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Supplemental Figures 

 
Supplemental Figure 1. Public and Private Data Repository. 
The easyGWAS data repository is divided into a publicly accessible area and one that is only 
available to registered users. The top panel (A) is the main navigation menu of easyGWAS. 
A registered user can log in by selecting the “Login” option in the navigation menu. The 
specific menu options for the public data repository are shown in the left panel (B). The 
center panel (C) displays the contents of the option selected in the left panel. In this 
example, it lists all publicly available species. The user can switch between public and 
private repositories by clicking on “Public Data” or “Private Data” at the top of panel B or 
through the navigation menu. The “Private Data” section allows the user to upload their own 
genotype, phenotype, covariate, or gene annotation data. Publicly available genotype, 
phenotype and covariate data can be downloaded by any user. The view displayed in this 
figure is obtained by selecting: Public Data [from the main menu]→Public Species [from 
panel B]. 
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Supplemental Figure 2. Data Repository and Detailed Species View. 
The menu on the left contains two sub-panels. The top part (A), in green, allows the user to 
access detailed information about publicly available species – including those pre-loaded in 
easyGWAS –  datasets, samples, phenotypes, and covariates. The menu at the bottom (B), 
in sky blue, lists different data management methods. The center panel (C) shows detailed 
information about the species Arabidopsis thaliana. The view displayed in this figure is 
obtained by selecting: Public Data→Public Species→Arabidopsis thaliana. 
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Supplemental Figure 3. Detailed Sample View. 
The Sample View provides detailed information about a sample. The sample name is 
displayed at the top. The General Information panel (A) provides details about the sample, in 
conjunction with a map of its geographic location. The Additional Meta Information panel (B) 
indicates if there are meta information entries related to the sample. The Publications panel 
(C) lists the publication(s) associated to the sample. The citation(s) to the publication(s) can 
be downloaded by marking them (check-mark at the right) and then clicking the download 
button (top-right corner of panel C). The view displayed in this figure is obtained by selecting: 
Public Data→Public Samples→Arabidopsis thaliana→AtPolyDB→sample name=TDr-1. 
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Supplemental Figure 4. Detailed Phenotype View. 
The Phenotype View shows detailed information about each phenotype. The phenotype 
name is displayed at the top with a download button (top-right corner) that allows the user to 
download the information on screen. The General Information panel (A) provides details 
about the phenotype. The Additional Meta Information panel (B) indicates if there are meta 
information entries related to the phenotype. The Phenotype Distribution panel (C) plots a 
histogram with the distribution of the phenotype values. The number of bins in the histogram 
can be set with the drop-down list at the top-right corner of panel C. The user can download 
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the plot as a PDF document by clicking the button to the right of the drop-down list. In the 
figure, 50 bins were used to create the plot. Results are also shown for a Shapiro-Wilk test of 
normality (see Suppl. Text 8 for more details). Finally, the Publications panel (D) lists the 
publication(s) associated to the phenotype. The citation(s) to the publication(s) can be 
downloaded by marking them (check-mark at the right) and then clicking the download 
button (top-right corner of panel D). The view displayed in this figure is obtained by selecting: 
Public Data→Public Phenotypes→Arabidopsis thaliana→AtPolyDB→Phenotype 
ID=AT_P_20. 
 
 
 
 
 

 
Supplemental Figure 5. Download Manager. 
The Download Manager allows the user to download publicly available datasets. It can be 
accessed with the following menu options: Public Data→Download Manager. 
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Supplemental Figure 6. Upload Manager. 
The Upload Manager is the interface to upload new genotype data, phenotypes, covariates, 
or gene annotation sets. In order to upload a dataset containing an entire genome-wide 
association study (including genotype and phenotype information), the data have to be in 
PLINK format and stored in a single .zip file. The top panel (A) indicates to which species 
and genome version the newly uploaded data will belong. The panel in the middle (B) 
prompts the user to annotate the dataset with a name and version. In the bottom panel (C), 
the user specifies what types of data files are included in the .zip file. Due to the large size of 
genetics datasets, the uploads are managed via a personal Dropbox account (Dropbox and 
the Dropbox logo are trademarks of Dropbox, Inc.). The button “Choose from Dropbox” 
opens a window that allows the user to select the .zip file to be uploaded. The Upload 
Manager can be launched by selecting: Private Data→Upload Manager. 
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Supplemental Figure 7. GWAS Wizard, Step to Normalize Phenotypes. 
Once the GWAS Wizard has been launched, the user is guided through a sequence of steps 
to specify all the parameters needed in an analysis. The top panel (A) details all the steps 
that are part of the GWAS Wizard. Having selected the species in step 1, the user is 
currently in the second part of step 2. After selecting the phenotypes, this view allows the 
user to apply a transformation to them in panel (B). If a regression method will be selected in 
step 5, it is recommended to apply one type of transformation (see Suppl. Text 8 for details 
about available transformations). A distribution of values is shown for each phenotype as a 
histogram. If a transformation is applied, the histogram is recomputed on the fly. Additionally, 
a Shapiro-Wilk test of normality is computed on the (transformed) phenotype values. The 
bottom panel (C) are the navigation buttons within the wizard. The user can return to 
previous steps with the “Back” button and adjust parameters. At every step, when all the 
information needed has been completed, the “Continue” button allows the user to move on 
to the next step in the wizard. The view displayed in this figure is obtained by selecting: 
GWAS Center→New GWAS→Species=Arabidopsis thaliana; Dataset=AtPolyDB; Gene 
Annotation=TAIR10→Public Phenotype=”Secondary Dormancy” and “FT10”→Transformation 
for FT10=log10. 
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Supplemental Figure 8. Temporary History. 
The My Temporary History View allows the user to access all recently submitted analyses 
(also referred to as experiments). Experiments can be accessed through this view for a 
period of up to 48 hours, after which they will be automatically deleted. The top panel (A) 
allows for the saving or deletion of the results of the experiment(s) selected by the user. 
Saving experiments is shown in Suppl. Figure 9. The progress showing the number of 
unfinished experiments is displayed in the middle panel (B). The bottom panel (C) lists all 
the experiments in the user’s temporary history. The column type shows an icon which, in 
the figure, is used to differentiate the traditional GWAS (in blue) from the comparative 
analysis of GWAS (in red). The check-boxes on the right are used in conjunction with the 
download/delete buttons in panel A.  
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Supplemental Figure 9. Save Experiments Permanently into GWAS Projects. 
For registered users, the experiments can be saved into the permanent (private) area of the 
user. This view shows how to save the experiments displayed in Suppl. Figure 8. The top 
panel (A) allows the user to save the experiments as part of a larger project. Projects can be 
shared among users. In the middle panel (B), the experiments can be renamed. Finally, in 
the bottom panel (C) the button “Save experiment” confirms the process. The button “Back” 
takes the user back to the view shown in Suppl. Figure 8. 
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Supplemental Figure 10. easyGWAS Data Sharing Dialog. 
easyGWAS provides a straightforward way to share GWAS projects with other users and 
collaborators. To do so, the user has to select the GWAS project and click the sharing 
button. After typing in the email address of a registered collaborator, the project and its data 
are shared. 
 
 

 
Supplemental Figure 11. GWAS Project Publishing Inquiry Form. 
easyGWAS provides a publishing inquiry form. Here, the user can inquire to make their 
GWAS project, datasets or phenotypes publicly available to the scientific community. Before 
projects are made public, an easyGWAS administrator has to approve them.  
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Supplemental Figure 12: Schematics of the easyGWAS Architecture. 
Illustration of the internal architecture of easyGWAS including the hybrid database model 
and different task queues. Communication between the web application and queues is 
established via a RabbitMQ message passing server. Task queues can be distributed over 
different computing nodes. The hybrid database can be accessed from the web application, 
as well as from the different task queues. Users can link their personal Dropbox account to 
easyGWAS to integrate large genotype datasets (Dropbox and the Dropbox logo are 
trademarks of Dropbox, Inc.). 
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Supplemental Figure 13: Runtime Comparison between State-of-the-Art Tools and 
easyGWAS. 
Comparison of four state-of-the-art algorithms implemented in PLINK, EMMAX and FaST-
LMM to the easyGWAS implementation. Runtime includes data preprocessing for all tools. 
Number of SNPs range between 10,000 and five million. Number of samples are varied 
between 100, 250, and 500.  
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Supplemental Figure 14: Non-coding RNAs downstream of FT (AT1G65480).  
The Arabidopsis thaliana case study discusses three SNPs that were found to be associated 
to the rosette leaf number phenotype. The SNPs are located in Chr1 at positions 24337820, 
24338990 and 24339560 (see rows 175-177 of Supplemental Data Set 1). These SNPs are 
located downstream of FT (id AT1G65480, FLOWERING LOCUS T), and they overlap with 
non-coding RNAs At1NC090610, At1NC090620 and At1NC090630 (marked in purple). The 
figure is a screenshot of GBrowse (Stein et al., 2002), extracted from the Plant Long 
noncoding RNA Database (Jin et al., 2015). 
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Supplemental Tables 

Supplemental Table 1. Case Study Results in Arabidopsis thaliana using 
Bonferroni. 
Comparison results of nine GWAS performed using a linear mixed model and a 
Bonferroni (α=5%). 

Gene Brief Gene Description [Other Names] Chr Position P-Value Phenotype 
At5g10100 Haloacid dehalogenase-like hydrolase (HAD) 

superfamily protein 
[TPPI, TREHALOSE-6-PHOSPHATE 

PHOSPHATASE I] 

Chr5 3161401 1.932e-08 DTF2 

Chr5 3161477 1.728e-08 DTF2 

At4g00752 UBX domain-containing protein Chr4 317979 2.725e-08 RL 

At4g00730 Encodes a homeodomain protein of the HD-
GLABRA2 group. Involved in the accumulation of 

anthocyanin and in root development. Loss of 
function mutants have increased cell wall 

polysaccharide content. 
[AHDP, ANL2, ANTHOCYANINLESS 2, 

ARABIDOPSIS THALIANA HOMEODOMAIN 
PROTEIN] 

Chr4 299748 1.161e-08 RL 

At4g00630 Encodes a K(+)/H(+) antiporter that modulates 
monovalent cation and pH homeostasis in plant 

chloroplasts or plastids. 
[ATKEA2, K+ EFFLUX ANTIPORTER 2, KEA2] 

Chr4 262690 2.176e-08 RL 

No Gene Found  Chr4 247215 1.868e-08 RL 

DTF2: days until the inflorescence stem elongated to 1 cm; RL: rosette leaf number; 
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Supplemental Table 2. Phenotype Information for the Case Study. 
Used phenotypes for the Arabidopsis thaliana case study. The table provides information 
about which phenotype was transformed with which method. 

Experiment  Name Link 

DTF1 https://easygwas.ethz.ch/gwas/results/manhattan/view/ef55da11-bea8-431d-afef-e0ecce5487fa/ 

DTF2 https://easygwas.ethz.ch/gwas/results/manhattan/view/bc199ae8-08c0-48d4-9ca7-6f7a8ca8034a/ 

DTF3 https://easygwas.ethz.ch/gwas/results/manhattan/view/928530a0-74aa-4c13-95dd-aa2c3d26fc44/ 

RL https://easygwas.ethz.ch/gwas/results/manhattan/view/57a7cf18-cb0f-408a-8954-49f94d1bfc47/ 

CL https://easygwas.ethz.ch/gwas/results/manhattan/view/0c981d39-1c09-42a6-86fe-5c0bfa54dbce/ 

Diameter https://easygwas.ethz.ch/gwas/results/manhattan/view/7b30a745-fd39-4510-97db-432ddf557196/ 

RBN https://easygwas.ethz.ch/gwas/results/manhattan/view/b8fbd333-4590-4764-9452-337430e6c871/ 

CBN https://easygwas.ethz.ch/gwas/results/manhattan/view/074a260c-f476-45ae-b11c-6c8d83b99dbf/ 

Length https://easygwas.ethz.ch/gwas/results/manhattan/view/2f66a2a1-4ead-42ca-a93e-4a1b4d423e16/ 

GWAS-Comparison https://easygwas.ethz.ch/comparison/results/manhattan/view/2c8da231-96ff-4f28-a17e-fd0e3510d8e1/ 

Key to experiment abbreviations 
DTF1: days until emergence of visible flowering buds in the center of the rosette from time of 
sowing 
DTF2: days until the inflorescence stem elongated to 1 cm 
DTF3: days until first open flower 
RL: rosette leaf number 
CL: cauline leaf number 
Diameter: diameter of rosette (end point, after flowering) 
RBN: rosette branch number 
CBN: cauline leaf number 
Length: length of main flowering stem 
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Supplemental Table 3. Pitfalls when conducting intersection analyses or meta-
analyses of GWAS results 
The table highlights common pitfalls when conducting an intersection analysis or a meta-
analysis with easyGWAS. It stresses the caution the user must observe in regards to the 
assumptions made and the final interpretation of the results. 

Pitfall Description 

Violation of 
independence 

An important assumption in a meta-analysis is that different datasets are sampled independently. 
An overlap of individuals between different datasets may lead to a similar association signal in 
each dataset, thereby artificially confirming this signal and leading to a spurious association 
reported by the meta-analysis 

Difference in sample size A mere intersection analysis can suffer from differences in sample size between datasets, as 
weaker–but true–associations may not be discovered in the smaller dataset. This would lead to 
false negative findings in the intersection analysis. Meta-analyses tend to correct for this issue by 
weighting different datasets according to their size. 

Interaction effects An association signal may be present in one dataset, but absent in another, because the 
individuals in one dataset are exposed to an environmental effect which triggers a gene-
environment interaction. Individuals in both datasets may be genetically susceptible to this effect, 
but it will not be observed in one dataset because the environmental effect is absent there. This 
would again lead to false negative findings in intersection analyses. A similar phenomenon can 
occur if a gene-gene interaction affects the phenotype, and the relevant interacting genotype is 
present in one dataset but not the other. Then the same gene may be significantly associated in 
only one of the two datasets. 

Genetic heterogeneity I Population structure can cause the finding that certain loci are associated with the phenotype, 
which are merely correlated to geography and local environmental influences that affect the 
phenotype. Furthermore, these systematic ancestry differences between different phenotypic 
classes can lead to spurious associations, just as in a genome-wide association study on a single 
dataset. If two or more phenotypes are significantly correlated with kinship, then they may show 
shared genetic association signals due to this confounding effect. easyGWAS offers techniques for 
association mapping that correct for confounding by population structure in form of Linear Mixed 
Models. easyGWAS also flags phenotypes in the phenotype correlation matrix that are significantly 
associated to population structure, to inform the user of this source of potentially spurious joint 
associations. 

Genetic heterogeneity II When combining datasets in a meta-analysis, one can assume a fixed-effects model in which the 
effect of a genetic variant is assumed to be the same in all datasets (see Supplemental Text 9). 
Although the fixed-effects model is the most popular approach to meta-analysis, if the datasets 
exhibit large genetic heterogeneity, this will result in a violation of the above mentioned 
assumption. As a consequence of the latter, it will yield inflated p-values. 

Phenotypic heterogeneity Different protocols to measure phenotypes in different datasets, including different levels of 
replication of the phenotypes, could lead to artificial differences between associations found in 
different  datasets, despite a common genetic architecture. 

Publication bias It has been observed that studies that find association signals are more likely to be published. This 
form of publication bias affects the meta-analysis of published studies, because the null hypothesis 
of no association between genotype and phenotype has already been rejected in each individual 
dataset (Rothstein et al., 2005). It is not well understood how exactly does publication bias affect 
GWAS. Nevertheless, it is clear that if the studies to be combined in a GWAS meta-analysis focus 
on results that, a priori, seem more favorable, the bias will then be present (Zeggini and Ioannidis, 
2009). 

Missing genotypes The use of different genotyping platforms often results in different sets of genetic markers being 
present in different datasets. As a result, the SNP with the strongest association in one dataset 
may not even be present in another dataset. This leads either to the need of  1) restricting the 
analysis to SNPs that are present in all datasets, 2) analyzing hits on the gene level rather than the 
SNP level, or 3) imputing missing SNPs in each dataset. Options 1) and 2) are currently offered by 
easyGWAS. Special caution needs to be taken with datasets that have been imputed as 
mentioned in option 3) (Bush and Moore, 2012). If the studies to be combined in an intersection- or 
meta-analysis have been imputed with different algorithms and/or different haplotype panels drawn 
from an ethnic population that differs from the target one, this will create additional heterogeneity in 
the data. 
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Supplemental Table 4. Available Genotype Encodings. 
Different genotype encodings available in easyGWAS for heterozygous genotypes. The 
default is the additive encoding 

Encoding Major Heterozygous Minor 

Additive 0 1 2 

Recessive 0 0 1 

Dominant 0 1 1 

Overdominant 0 1 0 
 

 

Supplemental Table 5. Transformation Methods 
Overview of different methods to transform phenotypes. Different constraints apply to 
each method. The GWAS wizard determines on-the-fly which transformation method 
could be applied to which phenotype. Refer to Suppl. Text 8 for more details about each 
method. 

Transformation Variation Type Constraint Description 

Zero Mean continuous, categorical, binary - Mean of data is set to 0 

Zero Mean & Unit Variance continuous, categorical, binary - Mean of data is set to 0 
and variance to 1 

Square root (sqrt) continuous, categorical - Square root of data 

Logarithmic (log10) continuous, categorical No “0” in data allowed Logarithm base 10 of data 

Box-Cox continuous, categorical No “0” in data allowed Box-Cox transformation 
(Box and Cox, 1964) 

Dummy Variable categorical data has to be 
categorical 

Encode categorical data 
into dummy variables 
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Supplemental Table 6. Phenotype Information for the Case Study. 
Used phenotypes for the Arabidopsis thaliana case study. The table provides information 
about which phenotype was transformed with which method. 

Phenotype Name #Samples Shapiro-Wilk Test 
(Untransformed) Transformation Shapiro-Wilk Test 

(Transformed) 

DTF1 936 4.8e-16 Box-Cox 1.6e-11 

DTF2 931 3.3e-17 Box-Cox 1.1e-11 

DTF3 923 1.8e-11 Box-Cox 1.8e-11 

RL 850 1.7e-07 Box-Cox 3.4e-06 

CL 904 1.8e-18 Box-Cox 7.4e-01 

Diameter 656 4.9e-04 Box-Cox 1.9e-02 

RBN 674 9.0e-11 None - 

CBN 677 1.6e-18 Square root 3.6e-11 

Length 680 6.4e-13 Box-Cox 2.3e-04 

Key to phenotype abbreviations 
DTF1: days until emergence of visible flowering buds in the center of the rosette 
from time of sowing 
DTF2: days until the inflorescence stem elongated to 1 cm 
DTF3: days until first open flower 
RL: rosette leaf number 
CL: cauline leaf number 
Diameter: diameter of rosette (end point, after flowering) 
RBN: rosette branch number 
CBN: cauline leaf number 
Length: length of main flowering stem 
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Supplemental Text 

Supplemental Text 1: easyGWAS Data Repository 
The easyGWAS data repository contains detailed information about available or integrated 
species, datasets, samples, phenotypes, and covariates. For each of these data types, 
different views show additional information about the species or the datasets, such as the 
total number of available samples and SNPs (see Supplemental Figure 2 or 
https://easygwas.ethz.ch/data/public/species/view/1/).  
The sample view provides meta-information, such as its origin or its source (Supplemental 
Figure 3 or https://easygwas.ethz.ch/samples/public/view/961/). Meta-information varies for 
each sample and between datasets and especially species. Therefore, we allow the addition 
of different types of meta-information and do not limit the user to a predefined set 
(Supplemental Figure 3). Similar views are available for datasets, phenotypes, and 
covariates. An example for the phenotype view is illustrated in Supplemental Figure 4, or 
can be accessed online via https://easygwas.ethz.ch/data/public/phenotypes/view/52/. The 
detailed view for covariates is similar to those of phenotypes. Phenotypic or covariate 
measurements are illustrated as histograms. A Shapiro-Wilk test (Shapiro and Wilk, 1965) is 
provided for the null hypothesis of whether the data could have been drawn from a normal 
distribution.  
The Data Repository, in addition contains a Download Manager for publicly available 
datasets in the widely used PLINK (Purcell et al., 2007) format (Supplemental Figure 5 or 
https://easygwas.ethz.ch/down/1/). 
In addition, easyGWAS provides an Upload Manager to support the integration of user-
specific genotype, phenotype, covariate or gene annotation data for an arbitrary species 
(Supplemental Figure 6). Upload of private data is only available for registered users. 
Initially, each user has 5GB of storage available for private data integration. Users can either 
upload imputed GWAS datasets in PLINK format, or add new phenotypes, covariates or 
gene annotation sets to existing datasets. Further, users are also allowed to upload 
summary statistics of already-computed GWAS for further meta-analysis, comparison, or 
simply for visualization. Tutorials on how to upload data can be found in the online FAQ 
(https://easygwas.ethz.ch/faq/). To upload whole GWAS datasets (including genotype and 
phenotype data), the data has to be in PLINK format and stored in a single .zip file. Due to 
the large size of genetics datasets, new ones are uploaded via a personal Dropbox account. 
easyGWAS can then fetch the data from the personal Dropbox account. (Dropbox and the 
Dropbox logo are trademarks of Dropbox, Inc.). 
In addition, the easyGWAS Upload Manager allows the automatic import of public 
phenotypes from AraPheno1, a central repository for population scale phenotype data from 
Arabidopsis thaliana (Seren, Grimm et al. 2016).   
 

                                                
1 https://arapheno.1001genomes.org  
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Supplemental Text 2: easyGWAS Wizard 
The easyGWAS wizards guide the user through all necessary steps to successfully create a 
GWAS experiment, meta-analysis, or comparison. In the following, we illustrate the wizard to 
create a typical GWAS experiment. The other two wizards for meta-analysis and 
comparisons are similarly straightforward. 
To create a new GWAS experiment, the user first has to navigate to the GWAS Center and 
start the wizard by clicking on “New GWAS”. Here, the user has to select an existing 
species, dataset, and gene annotation set (if available). This can be either a publicly 
available dataset for an existing species or a privately integrated one. In the second step, up 
to five different phenotypes can be selected. The wizard will help the user to find the correct 
phenotype by offering an auto-completion for all available or shared phenotypes for the 
selected species and dataset. For each selected phenotype, detailed information about the 
data distribution and a Shapiro-Wilk (Shapiro and Wilk, 1965) are given (see Supplemental 
Figure 7). Here, the user has the opportunity to select different transformation methods to 
normalize the phenotypic data. The Shapiro-Wilk and histograms are updated dynamically 
and in real time for interactive exploration. In the next step, the user has the opportunity to 
add their experiments’ covariates, which can be used to account for various confounding 
factors, such as environmental effects or simple forms of population stratification. Later, the 
wizard offers a selection of different algorithms to perform association tests between the 
selected genotype and phenotypes (see Methods). In addition, different filtering and 
genotype encoding options are provided. Here, the user can filter SNPs that do not fulfil a 
certain allele frequency. For heterozygous genotypes, different genotype encodings can be 
selected. The default encoding, known as the additive encoding represents the major allele 
as 0, the heterozygous allele as 1, and the minor allele as 2. An overview of all available 
encodings is given in Supplemental Table 4. At the end, a summary page is provided such 
that the user can check all inputs and adjust them if necessary. Eventually, the user can 
submit his or her experiments to the easyGWAS computation queues. Detailed tutorials with 
examples on how to apply the wizard can be found in the online FAQ 
(https://easygwas.ethz.ch/faq/). 
 

 

Supplemental Text 3: easyGWAS GWAS History 
All submitted, running, or finished experiments are collected in the user's temporary history 
(“My temporary history”) for monitoring, as illustrated in Supplemental Figure 8. Each user 
can submit a maximum of five experiments simultaneously. Experiments will be stored for 
48-hours in the temporary history and then deleted. Nevertheless, users can save their 
experiments permanently. For this, experiments can be grouped into GWAS projects and 
stored in the user's profile (Supplemental Figure 9). All stored experiments are listed in the 
“My Experiments” view. In this view, experiments can be filtered by project, as well as 
regrouped into new or other projects. An overview of all available projects can be found in 
the “My Projects” view. Projects can be shared with other registered users by entering the e-
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mail address in the sharing form (Supplemental Figure 10), with the new projects and all 
associated experiments, datasets, phenotypes, and covariates automatically linked to the 
others user’s profile.  
To make projects publicly available to the scientific community, easyGWAS offers a 
publishing inquiry form (Supplemental Figure 11). An easyGWAS administrator has to first 
approve the inquiry before a GWAS project is made available. Here, administrators check if 
the user provides meaningful names for the GWAS project, experiments, dataset, 
phenotypes and samples, but also if a brief description is given about what has been done. 
This inquiry and approval step should serve as a basic quality check before data and results 
are made public. Published projects and experiments cannot be changed or deleted 
subsequently by the user who agrees that the data and experiments can be reused by 
others. 
 

Supplemental Text 4: Step-by-Step Procedures to Reproduce the 
Content of Figures  
In the easyGWAS manuscript we show many screenshots of different views and 
visualizations. Here, we show how these different views can be accessed or generated and 
give a detailed description of the different panels in these views.  
 
How to access the content of Figure 2? 
The results of the genome-wide association study illustrated in Figure 2 can be accessed at: 
 https://easygwas.ethz.ch/gwas/results/manhattan/view/e908dfaf-7f4c-4315-8951-35e8466772a1/ 
 
How to reproduce the contents of Figure 2? 
To reproduce the results shown in Figure 2, the user has to follow the step-by-step 
procedure below: 

1. Login to easyGWAS 
2. Navigate to “GWAS Center” in the top menu 
3. Click on “New GWAS” in the left side menu to start the GWAS wizard 
4. Select the species “Arabidopsis thaliana”; the dataset “AtPolyDB” and the gene 

annotation set “TAIR10” and click “Continue” 
5. Select the public phenotype “avrRpm1” using the autocomplete search function and 

click “Continue” 
6. The next step in the wizard asks to select a phenotype transformation. Because the 

phenotype chosen in the previous step is binary, the transformation will not yield a 
normal distribution of phenotype values. It is therefore not necessary to apply a 
transformation and this step can be skipped by clicking “Continue”.  

7. Next, different covariates or principal components can be added. This step can be 
skipped for this analysis. In general – and whenever available – adding covariates 
might be necessary to account for confounding factors such as environmental 
effects.  

8. Select all available SNPs by clicking “Continue” 
9. Select a 10% minor allele frequency (MAF) filter and the algorithm “EMMAX”. Click 

“Continue” 
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10. In the final step of the wizard, all inputs can be checked and the genome-wide 
association study can be submitted to the computation queues. 

11. After submitting the experiment the user is redirected to the “Temporary Experiment” 
view 

12. The results can be accessed by clicking on the experiment name after they are 
finished 

 
How to access the content of Figure 3? 
The detailed SNP view of Figure 3 can be accessed via the following link: 
https://easygwas.ethz.ch/gwas/results/snp/detailed/8557bdde-aa8a-4615-a643-ccce51a4edc0/Chr4/429928/ 
 
How to access an arbitrary detailed SNP view? 
To access the “Detailed SNP View” for any given SNP, the user can click on a dot – which 
represents the logarithm base 10 of the p-value of a SNP – in the Manhattan plot. For 
example click on any SNP in one of the following Manhattan plots: 
https://easygwas.ethz.ch/gwas/results/manhattan/view/e908dfaf-7f4c-4315-8951-35e8466772a1/ 
 
How to access the content of Figure 4? 
Figure 4 shows a snapshot of the results of a comparative analysis of GWAS. The results 
shown in Figure 4 can be accessed via the following link: 
https://easygwas.ethz.ch/comparison/results/manhattan/view/51a98e12-fb0c-4c3e-a0a0-94feb35a4ae6/ 
 
How to reproduce the contents of Figure 4? 
To reproduce the comparative analysis of multiple GWAS shown in Figure 4 users have to 
follow the steps listed below: 

1. Login to easyGWAS 
2. Navigate to “GWAS Center” in the top menu 
3. Click on “New Intersection Analysis” in the left side menu to start the GWAS wizard 
4. Select the species “Arabidopsis thaliana” and the gene annotation set “TAIR10”. 

Click “Continue” 
5. When having to select the experiments to compare, select the following six public 

phenotypes using the autocomplete search form: Bs, FLC, FT16, Hiks1, Nickel 
(Ni60), Storage 28 days. The experiments are named after the phenotypes. Press 
Enter after selecting one experiment and start typing the name of the next one. Click 
“Compare GWAS”. 

6. The results of the GWAS comparison can be accessed in the “Temporary 
Experiment” view after the computations are done 

How to access the content of Figure 5? 
Figure 5 shows the phenotype-phenotype correlation plot created in the comparative 
analysis of GWAS in our case study. The plot can be found here: 
https://easygwas.ethz.ch/comparison/results/manhattan/view/2c8da231-96ff-4f28-a17e-fd0e3510d8e1/ 
 
How to reproduce the content of Figure 5? 
To reproduce the comparative analysis of GWAS from the case study as shown in Figure 5, 
the user has to follow the steps listed below: 

1. Login to easyGWAS 
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2. Navigate to “GWAS Center” in the top menu 
3. Click on “New Intersection Analysis” in the left side menu to start the GWAS wizard 
4. Select the species “Arabidopsis thaliana” and the gene annotation set “TAIR10”. 

Click “Continue” 
5. In a similar way as we did in Step 5 for Figure 4, select the following nine public 

phenotypes (experiments) using the autocomplete search form for public 
phenotypes: DTF1, DTF2, DTF3, RL, CL, CBN, RBN, Diameter, Length.  
Click “Compare GWAS”. 

6. The results of the GWAS comparison can be accessed in the “Temporary 
Experiment” view after the computations are done 

How to access the contents of Figure 6? 
The “Detailed SNP View” in Figure 6 can be accessed via the following link: 
https://easygwas.ethz.ch/gwas/results/snp/detailed/57a7cf18-cb0f-408a-8954-49f94d1bfc47/Chr1/24338990/  
 

 

Supplemental Text 5: Tips on how to Access Certain Panels 
 
How to access QQ-Plots from GWAS? 
To access QQ-Plots of a genome-wide association analysis, click “QQ-Plot” in the “GWAS 
Result View” submenu: 
https://easygwas.ethz.ch/gwas/results/qqplots/e908dfaf-7f4c-4315-8951-35e8466772a1/ 
 
How to access a list of SNP annotations per Chromosome? 
To access a list of SNP annotations of a genome-wide association analysis, click “SNP 
Annotations” in the “GWAS Results View” submenu: 
https://easygwas.ethz.ch/gwas/results/snpannotations/e908dfaf-7f4c-4315-8951-35e8466772a1/ 
 
How to access a detailed summary of a genome-wide association analysis: 
To access a detailed summary of genome-wide association analysis, click 
“Summary/Download”: 
https://easygwas.ethz.ch/gwas/results/summary/e908dfaf-7f4c-4315-8951-35e8466772a1/ 
 
How to access a view showing shared associations between GWAS: 
To access a detailed overview about the top x associated SNPs shared between different 
GWAS, click “Shared Associations” in the “GWAS Comparison View”: 
https://easygwas.ethz.ch/comparison/results/sharedsignal/view/dfaa2551-7b2d-4e3d-9170-6522966b7d2a/ 
 
How to access a view showing genes with shared associations between GWAS: 
To access a detailed overview about genes that share associated SNPs between different 
GWAS, click “Shared Genes” in the “GWAS Comparison View”: 
https://easygwas.ethz.ch/comparison/results/gene/view/dfaa2551-7b2d-4e3d-9170-6522966b7d2a/ 
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Supplemental Text 6: Variance Explained for Linear Mixed Models 
easyGWAS computes, in a 10-fold cross-validation, which parts of the phenotypic variance 
could be attributed to the genetic contribution (random effect), using the kinship matrix only, 
and to the covariates (fixed effects). For this purpose, the data is split, to the extent possible, 
into 10 equal subsets. Then, nine subsets are combined to train a linear mixed model using 
only the kinship matrix and the covariates. The remaining subset is used to predict the 
phenotype . This procedure is repeated 10 times. Predictions for  are obtained by 
summing up the contributions of the random and fixed effects as follows: 
 

 
 

where  are the included covariates (or a vector of ones if no covariates are included),  is 

the kinship matrix, and  and  are the estimated parameters from the training step. The 
indices train and test indicate which subset the data are coming from. Eventually, the variance 
explained is computed as follows: 
 

 

 

Supplemental Text 7: Procedure to Measure Dependence Between 
Phenotype and Population Structure 
 
To measure the statistical dependence between a phenotype and population structure, we 
employ the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005), a kernel-
based multivariate measure of statistical dependence. An empirical estimate of HSIC 
between two random variables – in our case phenotype and kinship – is obtained by 
computing a kernel matrix on the samples. This kernel matrix on the phenotypic values L(i, j) 
is computed by linear kernel, that is the product of the phenotypes yi and yj, of individual i 
and j. The kernel matrix representing kinship is the realized relationship matrix K, that is, K(i, 
j) an scalar product between the genotypes of individuals i and j. 
  
We obtain an empirical estimate of HSIC based on L and K, and perform 100,000 random 
permutations of the phenotypes and recompute HSIC in order to obtain an empirical null 
distribution of HSIC values under the assumption of no dependence between phenotype and 
population structure. We compute a p-value for the phenotype y based on this null 
distribution, and report a statistically significant association if it passes the Bonferroni-
corrected significance threshold (𝛼 = 0.05 divided by the number of phenotypes studied). 
Phenotypes that show a statistically significant association are shown in red in easyGWAS.  
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Supplemental Text 8: Transformation Methods 
In regression methods, the residuals are assumed to follow a Gaussian distribution. As 
described in the main document2, easyGWAS implements three different regression 
algorithms: linear regression, logistic regression and two flavors of linear mixed models. In 
practice, the assumption of residuals being normally distributed does not always hold and a 
pre-processing of the phenotype is commonly performed to make their values as Gaussian 
as possible (Fusi et al., 2014). In easyGWAS this pre-processing is referred to as 
"transformation" and six different transformation methods are implemented:  

● Zero mean: subtracts, from each phenotype value, the mean of the phenotype 
● Zero mean and unit variance: after subtracting the mean, divide each value by the 

standard deviation of the phenotype 
● Square root: compute the square root of each value 
● Logarithmic: compute the logarithm base 10 of each value 
● Box-Cox: apply the Box-Cox transformation. As stated in their original paper (Box 

and Cox, 1964), this transformation requires one parameter 𝜆. When 𝜆 tends to zero, 
the effect is similar to that of a logarithmic transformation. The implementation in 
easyGWAS does not require the user to specify the value of 𝜆, but optimizes it 
instead. If unsure of what transformation to apply, the Box-Cox transformation is a 
safe first guess as it is the most frequently used transformation in regression 
analyses. 

● Dummy variable: encodes categorical data into dummy variables. For example, if 
phenotype values are 1, 2 and 3, then three dummy variables v1, v2 and v3 will be 
created to encode the values as binary combinations of 0 and 1. The phenotype 
value of 1 will be encoded as v1 = 1,  v2 = 0 and v3= 0; the value of 2 will be encoded 
as v1 = 0,  v2 = 1 and v3= 0, and the value of 3 as v1 = 0,  v2 = 0 and v3= 1. 

 
Not all transformations can be applied to all phenotypes and easyGWAS controls these 
options based on the type of data of the phenotype that is being analyzed. Supplemental 
Table 5 provides additional details of the methods and of their constraints to different data 
types.  
 
It is also important to note that there is no principled way to determine what the best 
transformation for a given dataset is. It has been shown, in the case of linear mixed models, 
that selecting the wrong transformation for a phenotype can result in significant biases in the 
heritability estimates (Fusi et al., 2014). To mitigate this problem, easyGWAS allows the user 
to quickly visualize the distribution of the phenotypes after a transformation method has 
been selected. Additionally, a Shapiro-Wilk test is performed to test for normality of the 
transformed data (Shapiro and Wilk, 1965). Nevertheless, the user is cautioned that finding 
the right transformation method for a genome-wide association study is often times 
challenging. 

                                                
2 See Methods and Materials, subsection Genome-Wide Association Mapping Methods. 
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Supplemental Text 9: Meta-Analysis 
As mentioned in the main manuscript, independent GWAS that focus on a particular trait 
tend to report associated genetic variants that have modest effects. The goal of a meta-
analysis of GWAS is then to pool results from different studies, thus increasing sample size 
and power. This has made the meta-analysis a successful tool to discover genetic loci 
associated to common diseases and phenotypes (Evangelou and Ioannidis, 2013). This 
success comes at a price, and this section addresses what the main assumptions of a meta-
analysis are and how should the user take these assumptions into consideration when 
conducting a meta-analysis in easyGWAS.   
 
Three of the most common meta-analysis models are implemented in easyGWAS. These 
are a) the P-value model, b) the fixed-effects model and c) the random-effects model. 
 
P-value model: is based on the combination of p-values obtained from different studies. 
easyGWAS implements three different methods to combine p-values, namely Fisher’s 
method, Stouffer’s Z-score, and the weighted version of Stouffer’s Z-score. The general 
assumption in the p-value model is that the null hypothesis is the absence of true association 
in the different studies whereas the alternative hypothesis is that there is an association in at 
least one of them (Evangelou and Ioannidis, 2013). One major disadvantage of the p-value 
model is that the direction of effects is disregarded or it is simply unknown (i.e. in the case 
when only p-values are available). The two models discussed below overcome this 
limitation. 
 
Fixed-effects model: assumes that a given genetic variant has the same effect across all 
studies. Under this model, any variation in the results of the individual studies is assumed to 
arise from sampling artifacts. This is the most popular approach when combining GWAS but 
if its core assumption is violated (i.e. the genetic effects may differ between studies because 
the populations are very heterogeneous) then there is a risk that the p-values will be inflated. 
 
Random-effects model: assumes the individuals in each study display different magnitudes 
of genetic effect. When combining studies, the goal is then to estimate the average effect 
across all populations. Although one may feel inclined to use these model when unsure 
about the type of effects it is worth noting that if a random-effects model is used when the 
genetic variants have true fixed-effects, the estimation of p-values will be rather conservative 
and result in loss of power. 
 
In summary, when the information about the direction and type of effects is available, 
combining effect sizes is more powerful than combining p-values or Z-scores (Borenstein et 
al., 2010, 2011). Nevertheless, as discussed before, using the wrong assumptions about the 
direction of effects will have an impact on the final calibration of the p-values and on their 
final interpretation. The fixed- and random-effects model require that all GWAS are 
performed on a distinct set of samples and that the computations are standardized across all 
studies (e.g. that the measurements had the same scale and had been transformed with the 
same methods). 
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As a final remark, currently easyGWAS does not check if there is an overlap of individuals 
when separate GWAS are combined. The user is cautioned to determine the provenance of 
all the individuals in a meta-analysis to guarantee there is no overlap as this may result in an 
inflation of the type I error due to spurious associations (Lin and Sullivan, 2009; Zaykin and 
Kozbur, 2010). 
 

Supplemental Text 10: Correction methods for multiple hypothesis 
testing 
Performing a form of multiple testing correction is unavoidable when testing thousands of 
potential associations in GWAS. The correction is done to avoid an abundance of false 
positive findings. easyGWAS offers four different approaches to multiple testing correction.  
 
Approach 1 is Bonferroni correction (Bonferroni, 1936), which controls the family-wise 
error rate of making at least one false positive finding. Its approach to guarantee this family-
wise error rate is to require a stricter significance threshold for each individual association 
test. Rather than deeming an association significant at level 𝛼 (typically 0.05 or 0.01), the 
Bonferroni correction only deems a finding significant at level 𝛼* = 𝛼/𝑛 where 𝑛  is the 
number of association tests performed. 
 
Approaches 2-4 control the false discovery rate rather than the family-wise error rate. 
Procedures like the Bonferroni correction that control the family-wise error rate tend to be 
overly conservative because they focus on avoiding any false positive findings. This may 
lead to a loss of statistical power, that is, true associations may be missed. That is why the 
less conservative approach of controlling the false discovery rate instead – the expected 
number of false associations among all associations reported to be significant – gained 
popularity in many high-dimensional settings. In essence, it has an increased statistical 
power, i.e. its ability to find true associations. Approach 2 is the original approach to false 
discovery rate control by Benjamini and Hochberg (1995).  
 
Approach 3 is a modified version of false discovery rate control by Benjamini and Yekutieli 
(2001) which takes dependence between tests into account. The original work on false 
discovery rate by Benjamini and Hochberg makes the assumption that all tests are 
independent. In GWAS this assumption is often violated, as neighboring genetic markers are 
highly correlated due to linkage disequilibrium and their corresponding association tests are 
highly dependent.  
 
Approach 4 controls the false discovery rate using q-values (Storey and Tibshirani, 2003). 
In GWAS, the q-value for a particular SNP is the expected proportion of false positives 
among all significant findings, when calling this SNP significant. While the p-values of all 
tests are used in Approach 2 and 3 to define a global p-value threshold that allows to control 
the false discovery rate, the q-value of each SNP allows to make a statement about the 
corresponding false discovery rate.  
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In conclusion, easyGWAS offers a wide range of methods to correct for multiple hypothesis 
testing. Choosing the appropriate method for a given analysis is subjective and highly 
dependent on how will the results be followed up. As an example, consider a genome-wide 
association study in a population of plants where the final goal of identifying SNPs 
associated to the phenotype is to conduct follow-up validation experiments. If we use a 
Bonferroni correction with 𝛼 = 0.01, it will be unlikely that our validation will fail on any SNP 
deemed statistically significant. If, on the other hand, we are willing to accept a percentage 
of our validation experiments to fail, any of the Approaches 2-4 based on false discovery rate 
will be more appropriate. 
 
Approach 1, although very basic, is the most common correction method in statistical 
genetics. On the other hand, Approach 4 is a gold standard in other branches of genomics. 
As a final recommendation, we suggest the novice user to apply the Bonferroni correction 
in their initial analyses, leaving Storey and Tibshirani’s q-values for more seasoned or 
experienced users. 
 
 

 

Supplemental Text 11: REST Interface 
We provide a Representational State Transfer (REST) web service that allows the user to 
programmatically query and get results from easyGWAS. The REST interface is language-
independent and enables a user to write a script (say, in Python or R) that queries 
easyGWAS through a web service and returns the results to the invoking program where 
further post-processing or analyses can take place. Of course, easyGWAS allows the user to 
download different types of data, including full results of a genome-wide association study 
computed in the platform. The user can then (offline) process the downloaded files. The 
REST interface is an alternative medium through which the user can access information in a 
programmatic way without the need to fully download entire datasets.  
 
The implementation of the REST web service in easyGWAS follows a trend of providing 
flexible access to genomic data in large biological databases like the Ensembl Genome 
Browser (Yates et al., 2015) or WormBase ParaSite (Howe et al., 2016). 
 
A full description of all available REST endpoints can be found in the easyGWAS online FAQ 
(https://easygwas.ethz.ch/faq/#section_7). In the following we will give some examples of 
how to use the interface: 
 
 
Example 1: Get a list of all publicly available species 
 
1.1  From a browser. The standard format in which the results are returned is JSON. 

Alternatively, the user can also download the results as a comma-separated file by 
pasting the following URL: 
https://easygwas.ethz.ch/rest/species/public/list.csv 
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1.2  With the curl command 

#!/bin/sh 
host="https://easygwas.ethz.ch" 
query="rest/species/public/list/" 
curl ${host}/${query} 

 
1.3  In Python 2 

import requests, sys 
 
# Server name and query 
host  = "https://easygwas.ethz.ch" 
query = "/rest/species/public/list" 
  
r = requests.get(host+query, headers={"Content-Type" : "application/json"}) 
 
# Determine if GET access was successful  
if not r.ok: 
  r.raise_for_status() 
  sys.exit() 
 
# Get the results  
decoded = r.json() 
print decoded 

 
 
Example 2: Get all private phenotypes associated to the public species Arabidopsis thaliana 
(species_id = 1) for user john_doe 

#!/bin/sh 
host="https://easygwas.ethz.ch" 
species_id=1 
query="rest/species/${species_id}/phenotype/private/list/" 
curl ${host}/${query} -u john_doe 
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