Supplemental Materials

Development of a Reporter System for *In Vivo* Monitoring of γ -Secretase Activity

in Drosophila

Young Gi Hong, Seyun Roh, Donggi Paik, and Sangyun Jeong

Fig. S1. Phenotypic characterization of wing vein truncations

(A) Length comparison of L3, L4, and L5 veins in wild-type wing. The average L4 to L3 vein length ratio (=b/a) was 0.97 ± 0.0036 (n=23). The average L5 to L3 vein length ratio (=c/a) was 0.58 ± 0.0056 (n=23).

(B) The average percentages of L4 and L5 vein truncations were calculated by the following equations:

L4 vein truncation = $[(0.97x-y)/(0.97x)] \times 100$ (%)

L5 vein truncation = $[(0.58x-z)/(0.58x)] \times 100$ (%)

Fig. S2. Genetic interactions among N^{TM} -S V^{42m} , Notch, and presenilin alleles

(A) Females heterozygous for e16E-Gal4 show a normal pattern of five longitudinal

veins. Scale bar indicates $50 \,\mu\text{m}$.

(B) Overexpression of N^{TM} - SV^{42m} in the posterior compartment leads to moderate vein truncation (arrows).

(C) In females heterozygous for N^{Ax-E^2} , the wing shows mild truncation only in L5 vein (arrow).

(D) One copy of N^{Ax-E2} mutation slightly enhances the GOF phenotype of N^{TM} -SV^{42m} (arrows).

(E) Overexpression of *psn RNAi* in the posterior compartment results in vein thickening (square brackets).

(F) Overexpression of *psn RNAi* completely suppresses the GOF of N^{TM} -SV^{42m}. Square brackets indicate the vein thickening phenotype.

(G) Percentages of wing vein truncations in females with indicated genotypes (***p<0.001, *t* test). Error bars indicate S.E.M. by *t* test. n = number of wings scored for each genotype.

Fig. S3. Genetic interactions among APPL-SV^{82m}, Notch, and presenilin alleles

(A) Females heterozygous for e16E-Gal4 show a normal pattern of five longitudinal veins. Scale bar indicates 50 μ m.

(B) Overexpression of *APPL-SV*^{82m} in the posterior compartment causes severe vein truncation (arrows). Asterisks indicate a false vein.

(C) In females heterozygous for N^{4x-E^2} , the wing shows mild truncation only in L5 vein (arrow).

(D) One copy of N^{Ax-E2} mutation hardly enhances the L4 vein GOF phenotype of *APPL-SV*^{85m} (arrows). Asterisks indicate a false vein.

(E) Overexpression of *psn RNAi* in the posterior compartment results in vein thickening (square brackets).

(F) Overexpression of *psn RNAi* in part suppresses the GOF vein phenotype of *APPL-* SV^{85m} (arrows).

(G) Percentages of wing vein truncations in females with indicated genotypes (p>0.3 and ***p<0.001, *t* test). Error bars indicate S.E.M. by *t* test. n = number of wings scored for each genotype.

Fig. S4. Genetic interactions among *p*35, N^{TM} -S V^{42m} , and APPL-S V^{82m}

(A) Females heterozygous for e16E-Gal4 show a normal pattern of five longitudinal veins. Scale bar indicates $50 \,\mu$ m.

(B) Overexpression of N^{TM} - SV^{42m} in the posterior compartment results in moderate vein truncation (arrows). Asterisks indicate a false vein.

(C) Overexpression of APPL- SV^{82m} in the posterior compartment causes severe vein truncation (arrows).

(D) Overexpression of *p35* in the posterior compartment results in slight vein truncation (arrow).

(E) Coexpression of p35 in the posterior compartment slightly increases the GOF vein phenotype of N^{TM} -SV^{42m} (arrows).

(F) Coexpression of *p35* in the posterior compartment significantly decreases the L4 vein GOF phenotype of *APPL-SV*^{85m} (arrows).

(G) Percentages of wing vein truncations in females with indicated genotypes (*p<0.05,

***p<0.001, and †not applicable, *t* test). Error bars indicate S.E.M. by *t* test. n = number of wings scored for each genotype.

Figure S2

Figure S3

Figure S4

