Supplementary Information

# Title: Myotonic dystrophy type 1 patient-derived iPSCs for the investigation of CTG repeat instability

Authors: Junko Ueki, Masayuki Nakamori, Masahiro Nakamura, Misato Nishikawa, Yoshinori Yoshida, Azusa Tanaka, Asuka Morizane, Masayoshi Kamon, Toshiyuki Araki, Masanori P. Takahashi, Akira Watanabe, Nobuya Inagaki and Hidetoshi Sakurai

#### Supplementary Fig. S1 A 1% gel, 70 V and 4 hours

#### B 0.6% gel, 30 V and 11.5 hours



### Supplementary Fig. S2











| Pt-1A         |          | Undiffer-             | CMs  | Neurons |
|---------------|----------|-----------------------|------|---------|
|               | Moon     | 1072                  | 1000 | 1026    |
| <b>F</b> orby | Median   | 1073                  | 1022 | 1030    |
| Early         | iviedian | 1117                  | 1101 | 1142    |
| (P15)         | SD       | 318                   | 306  | 311     |
|               | CV       | 0.30                  | 0.30 | 0.30    |
|               | Mean     | 1133                  | 1113 | 1205    |
| Middle        | Median   | 1149                  | 1146 | 1225    |
| (P24)         | SD       | 207                   | 257  | 186     |
|               | CV       | 0.18                  | 0.23 | 0.15    |
|               | Mean     | 1282                  | 1294 | 1233    |
| Late<br>(P35) | Median   | 1255                  | 1389 | 1270    |
|               | SD       | 294                   | 358  | 302     |
|               | CV       | 0.23                  | 0.28 | 0.24    |
| Pt-2B         |          | Undiffer-<br>entiated | CMs  | Neurons |
|               | Mean     | 1851                  | 1947 | 1818    |
| Early         | Median   | 1966                  | 2015 | 2086    |
| (P17)         | SD       | 496                   | 451  | 644     |
|               | CV       | 0.27                  | 0.23 | 0.35    |
|               | Mean     | 1978                  | 2200 | 1993    |
| Middle        | Median   | 2190                  | 2336 | 2151    |
| (P27)         | SD       | 508                   | 370  | 527     |
|               | CV       | 0.26                  | 0.17 | 0.26    |
|               | Mean     | 2252                  | 2050 | 2207    |
| Late          | Median   | 2335                  | 2325 | 2355    |
| (P37)         | SD       | 385                   | 639  | 372     |
|               | CV       | 0.17                  | 0.31 | 0.17    |
| Pt-3B         |          | Undiffer-<br>entiated | CMs  | Neurons |
|               | Mean     | 1900                  | 2212 | 2034    |
| Early         | Median   | 2354                  | 2392 | 2315    |
| (P11)         | SD       | 794                   | 482  | 519     |
|               | CV       | 0.42                  | 0.22 | 0.26    |
|               | Mean     | 2078                  | 2385 | 2540    |
| Middle        | Median   | 2328                  | 2561 | 2590    |
| (P21)         | SD       | 661                   | 592  | 290     |
| , , ,         | CV       | 0.32                  | 0.25 | 0.11    |
|               | Mean     | 2224                  | 2306 | 2017    |
| Late          | Median   | 2475                  | 2490 | 2418    |
| (P31)         | SD       | 564                   | 465  | 843     |
| ( )           | CV       | 0.25                  | 0.20 | 0.42    |
|               |          | 0.20                  | 0.20 | 0.74    |

Supplementary Table S1

| Pt-1A-        | MvoD   | Undiffer- | Myocytes |  |
|---------------|--------|-----------|----------|--|
|               |        | entiated  |          |  |
|               | Mean   | 1132      | 1127     |  |
| Early         | Median | 1203      | 1199     |  |
| (P22)         | SD     | 294       | 279      |  |
|               | CV     | 0.26      | 0.25     |  |
|               | Mean   | 1258      | 1248     |  |
| Middle        | Median | 1268      | 1137     |  |
| (P32)         | SD     | 224       | 327      |  |
|               | CV     | 0.18      | 0.26     |  |
|               | Mean   | 1068      | 1064     |  |
| Late          | Median | 1086      | 1079     |  |
| (P44)         | SD     | 397       | 413      |  |
|               | CV     | 0.37      | 0.39     |  |
|               |        | Undiffer- | Myocytes |  |
| Pt-2B-        | MyoD   | entiated  |          |  |
|               | Mean   | 1874      | 1924     |  |
| Early         | Median | 2091      | 1992     |  |
| (P21)         | SD     | 545       | 557      |  |
|               | CV     | 0.29      | 0.29     |  |
|               | Mean   | 2153      | 2190     |  |
| Middle        | Median | 2254      | 2271     |  |
| (P31)         | SD     | 461       | 430      |  |
|               | CV     | 0.21      | 0.20     |  |
|               | Mean   | 2175      | 2240     |  |
| Late          | Median | 2294      | 2318     |  |
| (P42)         | SD     | 450       | 528      |  |
|               | CV     | 0.21      | 0.24     |  |
| <b>B</b> : 45 |        |           |          |  |
| Pt-3B-        | ·MyoD  | entiated  | Myocytes |  |
|               | Mean   | 1936      | 2164     |  |
| Early         | Median | 2301      | 2448     |  |
| (P20)         | SD     | 653       | 569      |  |
|               | CV     | 0.34      | 0.26     |  |
|               | Mean   | 1989      | 1778     |  |
| Middle        | Median | 2269      | 1675     |  |
| (P29)         | SD     | 801       | 733      |  |
|               | CV     | 0.40      | 0.41     |  |
|               | Mean   | 2036      | 1900     |  |
| Late          | Median | 2387      | 1806     |  |
| (P39)         | SD     | 867       | 723      |  |
|               | CV     | 0.43      | 0.38     |  |

Supplementary Table S2

## **Figure legends**

**Supplementary Fig. S1** Representative image taken with LAS 4000. DNA markers were loaded into the lanes on the far left and far right of the blots. In the other 32 lanes at the top and the other 32 lanes at the bottom of the gel, spPCR products were loaded at the same time. The bands at the very bottom of the gels show a normal allele with around 20 to 35 CTG repeats. The electrophoresis conditions are shown in the figure. (A): Representative picture of Pt-1. The upper bands are of Pt-1B undifferentiated iPSCs, passage number 31, and the lower bands are of cardiomyocytes, differentiated from the iPSCs. (B): Representative picture of Pt-2 and Pt-3. The upper bands are of Pt-2A-MyoD undifferentiated iPSCs, passage number 35, and the lower bands are of myocytes on day 8, differentiated from the MyoD-iPSCs.

**Supplementary Fig. S2** Monocytes from patient 1 show different lengths of CTG repeats. PCR was conducted using the same primers used for spPCR, but with higher amounts of genome. The far left and far right lanes were loaded with DNA markers.

Supplementary Fig. S3 CTG repeats of Pt-1A. (A): The distribution of the CTG repeats in the undifferentiated iPSCs and the CMs and neurons differentiated from the undifferentiated iPSCs at early (passages 10-17), middle (passages 21-27) and late passage numbers (passages 31-37), following the strategy shown in Fig. 1A, left. The lengths of the CTG repeats were grouped in bins spanning 50 repeats. Student's t-test was applied to each group of different CTG repeat lengths before being grouped in bins. P-values are shown. Because of the multiple comparison, the appropriate significance level was determined by Bonferroni correction, requiring a  $P \leq$ 0.0056 to be significant at the 95% level. P stands for *P*-values. (B): Mean repeat length of the nine samples. The original lengths before being grouped in bins were used to calculate the mean. The nine bar graphs correspond to 1) to 9) in Fig. S3A. (C): Coefficient of variation (CV) of the repeat lengths of the nine samples. CV is defined as the ratio of the standard deviation (SD) to the mean. The original lengths before being grouped in bins were used to calculate the SD. The nine bar graphs correspond to 1) to 9) in Fig. S3A. (D): The distribution of the CTG repeats in undifferentiated MyoD-iPSCs and in myocytes differentiated from the undifferentiated MyoDiPSCs at early (passages 20-26), middle (passages 29-36) and late passage numbers (passages 40-48), following the strategy shown in Fig. 1A, right. The lengths of the CTG repeats were grouped in bins spanning 50 repeats. Student's *t*-test was applied to each group of different CTG repeat lengths before being grouped in bins. P-values are shown. Because of the multiple comparison, the appropriate significance level was determined by Bonferroni correction, requiring a P  $\leq$  0.0083 to be significant at the 95% level. P stands for *P*-values. (**E**), (**F**): Mean and CV repeat lengths of six samples. The six bar graphs correspond to 1) to 6) in Fig. S3D.

**Supplementary Fig. S4** CTG repeats of Pt-2B. **(A):** The distribution of the CTG repeats in the undifferentiated iPSCs and the CMs and neurons differentiated from the undifferentiated iPSCs at early (passages 10-17), middle (passages 21-27) and late passage numbers (passages 31-37), following the strategy shown in Fig. 1A, left. The lengths of the CTG repeats were grouped in

bins spanning 50 repeats. Student's t-test was applied to each group of different CTG repeat lengths before being grouped in bins. P-values are shown. Because of the multiple comparison, the appropriate significance level was determined by Bonferroni correction, requiring a P ≤ 0.0056 to be significant at the 95% level. P stands for P-values. (B): Mean repeat length of the nine samples. The original lengths before being grouped in bins were used to calculate the mean. The nine bar graphs correspond to 1) to 9) in Fig. S4A. (C): Coefficient of variation (CV) of the repeat lengths of the nine samples. CV is defined as the ratio of the standard deviation (SD) to the mean. The original lengths before being grouped in bins were used to calculate the SD. The nine bar graphs correspond to 1) to 9) in Fig. S4A. (D): The distribution of the CTG repeats in undifferentiated MyoD-iPSCs and in myocytes differentiated from the undifferentiated MyoDiPSCs at early (passages 20-26), middle (passages 29-36) and late passage numbers (passages 40-48), following the strategy shown in Fig. 1A, right. The lengths of the CTG repeats were grouped in bins spanning 50 repeats. Student's t-test was applied to each group of different CTG repeat lengths before being grouped in bins. P-values are shown. Because of the multiple comparison, the appropriate significance level was determined by Bonferroni correction, requiring a P  $\leq$  0.0083 to be significant at the 95% level. P stands for *P*-values. (E), (F): Mean and CV repeat lengths of six samples. The six bar graphs correspond to 1) to 6) in Fig. S4D.

Supplementary Fig. S5 CTG repeats of Pt-3B. (A): The distribution of the CTG repeats in the undifferentiated iPSCs and the CMs and neurons differentiated from the undifferentiated iPSCs at early (passages 10-17), middle (passages 21-27) and late passage numbers (passages 31-37), following the strategy shown in Fig. 1A, left. The lengths of the CTG repeats were grouped in bins spanning 50 repeats. Student's t-test was applied to each group of different CTG repeat lengths before being grouped in bins. *P*-values are shown. Because of the multiple comparison, the appropriate significance level was determined by Bonferroni correction, requiring a P ≤ 0.0056 to be significant at the 95% level. P stands for P-values. (B): Mean repeat length of the nine samples. The original lengths before being grouped in bins were used to calculate the mean. The nine bar graphs correspond to 1) to 9) in Fig. S5A. (C): Coefficient of variation (CV) of the repeat lengths of the nine samples. CV is defined as the ratio of the standard deviation (SD) to the mean. The original lengths before being grouped in bins were used to calculate the SD. The nine bar graphs correspond to 1) to 9) in Fig. S5A. (D): The distribution of the CTG repeats in undifferentiated MyoD-iPSCs and in myocytes differentiated from the undifferentiated MyoDiPSCs at early (passages 20-26), middle (passages 29-36) and late passage numbers (passages 40-48), following the strategy shown in Fig. 1A, right. The lengths of the CTG repeats were grouped in bins spanning 50 repeats. Student's t-test was applied to each group of different CTG repeat lengths before being grouped in bins. P-values are shown. Because of the multiple comparison, the appropriate significance level was determined by Bonferroni correction, requiring a P  $\leq$  0.0083 to be significant at the 95% level. P stands for *P*-values. (E), (F): Mean and CV repeat lengths of six samples. The six bar graphs correspond to 1) to 6) in Fig. S5D.

CellTrace<sup>™</sup> Violet proliferation analysis. (A): Flow cytometric Supplementary Fig. S6 analysis of Pt-1B-MyoD undifferentiated iPSCs (Day 0) just after being stained with CellTrace<sup>™</sup> Violet. (B): Flow cytometric analysis of Pt-1B-MyoD undifferentiated iPSCs after culturing for seven days. The numbers at the top indicate the number of cell divisions. (C): Flow cytometric analysis of myocytes seven days after differentiation from Day 0 of the undifferentiated iPSCs. The numbers at the top indicate the number of cell divisions. (D): The number of cell divisions of Pt-1A-MyoD and Pt-1B-MyoD after seven days in the undifferentiated or in the myogenic differentiation culture. Mean values are indicated in bars. Error bars indicate SD (n=3). Two-way analysis of Variance (ANOVA) was used to test differences between the undifferentiated cells group and the myocytes group based on Scheffe's test (\*\*p<0.01). (E): The doubling time of Pt-1A-MyoD and Pt-1B-MyoD in the undifferentiated or in the myogenic differentiation culture. Mean values are indicated by bars. Error bars indicate SD (n=3). Two-way analysis of Variance (ANOVA) was used to test the differences between the undifferentiated cells group and the myocytes group based on Scheffe's test (\*\**p*<0.01).

**Supplementary Table S1** Repeat lengths of Pt-1A, Pt-2B and Pt-3B. P stands for the passage number.

**Supplementary Table S2** Repeat lengths of Pt-1A-MyoD, Pt-2B-MyoD and Pt-3B-MyoD. P stands for the passage number.

Supplementary Video 1 Representative video of CMs on day 20 (Pt-1B).