
SUPPLEMENTARY NOTE 1: SIGN OF Ae
‖

To confirm the reversal in the sign of the hyperfine coupling A‖ between the ground

state (GS) and excited state (ES) orbitals, we mechanically drive spin population in the ES

conditional on the spin state of the 14N nucleus as established within the GS orbital. These

measurements follow the pulse sequence depicted in Supplementary Fig. 1a. This modified

pulse sequence replaces the hard π-pulses used to quantify de
⊥ in the main text with weak

π-pulses conditional on the nuclear spin state.
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Supplementary Figure 1: Measuring the sign of Ae
‖. (a) Pulse sequence used to

verify the sign of Ae
‖. (b) Mechanically driven spin contrast as a function of Bz. The red

curve is a least squares fit to the sum of six Lorentzians. (c,d) Measurements taken at the

(c) low-field and (d) high-field hyperfine resonances that were conditional on the 14N

nuclear spin state. The data in (b-d) were measured on a single device with an NV center

ensemble, and error bars are from the standard deviation in photon counting.

As shown in Supplementary Fig. 1b, we perform this measurement at the high-field and

low-field ES hyperfine resonances. We observe mechanically-driven spin population in the
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mI = +1 manifold at the Bz = 80 G resonance and in the mI = −1 manifold at the

Bz = 109 G resonance. The resonance condition for spin driving is ωm = 2γNVBz + 2Ae
‖mI,

giving Ae
‖ =

(
1
2
ωm − γNVBz

)
/mI. Using the parameter values given in the main text, this

gives Ae
‖/2π = +40 MHz and confirms the sign of Ae

‖.

SUPPLEMENTARY NOTE 2: GROUND STATE MECHANICALLY DRIVEN

RABI OSCILLATIONS
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Supplementary Figure 2: Ground state mechanical Rabi driving. Pulse sequence

used to measure mechanically driven ground state Rabi oscillations.

The GS mechanically driven Rabi oscillations used to quantify Ωg were measured using

the pulse sequence shown in Supplementary Fig. 2. As described in detail in Supplementary

Ref. [1], varying the pulse length of our mechanical driving field introduces bandwidth-related

artifacts to a Rabi measurement. Instead, we fix the length of the mechanical pulse and vary

the interaction time by sweeping a pair of magnetic π-pulses through the mechanical pulse.

This yields the data seen in Fig. 3a of the main text where the “Effective Rabi Interval”

label on the x-axis corresponds to the delay of the π-pulse pair.

For a single NV center, a GS Rabi measurement is described by the function

P|+1〉(t,Ωg) =
1

2

{
1− e−t/TRabi cos[Ωgτ(t)]

}
(1)

where τ(t) =
∫ t

0

(
1− e−t′/τQ

)
dt′ =

[(
e−t/τQ − 1

)
τQ + t

]
accounts for the ring-up of the

mechanical resonator and τQ = 2Q/ω0. For an ensemble measurement, we account for

spatial inhomogeneities by taking the weighted average of Supplementary Eq. 1 over the
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PSF of our microscope:

P ens
|+1〉 =

∫∞
0
P|+1〉(t,Ωg| sin [2πz/λ] |)Γopt(z)dz∫∞

0
Γopt(z)dz

. (2)

Here, we approximate the PSF by the function

Γopt(z) = Γ0

{
sin{κ[z0](z − z0)}
κ[z0](z − z0)

}2

(3)

where Γ0 is the peak optical pumping rate, κ[z0] defines the depth-dependent PSF width [2],

z is the distance below the diamond surface, and z0 = 7.9± 0.9 µm is the focus depth of the

PSF. We discretize the integral in Supplementary Eq. 2 and fit each GS Rabi curve, fixing

τQ to be the same across the fits.

SUPPLEMENTARY NOTE 3: STEADY STATE PHONON OCCUPANCY

Within the two-level toy model used to analyze the proposed cooling protocol, the spin-

resonator dynamics for a single NV center coupled to a mechanical resonator are governed

by

ρ̇ = −i[H, ρ] + LΓρ+ Lγρ (4)

where H, LΓρ, and Lγρ are defined in the main text. Using these expressions and the ladder

operator commutation relations, we derive the system of ordinary differential equations that
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governs the time evolution of the second order moments [3]. This system is given by

d

dt
〈a†a〉 = (−iλ)

(
〈S+a

†〉 − 〈S−a〉 − 〈S+a〉+ 〈S−a†〉
)

+ γnth − γ〈a†a〉,

d

dt
〈S+S−〉 = (−iλ)

(
〈S+a

†〉 − 〈S−a〉 − 〈S−a†〉+ 〈S+a〉
)
− Γ⊥〈S+S−〉,

d

dt
〈S+a

†〉 = (iλ)
(
1 + 〈a†a†〉+ 〈S+S+〉+ 〈S+S−〉+ 〈a†a〉

)
−
(

1

2
Γ⊥ +

1

2
γ − 2iωm + Γ‖

)
〈S+a

†〉,

d

dt
〈S−a†〉 = (−iλ)

(
〈a†a〉+ 〈a†a†〉 − 〈S+S−〉 − 〈S−S−〉

)
−
(

1

2
Γ⊥ +

1

2
γ + Γ‖

)
〈S−a†〉,

d

dt
〈S+a〉 = (iλ)

(
〈a†a〉+ 〈aa〉 − 〈S+S−〉 − 〈S+S+〉

)
−
(

1

2
Γ⊥ +

1

2
γ + Γ‖

)
〈S+a〉,

d

dt
〈S−a〉 = (−iλ)

(
1 + 〈aa〉+ 〈S−S−〉+ 〈S+S−〉+ 〈a†a〉

)
−
(

1

2
Γ⊥ +

1

2
γ + 2iωm + Γ‖

)
〈S−a〉,

d

dt
〈S−S−〉 = (−2iλ)

(
〈S−a†〉+ 〈S−a〉

)
−
(

Γ⊥ + 2iωm +
1

2
Γ‖

)
〈S−S−〉,

d

dt
〈S+S+〉 = (2iλ)

(
〈S+a

†〉+ 〈S+a〉
)
−
(

Γ⊥ − 2iωm +
1

2
Γ‖

)
〈S+S+〉,

d

dt
〈a†a†〉 = (2iλ)

(
〈S+a

†〉+ 〈S−a†〉
)
− (γ − 2iωm) 〈a†a†〉,

and

d

dt
〈aa〉 = (−2iλ) (〈S+a〉+ 〈S−a〉)− (γ + 2iωm) 〈aa〉

(5)

where Γ‖ = 1/T ∗2e, Γ⊥ = 1/T1e, and the other parameters are as defined in the main text.

We make the secular approximation of ignoring the fast-oscillating double-raising and

double-lowering terms and solve this system in the limit γ, λ� Γ⊥,Γ‖. The time evolution

of the phonon occupancy n = 〈a†a〉 can then be rewritten

dn

dt
= γ (nth − n)− 4λ2

2Γ‖ + Γ⊥
n (6)

as quoted in the main text.

SUPPLEMENTARY NOTE 4: CONTROL FIELDS FOR COOLING

The proposed cooling protocol requires a static magnetic bias field Bz to bring the spin-

strain interaction into resonance, a continuous gigahertz-frequency magnetic field Ωmag to ad-

dress the |g, 0〉 ↔ |g,−1〉 transition, and continuous optical illumination Γopt to re-initialize

the system.

4



0.016 

0.012 

0.008 

0.004 

10 100 

(a) (b) 

𝑇2g
∗ = 118 ns Γopt = 130 MHz 

1 

F
ra

c
tio

n
 o

f P
o
p
u

la
tio

n
 In

v
o
lv

e
d
 in

 C
o
o
lin

g
 

Supplementary Figure 3: Control fields for resonator cooling. The fraction α of

the ensemble population involved in the cooling plotted as a function of the magnetic

driving field Ωmag and (a) the optical pumping rate Γopt or (b) the ground state coherence

time T ∗2g.

For the ω0/2π = 1 GHz resonators considered in this work, Bz =
(
ωm/2− A‖

)
/γNV =

160 G. The magnitudes of Ωmag and Γopt determine α, the fraction of the ensemble population

involved in the cooling. A large Γopt is desired to saturate the steady state population in

the NV center ES. A large Ωmag is also required to maximize the spin population driven into

|g,−1〉. As shown in Supplementary Fig. 3a, α saturates for large control fields at α ∼ 0.017.

Here, we have used a GS coherence time of T ∗2g = 118 ns as reported in Supplementary Ref. [4]

for an NV center ensemble with ν = 7× 1017 cm−3.

This low value of α reduces the cooling performance of the proposed protocol and can

be understood intuitively by comparing the decay rate from the ES to the GS through

the metastable state |S1〉 kesg to the rate of decay directly to the GS keg. Using the rates

quoted in Table 1 of the main text, this gives the ratio kesg/keg ∼ 0.02, which is comparable

to α ∼ 0.017 and suggests that most of the spin population has become trapped in |S1〉.

Examining the steady state density matrix used to calculate α, we see that this is indeed

the case, and |S1〉 contains ∼ 73% of the steady state spin population. Without a means of

selectively depopulating |S1〉, the average fraction of the ensemble involved in the cooling is
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thus maximized at α ∼ 0.017.

For the analysis of our cooling protocol presented in the main text, we use Ωmag/2π =

60 MHz and Γopt = 130 MHz, which gives α = 0.017. The large Ωmag required to achieve

this α has been previously demonstrated in ground state spin control experiments [5], and

NV centers are regularly optically pumped to saturation. The scale of these control fields

is therefore experimentally reasonable. As demonstrated by Supplementary Fig. 3b, for

Ωmag/2π = 60 MHz and Γopt = 130 MHz, α remains robust until T ∗2g becomes comparable

to T ∗2e = 6 ns.

SUPPLEMENTARY NOTE 5: HIGHER ORDER MECHANICAL MODES

The eigenfrequencies of the mechanical modes scale with the resonator dimensions as

ωn = κnt/l
2. For a beam, κn = 120, 330, 628, ... GHz·µm. We limit our analysis to ω0/2π =

1 GHz resonators. The next order mode of such a resonator will be ω1/2π = 2.8 GHz.

Assuming a transform-limited ES linewidth of ∼ 1/T ∗2e = 170 MHz, the resulting spectral

isolation is more than enough to isolate the spin dynamics from higher order mechanical

modes.

SUPPLEMENTARY NOTE 6: VALIDATION OF TWO-LEVEL MODEL

As the main text explains, to study our proposed cooling protocol we simplify the full

seven-level NV center to an effective two-level spin system. To validate our use of this two-

state distillation (TSD), we compare the results of the TSD analysis to the cooling predicted

a Lamb-Dicke (LD) treatment of the seven-level NV model and to numerical simulations

of the full seven-level NV center-plus-resonator Hamiltonian. Our simplification has two

potential sources of error: the reduction from the seven-level system to the two-level system

for one NV and the scaling from one NV to many NVs.

The LD treatment offers a powerful route to calculating nf when a dissipative, multi-

level system such as an NV center spin is coupled to a mechanical resonator and the

multi-level system’s dynamics are much faster than the resonator dynamics. Under the

LD approximation, the NV center spin can be adiabatically eliminated from the resonator

dynamical equation, and the cooling rate from a single NV center is given by Γc,i =
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2λ2 {Re [S(ωm)]− Re [S(−ωm)]}. Here, S(ω) is the spectral function of the ES spin-strain

interaction, which we calculate as described in Supplementary Refs. [6] and [7] for analogous

systems. For an ensemble of N spins, the total cooling rate is the sum of the individual

rates, giving Γc = 2 {Re [S(ωm)]− Re [S(−ωm)]}
∑N

i=1 λ
2
i . This allows us to define the ef-

fective ensemble-resonator coupling λeff =

√
N∑
i=1

λ2
i , just as we do in the TSD. In the limit

γnth, λeff

√
〈n〉+ 1/2� 1/T ∗2e, 1/T1e, ωm, the ensemble-resonator coupling can be treated in

perturbation theory and the resonator dynamical equation can be solved to find the steady

state phonon number

nLD
f =

ΓcN0 + γnth

Γc + γ
(7)

whereN0 = Re [S(−ωm)] / {Re [S(ωm)]− Re [S(−ωm)]} is the minimal achievable occupancy.

To compare the error in the LD and TSD methods, we numerically solve the seven-level

model explicitly, solving for the steady state using the full Hilbert space, similar to the

method used in Supplementary Ref. [8]. To efficiently solve for the steady state (Ax = 0)

we represent the master equation in superoperator space and explicitly construct the A

matrix as

Ax = (−i(I⊗H −H ⊗ I) + L̃)x, (8)

where x = vec(ρ), the vectorization of ρ, constructed by stacking the columns of ρ into

a single column vector, H is the Hamiltonian of the system, I is the identity matrix in

the total Hilbert space, and L̃ is the collection of Lindblad superoperators represented

in superoperator space. For example, using the single Lindblad superoperator γD[a]ρ =

γ(2aρa† − a†aρ− ρa†a), gives

L̃ = γ(2a⊗ a− I⊗ a†a− a†a⊗ I). (9)

The superoperator form of both H and the Lindblad terms are derived from the identity

AXB = (BT ⊗A)vec(X), where A,B, and X are all matrices. H in Supplementary Eq. 8

can generally represent any system, but we used the seven-level Hamiltonian of Eq. 9 in the

main text (or multiple instances of this, in the case of more than one NV).

A is an extremely large matrix, but it is also extremely sparse. For our system, A has

less than 10 non-zeros per row, but, for the seven-level Hamiltonian, has matrix dimensions

M2 ×M2, where M = 7Nnph and nph is the largest phonon state accessible in the simula-

tion. We utilize the software package PETSc [9, 10] to perform these large, but very sparse,
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calculations. A is stored in compressed sparse row format, ensuring we do the minimal

amount of calculations and use the minimum amount of storage. A is a complex, nonsym-

metric matrix, restricting us to use GMRES [11] as our parallel iterative solver, which has

slow convergence, especially with increasing system size. Explicitly constructing A allows

us to use efficient preconditioners, such as the additive Schwarz method, to accelerate the

convergence. We solve for the steady state rather than doing explicit time dynamics because

of the wide separation of time scales in our model. The NV dynamics are very fast, while

the cooling is much slower. For an explicit time stepping approach, millions of time steps

are necessary to get to the steady state solution, whereas the steady state results typically

converge in less than 5000 iterations.

To understand the error from the model reduction, we first focus on simulations using

just a single NV. To see significant cooling in manageable computational time, we increase

the spin-strain coupling by a factor of 100 and reduce the resonator frequency to ωm/2π =

475 MHz, causing observable cooling but ensuring that the resonator is still only a small

perturbation upon the NV center dynamics. We also restrict ourselves to small nth values

(equivalently, small temperatures) so that the Hilbert space size needed to approximate the

infinite phonon bath is small and the computation remains tractable.

Supplementary Fig. 4 shows the relative error in the final phonon number nx predicted by

the TSD and the LD treatments with respect to that predicted by the seven-level simulation

n7 for one NV center. We see that, compared to LD, the TSD better approximates the

numerical simulations at all values of nth. As nth increases, the error in the TSD results

increases and then levels off at an asymptotic value of less than 0.0075, less than 1% error.

At room temperature, where nth is on the order of 10,000 this simplification would only give

an error of only 75 phonons in the final phonon number, showing that the TSD is justified,

at least for a single NV. Furthermore, it is important to note that both analytical models

underestimate the cooling as compared to the numerical simulations. The LD and TSD

treatments thus serve as upper bounds on the final phonon number nf.

It is also important to understand how the error scales when the number of NVs is

increased. This is a much more computationally challenging task, since each additional

seven-level NV increases the total Hilbert space size by a factor of seven. It is only feasible

to use two or three NVs, in addition to the mechanical resonator. As such, we did several

calculations with one and two NVs, and a few small nth values, as show in Supplementary
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Supplementary Figure 4: Validation of two-level model for one NV center.

Error in the final phonon number predicted by the analytical two-state distillation (TSD)

and Lamb-Dicke (LD) treatments compared to that predicted by the numerical seven-level

simulation for one NV.

(a) (b)

Supplementary Figure 5: Validation of two-level model for multiple NV

centers. (a) Relative error of the analytical two-state distillation (TSD) and Lamb-Dicke

(LD) treatments with respect to the numerical seven-level simulation for different numbers

of NVs and different nth values. (b) Slope of the lines fit to the curves in (a) plotted as a

function of nth.

Fig. 5a. For both TSD and LD, the error gets worse going from one NV to two NVs, but the

slope of this change is different for the different nth values. In fact, for both treatments the

slope seems to converge with increasing nth, as shown in Supplementary Fig. 5b. While it is
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nf/nth

ν = 2.0× 1018 cm−3 ν = 4× 1020 cm−3

Two State Distillation 0.861 0.0300

Lamb-Dicke 0.889 0.0389

Supplementary Table I: Comparison of different cooling protocol treatments.

hard to make any conclusion about the error for a dense ensemble, we can at least see that the

increase in error is such that the two-level simplification is still an upper bound to the cooling,

though a slightly worse one. We also did calculations with three NVs where possible, and

verified that the linear behavior extends to at least three NVs. Explicitly including enough

NVs to see the many NV behavior is computationally intractable, and motivates further

theoretical study, such as investigations into extensions to the Tavis-Cummings model for

systems with more than two states. Nevertheless, these results imply that nf predicted by

the analytical models once again serves as an upper bound, and the protocol may cool better

than the models suggest.

In all cases examined here, the TSD analysis outperforms LD. Most importantly, as the

number of NV centers in the ensemble grows, the TSD error grows more slowly than the LD

error. This is because as λeff grows the spin ensemble becomes less of a perturbation on the

resonator and the system departs from the LD regime. More specifically, the approximation

λeff

√
〈n〉+ 1/2� 1/T ∗2e, 1/T1e begins to fail. This failure of the LD treatment for dense en-

sembles at high temperature motivated our development of the TSD analysis. Nevertheless,

both methods predict approximately equal cooling power for the device studied in the main

text as shown in Supplementary Table I.

SUPPLEMENTARY NOTE 7: COMPARING DIFFERENT SPIN-STRAIN INTER-

ACTIONS

The GS spin-strain interaction could also be employed to cool a mechanical resonator

from room temperature. To compare the cooling efficiency of the GS interaction with that
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of the ES interaction, we compute the ratio of the single-spin cooperativities

ηe

ηg

=
λ2

eT
∗
2e

λ2
gT
∗
2g

=

(
de
⊥
dg
⊥

)2
T ∗2e

T ∗2g

= (13.5)2 T
∗
2e

T ∗2g

(10)

where the variables are as defined in the main text. As discussed in the main text, effects

like exchange narrowing and the truncation of the spin bath make it difficult to predict T ∗2g

in a nanostructure. Nevertheless, we can roughly estimate ηe/ηg by using coherence times

measured in bulk diamond.

We first treat the ensemble with an aligned NV center density ν = 7.0 × 1017 cm−3

studied by Supplementary Ref. [4]. The GS {0,−1} qubit coherence time for this ensemble

was reported to be T
{0,−1}
2g = 118 ns [4]. Because the spin-strain interaction couples the

|+1〉 and |−1〉 states, the {+1,−1} qubit coherence time sets the single-spin cooperativity.

If we assume the spin dephasing is dominated by magnetic field noise, the {+1,−1} qubit

coherence of this ensemble is T
{+1,−1}
2g = 59 ns. Taking T ∗2e = 6.0 ns [12], the ratio of

cooperativities becomes ηe/ηg = 19 as quoted in the main text.

For a more moderate density, we turn to the ensemble with ν = 2.8×1013 cm−3 measured

in Supplementary Ref. [1], for which T
{+1,−1}
2g was measured directly to be 450 ns [1]. This

gives ηe/ηg = 2.4 as quoted in the main text.

Finally, we note that experimental demonstrations of linewidth narrowing effects in nanos-

tructures suggest that the ES spin coherence of a dense ensemble will remain limited by the

motional narrowing rate within a nanostructure [13, 14]. Our analysis of the proposed

cooling protocol is thus expected to remain valid, even at very large defect densities.
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