1	ELECTRONIC SUPPLEMENTARY INFORMATION (SI)
2	
3	TITLE
4	Linking gene expression to productivity to unravel long- and short-term responses of
5	seagrasses exposed to CO ₂ in volcanic vents
6	
7	AUTHORS
8	Irene Olivé, João Silva, Chiara Lauritano, Monya M. Costa, Miriam Ruocco, Gabriele
9	Procaccini, Rui Santos
10	
11	
12	APPENDIX 1
13	Supplementary information on Results. Selection, stability and ranking of reference
14	genes in Cymodocea nodosa. Results of two-way ANOVA test on productivity of C. nodosa.
15	
16	Table S1. Selection of reference genes in Cymodocea nodosa based on the BestKeeper
17	approach ¹ . Lowest standard deviation (SD) is underlined. n , number of plant samples
18	in the tested conditions; GM, geometric mean of C _T -value; AM, arithmetic mean of
19	C_T -value; Min and Max, the extreme values of C_T ; SD, standard deviation of C_T ;

20 CV, coefficient of variance as percentage.

	18S	elF4A	GAPDH	UBI
n	12	12	12	12
GM [CT]	22.53	27.83	26.05	27.31
AM [CT]	22.54	27.83	26.06	27.31
min [CT]	21.43	26.91	25.12	26.44
max [CT]	23.38	28.72	27.26	28.23
SD [± CT]	0.50	0.35	0.55	0.46
CV [% CT]	2.23	1.28	2.12	1.67

Table S2. Expression stability of candidate RGs as calculated by geNorm² in *Cymodocea*

Gene name	Average expression	
	stability (M)	
eIF4A	0.60	
GAPDH	<u>0.60</u>	
18S	0.71	
UBI	0.83	

nodosa. Best candidate genes are underlined.

Table S3. Expression stability of candidate RGs as calculated by NormFinder³ in *Cymodocea*

nodosa. Best candidate genes are underlined.

Gene name	Stability	Standard
	value	error
eIF4A	0.07	0.10
18S	0.25	0.07
GAPDH	0.25	0.07
UBI	0.31	0.08

30 Table S4. Ranking of the reference gene candidates by BestKeeper, geNorm, and

31 NormFinder. The three best RGs selected for RT-qPCR assays are highlighted in

32 bold. S.D.: standard deviation; Stab. Val.: stability value; *M*: average expression

33 stability.

Bestkeeper	NormFinder	geNorm
(S.D.)	(Stab. Val.)	(<i>M</i>)
eIF4A (0.35)	eIF4A (0.07)	eIF4A (0.60)
UBI (0.46)	18S (0.25)	GAPDH (0.60)
18S (0.50)	GAPDH (0.25)	18S (0.71)
GAPDH (0.55)	UBI (0.31)	UBI (0.83)

Table S5. Results of ANOSIM multivariate gene expression analysis. *In situ* incubations indicate gene expression of CO_2 plants incubated in CO_2 water with respect to Reference plants incubated in Reference water. Transplant incubations (Reference plants) indicate gene expression of Reference plants incubated in CO_2 water with respect to Reference plants incubated in Reference water. Transplant incubations (CO_2 plants) indicate gene expression of CO_2 plants incubated in Reference water with respect to CO_2 plants incubated in CO_2 water.

Global Test				
	Sample statistic (Global R)	Significance level	Average dissimilarity	
In situ incubations	0.37	10%	10.39	
Transplant incubations (Reference plants)	-0.074	70%	8.08	
Transplant incubations $(CO_2 \text{ plants})$	0.37	20%	6.51	

43

45	Table S6. Relative expression report for RT-qPCR experiments obtained with REST
46	2009 ⁴ . Expression values (with Standard error, Std. Error) and P(H1) (Probability of
47	alternate hypothesis that difference between sample and control groups is due only to
48	chance) are reported for each gene. (a) In situ incubations indicate relative gene
49	expression of CO ₂ plants incubated in CO ₂ water with respect to Reference plants
50	incubated in Reference water. (b) Transplant incubations (Reference plants) indicate
51	relative gene expression of Reference plants incubated in CO ₂ water with respect to
52	Reference plants incubated in Reference water. (c) Transplant incubations (CO ₂
53	plants) indicate relative gene expression of CO2 plants incubated in Reference water
54	with respect to CO ₂ plants incubated in CO ₂ water. Underlined values indicate P(H1)
55	< 0.1.

	(a) In situ incubations					
Gene	Expression	Std. Error	P(H1)			
psaJ	-1.2235	0.5444	0.351			
psaC	-1.5637	0.3760	0.268			
psbA	-3.1933	0.2377	0.000 ***			
psbD	-1.1583	0.4907	0.330			
LHCA1	-6.1860	0.1217	0.000 ***			
FD	-2.1205	0.3018	<u>0.058</u>			
rbcL	-1.7125	0.2872	0.037 *			
ATPA	-1.0020	0.5949	0.461			
PEPC	-4.6031	0.2156	<u>0.058</u>			
SUS	-1.7949	0.2028	0.000 ***			
BCA	-4.3563	0.1641	0.000 ***			
SOD	-2.6559	0.2845	0.000 ***			
CAT	-2.1268	0.2985	0.107			
APX7	-1.7292	0.2444	0.000 ***			
APX6	-2.0806	0.3129	0.000 ***			
LBP	-1.4587	0.3902	0.000 ***			
GSH-S	-2.2658	0.2362	0.000 ***			
GR	-3.1383	0.2030	0.037 *			
MTP	-2.7702	0.1626	0.000 ***			
MT	-3.4187	0.2834	0.000 ***			

(b) Transplant incubations (Reference plants)					
Gene	Expression	Std. Error	P(H1)		
psaJ	-1.6625	0.6732	0.602		
psaC	-2.0596	0.3616	0.212		
psbA	-1.5462	0.2615	0.192		
psbD	-1.6521	0.9551	0.704		
LHCA1	1.0088	0.6195	0.969		
FD	1.2004	1.1975	0.793		
rbcL	-1.5319	0.4360	0.358		
ATPA	-1.5760	0.6649	0.528		
PEPC	-2.3135	0.1910	0.000 ***		
SUS	-1.1906	0.7741	0.778		
BCA	-1.2465	0.3835	0.819		
SOD	1.2143	0.5284	0.713		
CAT	-1.1480	0.4479	1.000		
APX7	1.1068	0.6279	0.704		
APX6	-1.4624	0.3958	0.389		
LBP	-1.2174	0.9836	0.894		
GSH-S	-1.8769	0.2877	0.212		
GR	-1.7806	0.2851	0.000 ***		
MTP	-1.0744	0.9455	0.894		
MT	-1.0346	0.3725	0.894		

(c) Transplant incubations (CO ₂ plants)				
Gene	Expression	Std. Error	P(H1)	
psaJ	1.5063	0.5530	0.000 ***	
psaC	-1.7183	0.2825	0.127	
psbA	2.9783	2.2956	0.096	
psbD	2.0434	0.9608	0.190	
LHCA1	4.4506	2.5997	0.074	
FD	1.6250	1.6696	0.529	
rbcL	1.3850	0.6230	0.000 ***	
ATPA	1.1772	0.7049	0.704	
PEPC	2.1562	2.1473	0.497	
SUS	2.2300	0.8250	0.095	
BCA	2.6931	1.9187	0.096	
SOD	2.4607	1.7860	0.101	
CAT	1.9327	1.0148	0.000 ***	
APX7	1.7995	0.6850	0.095	
APX6	1.5200	0.7488	0.000 ***	
LBP	1.6729	0.7234	0.601	
GSH-S	2.1214	0.9188	0.000 ***	
GR	3.7192	2.3486	<u>0.096</u>	
MTP	3.6992	1.5363	0.075	
MT	5.8535	5.7004	0.101	

- 60 Table S7. Results of two-way ANOVA test (fixed crossed factors) to assess the effects of the
- 61 "origin" of the plants (plants from CO₂ or reference site) and the "water" used in the incubations

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Origin	1	0.0796	0.0796	1.484	0.23457	
Water	1	0.6161	0.6161	11.481	0.00233	**
Origin x Water	1	0.1448	0.1448	2.698	0.113	
Residuals	25	1.3415	0.0537			

62 (water from CO₂ or reference site) of *Cymodocea nodosa* plants in Vulcano.

65 **Table S8.** Results of Principal Components Analysis (PCA) conducted considering the

66 combined contributions of all GOIs and NPP. Percent variation explained by the first three axes

and individual contribution of NPP and targeted genes are indicated.

PC	Eigenvalue	%variance	
1	9.2212	66.465	
2	3.5521	25.603	
3	1.1004	7.9316	
	PC 1	PC 2	PC 3
NPP	0.1737	0.0222	0.3656
psaJ	0.0461	0.0163	-0.0246
psaC	0.0110	0.0999	0.5127
psbA	0.2576	0.0840	0.0199
psbD	0.0188	0.0812	-0.2113
LHCA1	0.2701	0.4156	-0.1125
FD	0.0487	0.2814	0.1668
rbcL	0.0476	0.1879	0.0989
ATPA	-0.0107	0.0423	0.0005
PEPC	0.3636	0.0326	0.2246
SUS	0.0558	0.2356	-0.1749
BCA	0.1960	0.3233	0.1975
SOD	0.3551	-0.1987	0.0293
CAT	0.2353	0.0265	-0.3159
APX7	0.0029	0.3011	-0.0525
APX6	0.1043	0.1223	0.2124
LBP	-0.0125	0.2373	0.0102
GSH-S	0.2933	-0.1526	-0.0730
GR	0.4466	-0.3454	0.1849
MTP	0.0836	0.4169	-0.1732
MT	0.4055	-0.0834	-0.4116

	Spearman coefficient (ρ)	p-value	
NPP	1	0	
psaJ	0.49	0.0064	**
psaC	0.3	0.1099	
psbA	0.49	0.0064	**
psbD	-0.06	0.738	
LHCA1	0.49	0.0064	**
FD	0.29	0.132	
rbcL	0.29	0.132	
ATPA	-0.15	0.4266	
PEPC	0.59	0.0007	***
SUS	-0.27	0.1525	
BCA	0.29	0.132	
SOD	0.59	0.0007	***
CAT	0.29	0.1236	
APX7	-0.07	0.7143	
APX6	0.29	0.132	
LBP	-0.07	0.7143	
GSH-S	0.39	0.0356	*
GR	0.59	0.0007	***
MTP	-0.07	0.7143	
MT	0.29	0.1236	

69 Table S9. Spearman's rank correlation between Net plant productivity (NPP) and

in Vulcano.

72 APPENDIX 2

- 73 Supplementary information on Material and Methods. Gene expression protocol
- and information on Reference genes (RGs) and Genes of interest (GOIs).
- 75

76 RNA extraction and cDNA preparation

77 RNA was extracted from *C. nodosa* leaves with the Aurum[™] Total RNA Mini Kit

78 (BIO-RAD) following manufacturer's instructions and retro-transcribed in cDNA

79 with the iScriptTM cDNA synthesis kit (BIO-RAD), according to standard protocol.

80 RNA quantity and purity were assured by Nano-Drop (ND-1000 UV-Vis

81 spectrophotometer; NanoDrop Technologies) and by gel electrophoresis. The 260/280

nm and 260/230 nm ratios were always about 2.0, while gel electrophoresis showed

83 intact RNA, with sharp ribosomal bands. Total RNA (500 ng) was retro-transcribed in

84 cDNA with the iScriptTM cDNA synthesis kit (BIO-RAD), according to standard

85 protocol.

86

87 *Gene selection and RT-qPCR*

88 A Reverse Transcription -quantitative Polymerase Chain Reaction (RT-qPCR)

analysis was performed in order to investigate differences in expression levels of

90 genes belonging to pathways potentially affected by changes in CO₂ availability

91 (photosynthesis, carbon utilization, free-radical detoxification and oxidative-stress

92 response, and metal detoxification) (Supplementary Table S10).

93 Given the lack of genomic (or transcriptomic) resources available for this species,

94 specific primers for putative reference genes (RGs) and genes of interest (GOIs) were

- 95 designed considering the alignment of conserved regions in other monocotyledons
- 96 such as Posidonia oceanica, Zostera marina, Oryza sativa, Zea mays. Sequences were

97 identified using the search function in the seagrass EST database Dr. Zompo

98 (<u>http://drzompo.uni-muenster.de</u>) or the generic online database GenBank

99 (http://www.ncbi.nlm.nih.gov/genbank).

Alignments were performed with ClustalW embedded in BioEdit v. 7.0.5.3⁵. Primers 100 were designed with the primer analysis software Primer3 v. 0.4.0^{6,7} and Gene Runner 101 102 v. 3.05 (Hasting Software, Inc.). Primers' selection conditions included primer length 103 (18-23 bp), $T_{\rm m}$ (60°C), GC content (\geq 50%) and product size (130 to 230 bp). Primers 104 for SUS and rbcL were designed from the known C. nodosa sequences available in the 105 GenBank database (Acc. no. AM292651.2 and U80688.1, respectively). In some 106 cases primer pairs established in previous works for closely related species were used 107 (see references in Table S10). 108 To determine the specificity of the amplification, designed primer pairs were first tested in PCR, according to the reaction conditions detailed in ⁸. Amplified PCR 109 110 products were then analyzed by 1.5% agarose gel electrophoresis in TBE buffer. The resulting bands were excised from the gel and extracted with the GenEluteTM Gel 111 112 Extraction Kit (SIGMA). Sequence reactions were obtained with the BigDye 113 Terminator Cycle Sequencing technology (Applied Biosystems, Foster City, CA), 114 purified in automation using the Agencourt CleanSEQ Dye terminator removal Kit 115 (Agencourt Bioscience Corporation, 500 Cummins Center, Suite 2450, Beverly MA 116 01915 - USA) and a robotic station Biomek FX (Beckman Coulter, Fullerton, CA). 117 Products were analyzed on an Automated Capillary Electrophoresis Sequencer 3730 118 DNA Analyzer (Applied Biosystems). The identity of each sequence was confirmed 119 using the blastn function. All obtained C. nodosa sequences are deposited in GenBank 120 under the accession numbers shown in Table S10.

121 We set primers for 8 RGs and 20 GOIs, but 4 RGs (*L31*, *UBC13*, *EF1A* and *TBP*)

122 were discarded due to double or no amplifications⁸

123 RT-qPCR was performed in MicroAmp Optical 384-Well reaction plate (Applied

124 Biosystems) with Optical Adhesive Covers (Applied Biosystems) on a Viia7 Real

- 125 Time PCR System (Applied Biosystems), using Sybr Green as fluorescence detection
- 126 chemistry. The PCR consisted of 5 µL Fast SYBR® Green Master Mix (Applied
- 127 Biosystems), 1 μ L 1:50-diluted cDNA template, and 0.7 pmol μ L⁻¹ of each primer, in

128 a total reaction volume of 10 μ L. Thermal profile was as follows: 20 sec at 95°C, 40

- 129 cycles of 1 sec at 95°C and 20 sec at 60°C. For determining the specificity of the
- reaction, the melting curve of each product from 60 to 95°C was also assessed. All

131 RT-qPCR reactions were carried out in triplicate and each assay included three no-

- 132 template negative controls (NTC) for each primer pair ⁹. The technical variation
- among the triplicates was checked and individual outliers were excluded when the SD
- 134 was more than 0.3.
- 135 PCR efficiencies for all primer pairs have been calculated from the slopes of standard
- 136 curves of the threshold cycle (C_T) vs. cDNA concentration, with the equation $E = 10^{-10}$
- 137 $\frac{1}{\text{slope}}$ -1. Primer's sequences, percent efficiencies (*E*) and regression coefficients (R²)
- 138 of RGs and GOIs are reported in Table S10. All $E \ge 84\%$ and all R^2 were ≥ 0.97 . To

139 normalize target gene-expression data, three different algorithms BestKeeper¹,

140 geNorm² and NormFinder³ were utilized to identify the best RGs in our

141 experimental conditions, among the four candidate RGs selected for amplification: the

142 Eukaryotic initiation factor 4A (eIF4A), the Glyceraldehyde 3-phosphate

143 dehydrogenase (GAPDH), the 18S ribosomal RNA and the Ubiquitin (UBI). All RGs

belong to different functional classes in order to reduce the possibility that they might

145 be co-regulated. For the relative quantification of RT-qPCR data, we used REST-

- 146 MCS© (Relative Expression Software Tool)⁴. The mathematical model used is based
- 147 on the correction for exact PCR efficiencies and the mean crossing point deviation
- 148 between sample group(s) and control group(s), and it allows the use of multiple
- 149 reference genes for the normalization of target gene expression levels ¹⁰.
- 150
- 151 TABLES
- 152

153 **Table S10**. List of reference genes (RGs) and genes of interest (GOIs) in *Cymodocea nodosa* assessed using RT-qPCR. Gene symbol and

154 protein name, GenBank accession number, primer sequence, reference, amplicon size (S, base pair), percent of efficiency (E), correlation

155 coefficient (R^2) and Swiss-Prot best hit with corresponding *E*-value are given.

Gene	Protein name	GenBank	Primer Sequences 5' ->3'	Reference	S	%E	\mathbf{R}^2	Swiss-Prot best	E-
symbol			-					hit	Value
Reference genes (RGs)									
18S	Ribosomal RNA 18S	KT200607	F:AACGAGACCTCAGCCTGCTA R:AAGATTACCCAAGCCTGTCG	8	200	100	0.97	-	-
eIF4A	Eukaryotic initiation factor 4A	KT200591	F:TTCTGCAAGGGTCTTGACGT R:TCACACCCAAGTAGTCACCAAG	11	194	100	0.99	sp Q40466.1 IF41 3_TOBAC	2e-37
GAPD H	Glyceraldehyde-3- phosphate dehydrogenase	KT200590	F:AGGTTCTTCCTGCTTTGAATG R:CTTCCTTGATTGCTGCCTTG	8	139	100	0.99	sp P34783.1 G3P _ATRNU	5e-34
UBI	Ubiquitin	KT200589	F:CACCCTCGCTGACTACAACA R:TTTCTCAGCCTGACGACCTT	8	195	96	0.99	sp P31753.2 RS2 7A_ASPOF	1e-18
Genes a	of interest (GOIs)								
psaJ	Photosystem I reaction center subunit IX	KT200587	F:GGTTTGGGTCTTTAGCAGGTC R:GAATGGGTGGGAGGAGAAAT	12	155	100	0.97	sp Q6EW33.1 PS AJ_NYMAL	8e-20
psaC	Photosystem I iron- sulfurcenter	KT200593	F:TCTTGGGATGGGTGTAAAGC R:GGTTGTCTCATTCCATAAATACA		135	100	0.99	sp P62090.2 PSA C_ARATH	4e-41
psbA	Photosystem II protein D1	KT200596	F:GACTGCAATTTTAGAGAGACGC R:CAGAAGTTGCAGTCAATAAGGTA G	12	137	97	0.99	sp P27201.3 PSB A_LANPU	5e-71

	Harvesting Complex gene		R:AGTTCATCACCATCGCCTTC					B6_ARATH
FD	Ferredoxin, chloroplastic	KT200600	F:ATGGTGAGCACCCCTTC	13	148	89	0.99	sp Q43517.1 FER 3e-24
			R:GGGTGACGAGCTTGACCTT					1_SOLLC
rbcL	RuBisCO large subunit	U80688.1	F:GCTGCCGAATCTTCTACTGG	13	176	88	0.99	sp P31196.2 RBL 1e-34
			R:CACGTTGGTAACGGAACCTT					_NEMMU
ATPA	ATP synthase subunit	KT200595	F:TATCTGGCGATCTATTCAAT		226	88	0.98	sp Q02848.1 ATP 3e-28
	alpha		R:AACTCACGTAATCGTTGACC					A_ANTSP
PEPC	Phosphoenolpyruvate	KT200592	F:AAGTTCCTACGCAGGCTTGA		174	93	0.99	sp P51059.1 CAP 5e-53
	carboxylase		R:TGCCATCATTCTAGCCAACA					P2_MAIZE
SUS	Sucrose synthase	AM29265	F:GATCCCAAGTTCAACATTGTCT		188	95	0.99	sp Q41607.1 SUS 3e-27
		1.2	R:CTCGCCATGGAGAAGATGAT					2_TULGE
BCA	Beta carbonic anhydrase	KT200602	F:TACTGGGGTTTCAACCAGGA		153	99	0.99	sp Q94CE3.1 BC 1e-38
			R:GGCTGTGACCAACGACTAAGA					A5_ARATH
SOD	Copper/zinc superoxide	KT200606	F:GGAATGTCACAGCTGCAGAA		171	94	0.99	sp 004996.3 SO 6e-32
	dismutase		R:CACCCGCATTTCCTGTAGTC					DC_SOLCS
CAT	Catalase	KT200585	F:CATCACATGCTGGGTTTCAC	11	175	84	0.99	sp P49317.1 CAT 8e-33
			R:ACCGATCCTGGACATCTGAC					A3_NICPL
APX7	L-ascorbate peroxidase 7,	KT200605	F:AAGAGGGGGAGGAGCTAATGG		150	93	0.99	sp Q7XJ02.1 AP 3e-34
	chloroplastic		R:GCTGGCAAGCTGAAACAAGT					X7_ORYSJ
APX6	L-ascorbate peroxidase 6	KT200603	F:TAATTGCTGTTGCCGGCTCT		161	99	0.99	sp Q8GY91.1 AP 6e-24
			R:TCCTTTTTCACGGAAGCAAC					X6_ARATH
LBP	Luminal binding protein	KT200583	F:ACCCGAGCTCGGTTTGAAGA	11	137	90	0.99	sp Q03685.1 BIP 2e-35
			R:ATTCTTGTGCTTCCACCAAC					5_TOBAC
GSH-S	Glutathione synthase	KT200598	F:TAGGTTTCGCCAATTCTTGC	11	213	100	0.99	sp P46416.3 GSH 4e-29
			R:AAGGGGTGGTTCTCCCAGAT					B_ARATH
GR	Glutathione reductase	KT200599	F:TCCTCCAAGCTTAGTGCTTCA		134	100	0.99	sp P48642.2 GSH 2e-37

		R:ACACAACCAGACGGTGTCAA			RC_ORYSJ
MTP	Metal tolerance protein	KT200586 F:CTCGTTTCCTGAGGTTCTGC	11	183 91 0	9.99 sp Q6Z7K5.1 MT 3e-26
		R:TTTGCTGCTGTCATGGCTAC			P3_ORYSJ
MT	Metallothionein	KT200588 F:CATGTCGACCTGTGACAACTG	11	195 96 0	.99 sp Q40256.1 MT 2e-22
		R:TATTAATGGCCACAGGTGCAG			3_MUSAC

159 REFERENCES

161

160 1 Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of

stable housekeeping genes, differentially regulated target genes and sample

- 162 integrity: BestKeeper Excel-based tool using pair-wise correlations.
- 163 Biotechnol. Lett. 26, 509-515 (2004).
- 164 2 Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-
- 165 PCR data by geometric averaging of multiple internal control genes. *Genome*
- 166 *Biol.* **3**, doi:10.1186/gb-2002-3-7-20 research0034 (2002).
- 167 3 Andersen, C. L., Jensen, J. L. & Orntoft, T. F. Normalization of real-time
- 168 quantitative reverse transcription-PCR data: a model-based variance
- 169 estimation approach to identify genes suited for normalization, applied to
- bladder and colon cancer data sets. *Cancer Res.* **64**, 5245-5250 (2004).
- 171 4 Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool
- 172 (REST (c)) for group-wise comparison and statistical analysis of relative

expression results in real-time PCR. *Nucleic Acids Res.* **75**, 30 (2002).

- 174 5 Hall, T. A. BioEdit: a user friendly biological sequence alignment editor and
- analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41,
 95-98 (1999).
- Koressaar, T. & Remm, M. Enhancements and modifications of primer
 design program Primer3. *Bioinformatics* 23, 1289-1291 (2007).
- 179 7 Untergrasser, A. *et al.* Primer3—new capabilities and interfaces. *Nucleic*180 *Acids Res.* 40, e115 (2012).
- 1818Serra, I. A. *et al.* Reference genes assessment for the seagrass Posidonia
- 182 oceanica in different salinity, pH and light conditions. *Mar. Biol.* **159**, 1269-
- 183 1282, doi:10.1007/s00227-012-1907-8 (2012).

184	9	Bustin, S. A. et al. MIQE precis: practical implementation of minimum
185		standard guidelines for fluorescence-based quantitative real-time PCR
186		experiments. BMC Mol. Biol. 11, 74, doi:10.1186/1471-2199-11-74 (2010).
187	10	Pfaffl, M. W. A new mathematical model for relative quantification in real-
188		time RT-PCR. Nucleic Acids Res. 29, e45-e45 (2001).
189	11	Lauritano, C. et al. Response of key stress-related genes of the seagrass
190		Posidonia oceanica in the vicinity of submarine volcanic vents.
191		Biogeosciences 12, 4185-4194, doi:10.5194/bg-12-4185-2015 (2015).
192	12	Dattolo, E. et al. Response of the seagrass Posidonia oceanica to different light
193		environments: Insights from a combined molecular and photo-physiological
194		study. Mar. Environ. Res. 101, 225-236, doi:10.1016/j.marenvres.2014.07.010
195		(2014).
196	13	Marín-Guirao, L., Ruiz, J. M., Dattolo, E., Garcia-Munoz, R. & Procaccini, G.
197		Physiological and molecular evidence of differential short-term heat tolerance
198		in Mediterranean seagrasses. Sci. Rep. 6, 28615, doi:10.1038/srep28615
199		(2016).
200		