 0.1 wt% Rh-modified anatase TiO<sub>2</sub> nanopaticles.** In a 30 mL quartz round bottom flask, a mixture of 60 nm anatase TiO<sub>2</sub> (3.0 g) and RhCl<sub>3</sub>•xH<sub>2</sub>O (0.023 g, Rh content of 39 %) was deoxygenated and filled with N<sub>2</sub>, followed by addition of deoxygenated methanol (30 mL). The suspension was stirred with an irradiation of 250 W high pressure Hg lamp (365 nm UV) for 48 h. After illumination, nanocatalysts were separated from the solution by centrifugation (8000 rpm, 2 min, 298 K). The separated nanocatalysts were washed for three times by ethanol and three times by water, dried in vacuum at 298 K for 8 h. The Rh content of as-prepared nanocatalyst was 0.1 wt% by the inductively coupled plasma (ICP) analysis.

**Preparation of anatase TiO<sub>2</sub> nanopaticles modified by other transition metals (Pd, Au, Ag, Pt, Cu).** The anatase TiO<sub>2</sub> nanocatalysts modified by other transition metals were prepared by following the method for preparation of 0.1 wt% Rh-modified TiO<sub>2</sub> nanocatalyst. In these processes, PdCl<sub>2</sub> (0.0151 g), H<sub>3</sub>AuCl<sub>6</sub> solution in methanol (0.94 mL, 0.02g H<sub>3</sub>AuCl<sub>6</sub> /mL), CuCl<sub>2</sub> (0.0191 g), AgNO<sub>3</sub> (0.0143 g) and H<sub>2</sub>PtCl<sub>6</sub>•6H<sub>2</sub>O (0.024 g) were used, respectively, with 60 nm

anatase  $TiO_2$  (3.0g) and methanol (30 mL).

Typical reaction A (trifluoromethylation reaction of caffeine was used as an example). photocatalyst (0.016 g, 0.2 mmol), caffeine (0.0971 g, 0.5 mmol) and Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol) were introduced into a Schlenk tube. Then, the tube was fitted with a rubber septum. After evacuation and N<sub>2</sub> backfill for three times, distilled trifluoroacetic acid (15 mL) was added to the Schlenk tube through the rubber septum using syringes, and the rubber septum was replaced by a Teflon cap under N<sub>2</sub> flow. The reaction was performed under illumination of 250 W high pressure Hg lamp (365 nm UV) at room temperature for 48 hours. After reaction, the trifluoroacetic acid was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (eluent: EtOAc/hexanes) to provide the corresponding product. The yield were also determined by <sup>19</sup>F NMR spectrum using 1-methoxy-4-(trifluoromethoxy)benzene (76  $\mu$ L, 0.5 mmol,  $\delta$  -58.4 ppm) as an internal reference.

**Typical reaction B (trifluoromethylation reaction of caffeine was used as an example).** Typical reaction B is identical to typical reaction A except that  $Na_2SO_4$  was used instead of  $Na_2S_2O_8$ .

Typical gram scale reaction (trifluoromethylation reaction of caffeine was used as an example). 0.1 wt% Rh/anatase TiO<sub>2</sub> nanocatalysts of (0.04 g, 0.5 mmol), caffeine (1 g, 5 mmol) and Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.119 g, 0.5 mmol) were introduced into a Schlenk tube. Then, the tube was fitted with a rubber septum. After evacuation and N<sub>2</sub> backfill for three times, distilled trifluoroacetic acid (60 mL) was added to the Schlenk tube through the rubber septum using syringes, and the rubber septum was replaced by a Teflon cap under N<sub>2</sub> flow. The reaction was performed under illumination of 250 W high pressure Hg lamp (365 nm UV) at room temperature for 120 hours. After reaction, the trifluoroacetic acid was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (eluent: EtOAc/hexanes) to provide the corresponding product.

**Radical trapping experiment with TEMPO.** 0.1 wt% Rh/anatase TiO<sub>2</sub> nanocatalysts (0.008 g, 0.1 mmol), TEMPO (0.0781 g, 0.5 mmol) and Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol), were introduced into a Schlenk tube. Then, the tube was fitted with a rubber septum. After evacuation and N<sub>2</sub> backfill for three times, benzene (46  $\mu$ L, 0.5 mmol) and 2 mL distilled trifluoroacetic acid was added to the Schlenk tube through the rubber septum using syringes, and the rubber septum was replaced by a Teflon cap under N<sub>2</sub> flow. The reaction was performed under illumination of 100 W high pressure Hg lamp (365 nm UV) at room temperature for 2 hours. The resultant mixture was analyzed by <sup>19</sup>F NMR spectroscopy using 1-methoxy-4-(trifluoromethoxy)benzene (76  $\mu$ L, 0.5 mmol,  $\delta$  -58.4 ppm) as the internal standard.

**Detection of H<sub>2</sub> and CO<sub>2</sub> formed in the control experiment of trifluoroacetic acid.** 0.1 wt% Rh/anatase TiO<sub>2</sub> nanocatalysts (0.016 g, 0.2 mmol) and Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol) were introduced into a Schlenk tube. Then, the tube was fitted with a rubber septum. After evacuation and N<sub>2</sub> backfill for three times, distilled trifluoroacetic acid (15 mL) was added to the Schlenk tube through the rubber septum using syringes, and the rubber septum was replaced by a Teflon cap

under N<sub>2</sub> flow. The reaction was performed under illumination of 250 W high pressure Hg lamp (365 nm UV) at room temperature for 24 hours. After reaction, the atmosphere of reaction (1 mL) in schlenk tube was injected into GC instrument. The oven temperature was held constant at 40 °C for 20 min, then it was raised to 250 °C with 15°C/min. Inlet and detector temperature were set at 120 °C and 200 °C, respectively.

Synthesis of CF<sub>3</sub>I. 0.1 wt% Rh/anatase TiO<sub>2</sub> nanocatalysts (0.016 g, 0.1 mmol) and I<sub>2</sub> (0.127 g, 1 mmol) were introduced to a Schlenk tube. Then, the tube was fitted with a rubber septum. After evacuation and N<sub>2</sub> backfill for three times, distilled trifluoroacetic acid (15 mL) was added to the Schlenk tube through the rubber septum using syringes, and the rubber septum was replaced by a Teflon cap under N<sub>2</sub> flow. The reaction was performed under illumination of 250 W high pressure Hg lamp (365 nm UV) at room temperature for 24 hours. The yield was determined by <sup>19</sup>F NMR spectrum using 1-methoxy-4-(trifluoromethoxy)benzene (76  $\mu$ L, 0.5 mmol,  $\delta$  -58.4 ppm) as the internal standard..

**Characterization of photocatalysts.** The characterization of as-prepared photocatalysts was carried out using XPS, XRD, TEM, HRTEM, and ICP.

After catalytic reaction, the suspension was centrifuged (8000 rpm, 2 min, 298 K) for separating nanocatalysts from the solution. And then the separated nanocatalysts were washed for 3 times with ethanol and 3 times with water, dried in vacuum at 298 k for 10 h. The measurements of separated nanocatalysts for XPS, XRD, TEM and ICP were performed.

## Substrates:

The typical reaction A was followed with benzene (46  $\mu$ L, 0.5 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol) and a reaction time of 24 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (70 %, monosubstituted/*o/m/p* = 17.3/2.8/1/1.8). The typical reaction B was followed with benzene (46  $\mu$ L, 0.5 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol) and a reaction time of 24 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (51 %, monosubstituted/*o/m/p* = 8.3/1/2.4/2.9). Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.

The typical reaction A was followed with fluorobenzene (47  $\mu$ L, 0.5 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (43 %, *o/m/p* = 1/1.3/2).

The typical reaction B was followed with fluorobenzene (47  $\mu$ L, 0.5 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol) and a reaction time of 72 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (47 %, *o/m/p* = 1/1.3/1).

Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.

The typical reaction A was followed with chlorobenzene (52  $\mu$ L, 0.5 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (65 %, *o/m/p* = 4.5/3.1/1).

The typical reaction B was followed with chlorobenzene (52  $\mu$ L, 0.5 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (39 %, *o/m/p* = 1/1/1).

Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.

The typical reaction A was followed with bromobenzene (52  $\mu$ L, 0.5 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (64 %, o/m/p = 1.2/1/1).

The typical reaction B was followed with bromobenzene (52  $\mu$ L, 0.5 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (45 %, *o/m/p* = 1.1/1/1).

Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.

The typical reaction A was followed with iodobenzene (56  $\mu$ L, 0.5 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (52 %, *o/m/p* = 1/1.8/1.8).

Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.

The typical reaction A was followed with 1,2-dichlorobenzene (56  $\mu$ L, 0.5 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and a reaction time of 24 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (63 %, C1/C2 = 1/1.2).

The typical reaction B was followed with 1,2-dichlorobenzene (56  $\mu$ L, 0.5 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and a reaction time of 24 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (30 %, C1/C2 = 2.3/1).

Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.



The typical reaction A was followed with 1,3-dichlorobenzene (57  $\mu$ L, 0.5 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and a reaction time of 24 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (54 %, C1/C2/C3 = 5/1.2/1).

The typical reaction A was followed with 1,3-dichlorobenzene (57  $\mu$ L, 0.5 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and a reaction time of 24 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (24 %, C1/C2/C3 = 1.7/5.3/1).

Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.



The typical reaction A was followed with acetophenone (58  $\mu$ L, 0.5 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (46 %, *o/m/p* = 2.4/1/3).

The typical reaction B was followed with acetophenone (58  $\mu$ L, 0.5 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol) and reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (22 %, *o/m/p* = 1.5/1/3).

Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.

The typical reaction A was followed with propiophenone (66  $\mu$ L, 0.5 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0479 g, 0.2 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (48 %, *o/m/p* = 3.3/1/4).

The typical reaction B was followed with propiophenone (66  $\mu$ L, 0.5 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (16 %, *o/m/p* = 1.3/1/3).

Due to the availability of the products, no purification was attempted on this reaction mixture. The

fluorine signals of the products were identical to those of the commercial samples.

The typical reaction A was followed with methyl benzoate (62  $\mu$ L, 0.5 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0479 g, 0.2 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (57 %, *o/m/p* = 1.8/1/1.9).

The typical reaction B was followed with methyl benzoate (62  $\mu$ L, 0.5 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (18 %, *o/m/p* = 1.8/1/1.8).

Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.

The typical reaction A was followed with ethyl benzoate (72  $\mu$ L, 0.5 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (46 %, *o/m/p* = 1.9/1/1.7).

The typical reaction B was followed with ethyl benzoate (72  $\mu$ L, 0.5 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (17 %, *o/m/p* = 1.3/1/3.3).

Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.

The typical reaction A was followed with benzonitrile (52  $\mu$ L, 0.5 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0479 g, 0.2 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (40 %, *o/m/p* = 1.4/1/3.1).

The typical reaction B was followed with benzonitrile (52  $\mu$ L, 0.5 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (11 %, *o/m/p* = 0/1/1.8).

Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.

The typical reaction A was followed with phenyl acetate ( $64\mu$ L, 0.5 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (47 %, *o/m/p* = 1/1.1/1.5).

The typical reaction B was followed with phenyl acetate ( $64\mu$ L, 0.5 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (18 %, *o/m/p* = 1.4/1.2/1).

The identities of trifluoromethylated products of 2m were verified by synthesis of authentic samples from their corresponding phenols in analogy to a literature procedure.<sup>1</sup>



The product was purified as a colorless oil by distillation under vaccum. <sup>1</sup>H NMR (400 M, CDCl<sub>3</sub>)  $\delta$  7.67 (d, *J* = 7.84 Hz, 1H), 7.58 (t, *J* = 7.76 Hz, 1H), 7.35 (t, *J* = 7.66 Hz, 1H), 7.24 (t, *J* = 8.70 Hz, 1H), 2.34 (s, 1H). <sup>13</sup>C NMR (101 M, CDCl<sub>3</sub>)  $\delta$  168.88, 148.13(q, *J*<sub>C-F</sub> = 2.00 Hz), 133.02, 126.91 (q, *J*<sub>C-F</sub> = 4.81 Hz), 125.97, 124.45, 122.91(q, *J*<sub>C-F</sub> = 31.47 Hz), 122.98(q, *J*<sub>C-F</sub> = 272.60 Hz), 20.68. <sup>19</sup>F NMR (377 M, CDCl<sub>3</sub>)  $\delta$  -61.93 (s, 3F).



The product was purified as a colorless oil by distillation under vaccum. <sup>1</sup>H NMR (400 M, CDCl<sub>3</sub>)  $\delta$  7.51-7.50 (m, 2H), 7.37 (s, 1H), 7.31-7.29 (m, 1H), 2.33 (s, 1H). <sup>13</sup>C NMR (101 M, CDCl<sub>3</sub>)  $\delta$  169.19, 150.70, 131.97 (q, *J*<sub>C-F</sub> = 32.99 Hz), 130.00, 125.22, 123.52 (q, *J*<sub>C-F</sub> = 272.40 Hz), 122.68 (q, *J*<sub>C-F</sub> = 3.66 Hz), 118.90 (q, *J*<sub>C-F</sub> = 3.65 Hz), 21.00. <sup>19</sup>F NMR (377 M, CDCl<sub>3</sub>)  $\delta$  -62.72 (s, 3F).

The product was purified as a colorless oil by distillation under vaccum. <sup>1</sup>H NMR (400 M, CDCl<sub>3</sub>)  $\delta$  7.65 (d, J = 8.56 Hz, 2H), 7.22 (d, J = 8.48 Hz, 2H), 2.33 (s, 1H). <sup>13</sup>C NMR (101 M, CDCl<sub>3</sub>)  $\delta$  168.92, 153.15, 128.10 (q,  $J_{C-F} = 32.82$  Hz), 126.79 (q,  $J_{C-F} = 3.74$  Hz), 123.87 (q,  $J_{C-F} = 272.01$  Hz), 122.09, 21.05. <sup>19</sup>F NMR (377 M, CDCl<sub>3</sub>)  $\delta$  -62.27 (s, 3F).



The typical reaction A was followed with benzoic acid (0.061g, 0.5 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0479 g, 0.2 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (34 %, o/m/p = 3.2/1/2.2).

The typical reaction B was followed with benzoic acid (0.061g, 0.5 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol), 0.1wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (38 %, o/m/p = 3.2/1/1.2).

Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.



Typical reaction A was followed with 4'-chloroacetanilide (0.0848 g, 0.5 mmol), 0.1 wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol) and a reaction time of 48 hours to provide **20** in 50 % yield (C2/C1 = 1/1).

Typical reaction B was followed with 4'-chloroacetanilide (0.0848 g, 0.5 mmol), 0.1 wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol) and a reaction time of 48 hours to provide **20** in 14 % yield (C2/C1 = 1.3/1).

The product was purified as a white solid by silica gel chromatography using eluant (50 % EtOAc/hexanes, **2o**-C1  $R_f = 0.4$ , **2o**-C2  $R_f = 0.56$ ).

**20-**C1 <sup>1</sup>H NMR (400 M, CDCl<sub>3</sub>) 7.80 (s, 1H), 7.73 (d, J = 8.56 Hz, 1H), 7.58 (br s, 1H), 7.43 (d, J = 8.64 Hz, 1H), 2.20 (s, 3H). <sup>13</sup>C NMR (101 M, CDCl<sub>3</sub>)  $\delta$  169.18, 136.85, 132.07, 128.78 (q,  $J_{C-F} = 31.63$  Hz), 127.02, 124.02, 122.64 (q,  $J_{C-F} = 273.40$  Hz), 118.99 (q,  $J_{C-F} = 5.66$  Hz), 24.53. <sup>19</sup>F NMR (377 M, CDCl<sub>3</sub>)  $\delta$  -62.85 (s, 3F).

**20-**C2 <sup>1</sup>H NMR (400 M, CDCl<sub>3</sub>) 8.17 (d, J = 8.12 Hz, 1H), 7.59 (d, J = 2.04 Hz, 1H), 7.52 (d, J = 8.68, 1H), 7.35 (br s, 1H), 2.22 (s, 3H). <sup>13</sup>C NMR (101 M, CDCl<sub>3</sub>)  $\delta$  168.54, 133.92, 132.99, 130.12, 126.33 (q,  $J_{C-F} = 5.60$  Hz), 126.13, 123.31 (q,  $J_{C-F} = 273.64$  Hz), 121.64 (q,  $J_{C-F} = 30.48$  Hz), 27.76. <sup>19</sup>F NMR (377 M, CDCl<sub>3</sub>)  $\delta$  -61.03 (s, 3F).



The typical reaction A was followed with pyridine (40  $\mu$ L, 0.5 mmol), 0.1 wt% Rh/anatase TiO<sub>2</sub> (0.008 g, 0.1 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0479 g, 0.2 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (55 %, *o/m/p* = 2.7/2.4/1).

The typical reaction B was followed with pyridine (40  $\mu$ L, 0.5 mmol), 0.1 wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol) and a reaction time of 48 hours. The reaction mixture was analyzed directly by <sup>19</sup>F NMR (50 %, *o/m/p* = 3.5/1/3.7).

Due to the availability of the products, no purification was attempted on this reaction mixture. The fluorine signals of the products were identical to those of the commercial samples.

Typical reaction A was followed with 2-hydroxy-5-trifluoromethylpyridine (0.0816 g, 0.5 mmol),  $Na_2S_2O_8$  (0.0479 g, 0.2 mmol), 0.1 wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and a reaction time of 48 hours to provide **2q** in 51 % yield.

Typical reaction B was followed with 2-hydroxy-5-trifluoromethylpyridine (0.0816 g, 0.5 mmol),  $Na_2SO_4$  (0.14 g, 1 mmol), 0.1 wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol) and a reaction time of 48 hours to provide **2q** in 32 % yield.

The product was purified as a white solid by prep TLC using eluant (67 % EtOAc/hexanes,  $R_f = 0.6$ ). <sup>1</sup>H NMR (400 M, CDCl<sub>3</sub>)  $\delta$  8.02-8.03 (m, 2H). <sup>13</sup>C NMR (101 M, CDCl<sub>3</sub>)  $\delta$  160.81, 138.23

(q,  $J_{C-F} = 4.72 \text{ Hz}$ ), 137.02-136.94 (m), 122.47 (q,  $J_{C-F} = 270.29 \text{ Hz}$ ), 121.68 (q,  $J_{C-F} = 272.06 \text{ Hz}$ ), 121.39 (q,  $J_{C-F} = 32.38 \text{ Hz}$ ), 110.14 (q,  $J_{C-F} = 36.41 \text{ Hz}$ ). <sup>19</sup>F NMR (377 M, CDCl<sub>3</sub>)  $\delta$  -62.41 (s, 3F), -63.30 (s, 3F).

Typical reaction A was followed with 2-amino-5-chloropyrimidine (0.065 g, 0.5 mmol), 0.1 wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0238 g, 0.1 mmol), and a reaction time of 48 hours to provide 2r in 37 % yield.

Typical reaction B was followed with 2-amino-5-chloropyrimidine (0.065 g, 0.5 mmol), 0.1 wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol) and a reaction time of 48 hours to provide 2r in 32 % yield.

The product was purified as a white solid by silica gel chromatography using eluant (33 % EtOAc/hexanes,  $R_f = 0.5$ ). <sup>1</sup>H NMR (400 M, DMSO-D6)  $\delta$  8.59 (s, 1H), 7.55 (s, 2H).

<sup>13</sup>C NMR (101 M, DMSO-D6) δ 162.00, 161.55, 150.52 (q,  $J_{C-F} = 33.91$  Hz), 120.60 (q,  $J_{C-F} = 276.40$  Hz), 113.08. <sup>19</sup>F NMR (377 M, CDCl<sub>3</sub>) δ -68.40 (s, 3F).



Typical gram scale reaction was followed to provide 2s in 75 % yield.

Typical reaction B was followed with caffeine (0.0971 g, 0.5 mmol), 0.1 wt% Rh/anatase  $TiO_2$  (0.016 g, 0.2 mmol), Na<sub>2</sub>SO<sub>4</sub> (0.14 g, 1 mmol) and a reaction time of 48 hours to provide **2s** in 58 % yield.

The product was purified as a white solid by silica gel chromatography using eluant (EtOAc/hexanes = 1/1,  $R_f = 0.4$ ). <sup>1</sup>H NMR (400 M, CDCl<sub>3</sub>)  $\delta$  4.14 (d, J = 1.08 Hz, 3H), 3.57 (s, 3H), 3.40 (s, 3H). <sup>13</sup>C NMR (101 M, CDCl<sub>3</sub>)  $\delta$  155.44, 151.32, 146.50, 138.90 (q,  $J_{C-F} = 40.07$  Hz), 118.73 (q,  $J_{C-F} = 271.27$  Hz), 109.63, 33.17 (d,  $J_{C-F} = 1.60$  Hz), 29.89, 28.18. <sup>19</sup>F NMR (377 M, CDCl<sub>3</sub>)  $\delta$  -62.42 (s, 3F).



Typical gram scale reaction was followed with Theophylline (1.08 g, 6 mmol) to provide **2t** in 73 % yield.

Typical reaction B was followed with caffeine (0.09 g, 0.5 mmol), 0.1 wt% Rh/anatase  $TiO_2$  (0.008 g, 0.2 mmol),  $Na_2SO_4$  (0.14 g, 1 mmol) and a reaction time of 48 hours to provide **2t** in 48 % yield.

The product was purified as a white solid by silica gel chromatography using eluant

(EtOAc/hexanes = 2/1,  $R_f$  = 0.2). <sup>1</sup>H NMR (400 M, DMSO-D6)  $\delta$  3.43 (s, 3H), 3.25 (s, 3H). <sup>13</sup>C NMR (101 M, DMSO-D6)  $\delta$  155.10, 151.47, 147.30, 137.81 (q,  $J_{C-F}$  = 41.47 Hz), 118.64 (q,  $J_{C-F}$  = 269.96 Hz), 109.64, 30.37, 28.40. <sup>19</sup>F NMR (377 M, DMSO-D6)  $\delta$  -62.66 (s, 3F).



2u

Typical reaction A was followed with pentoxifylline (0.139 g, 0.5 mmol), 0.1 wt% Rh/anatase  $TiO_2$  (0.016 g, 0.2 mmol),  $Na_2S_2O_8$  (0.0479 g, 0.2 mmol) and a reaction time of 48 hours to provide **2u** in 67 % yield.

Typical reaction B was followed with pentoxifylline (0.139 g, 0.5 mmol), 0.1 wt% Rh/anatase  $TiO_2$  (0.008 g, 0.1 mmol),  $Na_2SO_4$  (0.14 g, 1 mmol) and a reaction time of 48 hours to provide **2u** in 63 % yield.

The product was purified as a white solid by silica gel chromatography using eluant (EtOAc/hexanes = 1/1,  $R_f = 0.35$ ). <sup>1</sup>H NMR (400 M, CDCl<sub>3</sub>)  $\delta$  4.03 (s, 3H), 3.86 (t, J = 6.6 Hz, 2H), 3.43 (s, 3H), 2.38 (t, J = 6.5 Hz, 2H), 2.01 (s, 3H), 1.51-1.50 (m, 4H).

<sup>13</sup>C NMR (101 M, CDCl<sub>3</sub>) δ 208.64, 155.10, 150.89, 146.38, 138.68 (q,  $J_{C-F} = 39.90$  Hz), 118.07 (q,  $J_{C-F} = 271.20$  Hz), 109.54, 42.83, 40.91, 33.01 (d,  $J_{C-F} = 1.29$  Hz), 29.70, 29.60, 27.11, 20.69. <sup>19</sup>F NMR (377 M, CDCl<sub>3</sub>) δ -62.43 (s, 3F).



Typical reaction was A followed with the obromine (0.09 g, 0.5 mmol), 0.1 wt% Rh/anatase TiO<sub>2</sub> (0.016 g, 0.2 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0479 g, 0.2 mmol) and a reaction time of 48 hours to provide 2v in 40 % yield.

Typical reaction was B followed with the bromine (0.09 g, 0.5 mmol), 0.1 wt% Rh/anatase  $TiO_2$  (0.008 g, 0.1 mmol),  $Na_2SO_4$  (0.14 g, 1 mmol) and a reaction time of 48 hours to provide **2v** in 45 % yield.

The product was purified as a white solid by silica gel chromatography using eluant (EtOAc/hexanes = 1/1,  $R_f = 0.25$ ). <sup>1</sup>H NMR (400 M, CDCl<sub>3</sub>)  $\delta$  9.08 (s, 1H), 4.14 (s, 3H), 3.55 (s, 3H). <sup>13</sup>C NMR (101 M, CDCl<sub>3</sub>)  $\delta$  155.10, 150.93, 148.55, 139.63 (q,  $J_{C-F} = 40.25$  Hz), 118.23 (q,  $J_{C-F} = 271.17$  Hz), 110.16, 33.45(d,  $J_{C-F} = 2.15$  Hz), 29.31. <sup>19</sup>F NMR (377 M, CDCl<sub>3</sub>)  $\delta$  -62.51 (s, 3F).



Typical reaction A was followed with allopurinol (0.0681 g, 0.5 mmol), 0.1 wt% Rh/anatase TiO<sub>2</sub>

(0.016 g, 0.2 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.0479 g, 0.2 mmol) and a reaction time of 48 hours to provide 2w in 57 % yield.

Typical reaction B was followed with allopurinol (0.0681 g, 0.5 mmol), 0.1 wt% Rh/anatase  $TiO_2$  (0.008 g, 0.1 mmol), 0.14 g Na<sub>2</sub>SO<sub>4</sub> (1 mmol) and a reaction time of 48 hours to provide **2w** in 65 % yield.

The product was purified as a white solid by silica gel chromatography using eluant (EtOAc/hexanes = 2/1,  $R_f = 0.2$ ). <sup>1</sup>H NMR (400 M, MeOD-D4)  $\delta$  8.07 (s, 1H). <sup>13</sup>C NMR (101 M, MeOD-D4)  $\delta$  156.59, 155.06, 148.66, 137.49 (q,  $J_{C-F} = 40.12$  Hz), 120.52 (q,  $J_{C-F} = 268.49$  Hz), 102.51. <sup>19</sup>F NMR (377 M, DMSO-D6)  $\delta$  -60.89 (s, 3F).

## **Supplementary References**

1. Cook, A. K., Emmert, M. H., & Sanford, M. S. Steric Control of Site Selectivity in the Pd-Catalyzed C–H Acetoxylation of Simple Arenes. *Org. Lett.* **15**, 5428-5431 (2013).