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You and I are members of a community of human beings. 
We act and interact upon one another. We move about in a 

rather haphazard manner amongst our neighbours. All sorts 

of things happen to us as the result of these movements and 
interactions. We meet and exchange ideas. We meet and 

contract measles or some other contagious complaint. Our 

lives are a train of such incidents, a succession of events, one 

following the other. 
This is the line of thought which I propose to follow this 

afternoon. It is the basic principle which lies at the root of 

every epidemiological problem, and on the proper under- 

standing of it depends the solution of these problems. 
Think of yourselves as little molecules and each of your 

lives as a train of events of one sort or another. Think of 

yourselves as moving in all sorts of dimensions, perhaps only 
forwards, perhaps forwards at one time and backwards at j 

another. Your behaviour will then not greatly differ from that 
of a molecule of a gas, and I hope to show you that you obey 
in general much the same sort of laws as molecules of a gas obey. 

You may raise the objection that the movements of a 

human being are not haphazard or random?that they are not 

predictable but are purposeful and subject to individual choice. 
That is no doubt true. But you must remember on the one 

hand that according to the most recent physical view the same 

unpredictableness holds for individual atoms, and on the other 

that, in the absence of some particular law which may generally 
govern the movements of the members 

of a crowd, the move- 

ments of the individuals within that crowd, each member of 

which may be moving purposefully, are in the aggregate hardly 
( distinguishable from random motion. An illustration will 

make this obvious. We can make fairly accurate predictions 
as to the number of road accidents which will occur in a 

particular period of time, though we cannot make statements 
as to the particular individuals who will be hurt. We can 
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estimate with reasonable precision the number of births or 
deaths which will occur during the ensuing year, though we 
cannot say who will bear children or who will die. Thus if 
we fix our attention on the crowd or the aggregate of individuals, 
and not on the individuals themselves?if we get rid of the 
idea of wondering how one particular individual will behave, 
and consider how a community will behave?we find that laws 
emerge which are almost identical with those which apply to 
inanimate particles, and which are almost as exact. 

It will be clear to you from these considerations that in 

many biological phenomena we meet with a principle of mass 
action very similar to the principle of mass action met with in 
chemistry. You will remember that this principle states that 
the rate at which any reaction takes place is proportional to 
the concentration or mass of the constituents which enter into 
the reaction. Before the molecules react they must meet, and 
it is because their chance of meeting is proportional to their 
concentration that the law of mass action holds. The situation 
is approximately the same in the biological field. The chance 
of an infected individual infecting a healthy one, or of a large fish 
in the sea eating a small one, or of a phagocyte engulfing a 
bacterium, is to a first approximation proportional to the number 
of individuals, fish, or phagocytes and bacteria which are present. 

In order to fix our ideas, let us take a simple example 
which can be tested by experiment. Let us take the case of 

the phagocytes and the bacteria (3, 4, 9, 12, 13). Here we have 
a swarm of phagocytes wandering about in what appears to 
be a random manner in a substratum which contains micro- 

organisms. A phagocyte collides with an organism and, if 

conditions are favourable, ingests it. We stop the experiment 
after fifteen minutes or so and count the ingested bacteria. If 
a phagocyte is empty we write o, if it contains one organism we 
write 1, and so on. We thus find the numbers of phagocytes 
containing o, I, 2, 3, etc., organisms, and from this the mean 
number of organisms ingested, which is the phagocytic index. 

I have been in the habit of examining such phenomena by 
making use of a schema of this sort (Fig. 1). 

All the phagocytes are at first empty, and may be considered 
as occupying the compartment marked zero. As time elapses 
some pick up an organism and pass towards the right into the 
compartment marked 1, some of these ingest a second organism 
and pass into the compartment marked 2, and so on. The 
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arrows indicate the probability that a phagocyte will pass from 
?ne compartment to the next, and by the principle .of mass 
action the number which pass out of any compartment during 
Unit time will depend upon the number of phagocytes which 
are already in that compartment. The advantage of this 

Method of schematic representation is that it can be directly 

transformed into mathematical language and the equations 
which result solved in such a way that the relative numbers in 

each compartment can at once be calculated. I shall not 

double you here with the working of the mathematical machine. 
It is sufficient for the present purpose that it can be operated, 
and that it yields the desired results. 

In the above we have assumed that all the arrows were of 

equal value. But this might not be so. With each ingestion 
the appetite of the phagocyte might become greater, as depicted 
ln Fig. 2, or less, as shown in Fig. 3. 

Here is an example showing the agreement between theory 

According to the schema, and the results of an actual experiment. 

0 bacteria 

1 

Observed. Calculated. 

19 19 

59 58 
98 88 

88 90 

65 68 

37 42 

17 21 

8 9 
5 3*5 
4 i*5 

You will see that the agreement between calculated and 

observed figures is very close (in fact, on the assumption that 
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the process operates in the manner which I have described, 
a fit as bad as or worse than that observed would be expected 
to occur six times out of ten). 

I give you this example as a very simple illustration of the 
type of method and reasoning which we are discussing. It is, 
as a matter of fact, the very simplest case of a phagocytic 
experiment. Complexities arise owing to the fact that during 
the process of phagocytosis the organisms are themselves 

becoming agglutinated into masses by the action of the serum. 
I have worked out this problem (12), but its discussion would 
deflect us from the line of thought which I propose to follow 
in this lecture. 

The above example, based upon the results from an actual 
experiment in the laboratory, may be considered as a study of 
a certain type of epidemiological problem with which medical 
men are often confronted (4 to n, 13). The epidemiologist is 
frequently furnished with data giving the number of houses in 
a certain locality which have harboured o case, I case, 2 cases, 

3 cases, etc., of a particular disease, and he is asked if, from the 
figures, he can tell whether infection has been distributed from 
a randomly acting source such as a water supply, or whether 
there is evidence of contagion within the houses. If the source 
be a random one, then the process is exactly the same as that 
depicted in Fig. I. If contagion is operating, then the chance 
of occurrence of a second case within a house will be greater 
than the chance of occurrence of the first case, and so on, and 
the diagram will be that of Fig. 2. The approximate rate of 
increase of the probability of infection {i.e. of the arrow) can 
be determined from the figures by the mathematical machine. 

Here are some figures relating to house infection in cancer. 

Houses with o case 

? I M 

? ,, 2 cases 

? 3 ? 

? 4 ? 

Observed. Calculated. 

64 65 
43 40 
IO 12 

2 2-5 
I 0'4 

The fit is a very good one, and as the rate of increase of the 
probability with the number of cases within the house was found 
to be negligible, it may be concluded that there is no evidence 
of contagion within the houses. In other words, the distribution 
was a random one, a conclusion which is just the opposite of 
that arrived at by Behla, who collected the data. 
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Here is another example referring to an epidemic of cholera 
>n a village in India. r., 

ill lliUlUt 

Houses with o case 

,, ,, i ? 

,, ,, 2 cases 

>> 3 

? 4 ? 

Observed. 

168 

32 
16 

6 

i 

Calculated. 

37 

34 
16 

5 
i 

223 93 

^ou will see that apart from the first row of figures referring 
to houses which remained throughout free from the disease, 
the fit is excellent. The first observation requires some 

comment. It is obvious that the determination by observation 
ln the field of the number of houses in which no cases have 

occurred is a matter of great difficulty ; the epidemic may 
have affected only an indeterminable portion of the locality. 
Fortunately, the mathematic machine is able to cope with this 
difficulty. 

The total number of houses which were concei-ned in the 

epidemic may be calculated from the observed figures apart 
from that relating to houses with o case, and the rate of increase 
?f the arrows may then be found. In the instance of the 

cholera village, the rate of increase of the arrows was found 
to be negligible, and so this case also is of the type represented 
ln Fig. I. In other words, there was no evidence of contagion 
within the houses, and the suggestion was that the disease was 

Water-borne, that there were a number of wells, and that the 

inhabitants of some 93 out of the 223 houses drank from 

certain wells which were infected. On further local investigation 
it was found that one out of a number of wells in the village 
was infected. 

Let us consider an example of a somewhat different sort (1). 
An organism is grown in a fluid nutrient medium. Multiplica- 
tion takes place by simple fission. The organism absorbs food- 
stuff and increases in volume. When it is approximately double 
its initial size it splits into two. The period of a generation is 

very short, and the amount of food-stuff required for upkeep 
is negligible as compared with the amount which goes to swell 
the bulk of the organism prior to division. Here we have a 

collisional phenomenon similar to that of phagocytosis, but 

which differs from phagocytosis in two respects. The first is 

that the organism divides. The second is that whereas in the 

case of the phagocytic experiment the duration of the experi- 
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ment was limited to fifteen minutes, in the present instance 
the process is allowed to go on indefinitely. Thus we have 
to take into account the fact that the food-stuff becomes used 
up. Here again the process takes place according to the law 
of mass action, and the rate at which it takes place depends on 
the one hand on the number of parent organisms at the 

moment, and on the other, on the 
limited amount of food-stuff avail- 
able. The whole process may be 

considered as a conversion of food- 
stuff into organisms. 

The diagrammatic representation 
is simple (Fig. 4). 

There are in this case only two compartments ; the first 
refers to unconverted food-stuff, the second to converted food- 
stuff, that is to say, to bacteria. 

Fig. 5 shows the agreement between observed figures and 
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Fig. 4.?x = unconverted stuff. 

y converted stuff. 

x-\-y = constant. 

Fig. 4.?x = unconverted stuff. 

y = converted stuff. 

xAry = constant. 

T/M? 

Fig. 5.?Rate of growth of 
rings = observed; 

/N HOURS 

bacteria, logarithmic curve, 
line = calculated. 

Fig. 5- Rate of growth of bacteria, logarithmic curve, 
rings = observed; line = calculated. 
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Fig. 6.?Invasion of a community by plague. 
line = observed ; rings = calculated. 

Fig. 6.?Invasion of a community by plague, 
line = observed ; rings = calculated. 
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Fig. 7.?Invasion of a community by plague, logarithmic curve, 

line = observed; rings = calculated. 
Fig. 7.?Invasion of a community by plague, logarithmic curve, 

line = observed; rings = calculated. 
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those calculated from the above schema (McKendrick and Pa1* 

1911). The logarithms of the numbers of bacteria and not the 
actual numbers have been charted. (This method of representa- 
tion is more convenient because it brings out the fact that the 
initial rise of the logarithmic curve should, according to the 

theory represented in Fig. 4, be a straight line.) The agreement 
is very close. 

But let us pause and consider for a moment. The growth 
of bacteria in broth is in all respects similar to the growth of 
leaven (i.e. yeast) in a lump of dough, and this is stated in the 

Scriptures to be analogous to the growth of the kingdom of 
heaven. In other words, the parable enunciates the law which 
should govern the spread of an idea or an influence or anything 
contagious or communicable amongst the members of a 

population. It enunciates a law which is inherently mathe- 
matical. Let us examine a few applications of the parable. , 

1. Take first the spread of a contagious disease. 
In Fig. 6 is shown the number of persons who had contracted 

plague during an epidemic in India, and in Fig. 7 the logarithms 
of the same numbers are plotted. 

2. In Fig. 8 are shown the numbers of persons treated for 
hydrophobia at the Pasteur Institute of Kasauli from 1900-1928, 
and in Fig. 9 the logarithms of the same numbers are plotted. 
These figures show the spread of knowledge regarding the 
value of Pasteurian treatment amongst a population, the 

members of which were at first ignorant of its benefits. 
I have examined many other cases to which the law applies, 

and so also in later years has Raymond Pearl. But I have 

shown you enough to illustrate my point. There can be no 

doubt that the axiom stated in the parable is borne out by 
facts. We have proved it to be true regarding the illustration 
of the rate of growth of organisms, on the one hand, and have 
given instances of its application to the spread of contagious 
influences on the other. 

So far I have been dealing with rather simple problems in 
which most of the essential facts can be relatively easily 
ascertained. I shall next deal with much more complicated 
problems, the study of which has occupied Dr Kermack and 
myself for many years (8, 13 to 19). The spread of a disease 
throughout a community depends in its detail on all kinds 
of elaborate circumstances, on particular acts of this or 

that individual, on the chance meetings of people, on their 
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Fig. 8.?Patients treated at Pasteur Institute. 

line = observed; rings = calculated. 
Fig. 8.?Patients treated at Pasteur Institute, 

line = observed; rings = calculated. 
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Fig. 9.?Patients treated at Pasteur Institute, logarithmic curve, 

line = observed; rings = calculated. 
Fig. 9.?Patients treated at Pasteur Institute, logarithmic curve, 

line = observed; rings = calculated. 
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congregation in streets, schools, and so on. It is quite im- 

possible to take all these circumstances into account in any 
workable theory. This type of difficulty, however, is not one 

peculiar to problems of epidemiology. It is indeed one met 

with in all branches of scientific theory. Even the physicist 
cheerfully neglects all kinds of obvious facts and works out 

his problems on the basis of purely diagrammatic schemes. 
The important condition for any such simplification is that 

the essential features of the problem should be retained and the 
incidental ones disregarded. The results obtained are of course 

only approximate, but the answer gives us the substance of what 
we really want, if it does not give us the trimmings. Indeed, 
it may be asserted that it is this ability of abstracting the 
essential from a mass of detail which makes human thought 
possible, and it is the ability to do this with confidence and with 
success which distinguishes the genius from the pedant. 

In attempting then to 
" 

understand " the course of an 

epidemic we have to try to abstract the essential features into 
some sort of diagrammatic form which is simple enough to be 
dealt with by the mathematical tools at our disposal, and at 
the same time is sufficiently near to reality to avoid gross 
misrepresentation. It is here that our law of mass action 
stands us in good stead as a first approximation. We can 
assume that the rate at which new cases of disease are produced 
in a community is proportional to the number who are ill and 
to the number who are susceptible. We can assume, too, that 
the number who die or recover is proportional to the number 
who are ill. 

Let us be under no illusion. The degree of simplification 
which we have introduced here is a very great one. Not only 
have we neglected all the vicissitudes of contact, the variations 
in crowding of the individuals concerned, but we have also, 
tentatively at least, assumed that all the infected persons are 

equivalent, and that all the susceptible persons are equally 
liable to acquire infection. Neither have we taken into account 
variations of susceptibility during the different phases of the 
disease in the patient. We boldly simplify the problem and 
work out the consequences on the theory so simplified, and we 
compare these with the observed facts in order to see whether 
our diagrammatic scheme does substantially accord with reality. 

We may then represent the system of an epidemic by a 
diagram of the type which we have already made use of (Fig. 10). 
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Let us confine our attention in the first place to the compart- 
ment y, that is, to the numbers who are sick of the disease in 

Question. You will notice that the arrow kxy denotes the chance 
?f a virgin (i.e. a person who has never suffered from the 

disease in question) contracting the disease, whilst kxy denotes 
the chance of a recovered person becoming ill : and that ly 
and dy denote respectively the chances of a sick person 

recovering, and of dying of the specific disease, fix, py 
and nx denote respectively the chances that a virgin, one who 
ls sick or one who is recovered, may die from some other 
cause. When a balance is struck between the number con- 

^acting the disease and the number of sick who are removed 
either by death or recovery, the sick y will be in a state of 

ecluilibrium and their number will neither increase nor decrease. 
When the number contracting the disease is in excess, the 

dumber of sick will increase ; when it is in defect, it will 

decrease. Thus following the arrows in the diagram, 
when kxy-\-kxy is greater than (d-\-lJrp)y, y increases ; 

when kxy+kxy is equal to (d+l+p)y, y is in equilibrium ; 
and when kxy-\-kxy is less than (d-\-l-\-p)y, y decreases. 

As y occurs on either side of the inequality, it may be 

ehminated, and so we arrive at the simpler relations :? 
when kx-\-kx>d+l+p, y increases ; 

when kx+kx = </+/+p, y is in equilibrium ; 
and when kxJrkx<dJrlJrp, y decreases ; 
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FlG. io.?Schema illustrating invasion of a community by contagious disease. Fig. io.?Schema illustrating invasion of a community by contagious disease. 
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and we note that these are independent of y, the number of 
sick at the moment. 

As k, k, d, I and p are constants, it follows that the behaviour 
of y depends only upon x and x, that is on the numbers ol 

susceptible persons, whether they be in some degree immunised 
or not. 

If we consider the case where complete immunity is conferred 
by the disease (k = <?), we arrive at the still simpler relations : 

(1) when x > 
k 

(2) when x y is in equilibrium ; 
k 

and (3) when x < y decreases. 
k 

Thus if oc is at first greater than ancj thereafter decreases, 

as it must do during an epidemic, the curve which denotes the 
time variation of y will first rise, then reach a state of equilibrium 
and finally fall. The peak of the epidemic will occur when the 

number of susceptibles is exactly 

Let us now consider the case where a number of infected 
persons are introduced into a population which is free from the 
disease. The above relations 1, 2, and 3 still hold. If the 

number of virgins x is greater than the constant value 
k 

the number of sick will increase ; that is to say, there will be 

an epidemic rise. If it is less than the constant value, the 

number of sick will decline and the disease will fade out. 

Thus we see that the risk to which imported cases subject a 

community depends upon the number of susceptible persons 
in the area in which the community resides. If this number 

be greater than there will be an epidemic ; if it be 
k 

less, there can be no epidemic (apart from a few sporadic cases). 
For this reason we may call the value of x, which is equal to 

a threshold density. Also we note, returning to the k 

argument developed in the previous paragraph, that the 
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number of sick will reach its peak when the number of 

susceptibles is at its threshold density. 
Two cases fall to be considered. The first is presented 

when the community may be thought of as isolated?that is to 

say, it receives no new recruits either by births or as the result 
?f immigration. (Of course the exclusion of new individuals is 
never quite complete, but it often happens that the time 

required for an appreciable number of these new individuals 
to arrive is long in comparison with the average time taken 
by the disease to run its course.) The second case occurs 

when new recruits are flowing in at a relatively high rate, so 
that their effect on the course of the epidemic cannot be 

neglected. 

The first case then occurs when an epidemic of plague or 

uifluenza, for example, breaks out in a community, where the 
number of people infected is very large in comparison with 

the number of births and immigrations which are likely to 

?ccur whilst the epidemic is raging. 
Let us enquire what course we would expect 

the epidemic to 

follow if it were controlled by the simple factors which we 

have abstracted in the schema. 
As we have seen above, no epidemic, apart from a few 

sporadic cases, can occur unless the number 
of susceptibles 

exceeds the threshold value. If it exceeds this value, then 
the number of sick increases, and correspondingly the number 
?f susceptibles is reduced. When the number of susceptibles 
is reduced to the threshold density, then the epidemic reaches 
lts peak. Finally, the epidemic slowly exhausts itself as there 
are not sufficient susceptibles to keep it going ; the number of 

susceptibles has in fact become less than the threshold. (See 
Fig- H.) 

N.S. IV., XLVII. NO. 2. I29 I 
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Fig. IX.?Diagram illustrating variation in numbers of susceptibles (upper curve) 

and numbers of sick (lower curve) during the course of an epidemic. 
Fig. ii.?Diagram illustrating variation in numbers of susceptibles (upper curve) 

and numbers of sick (lower curve) during the course of an epidemic. 
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A very simple deduction from the theory as shown by the 
model is that the number of people who become sick during 
an epidemic is approximately twice the amount by which the 
number of susceptibles at the commencement of the epidemic 
exceeded the threshold. In other words, at the end of an 

epidemic the number of susceptibles remaining will be just 
as much below the threshold as the original number was 

above it. 

Let us now examine Fig. 12, which shows the number of 

deaths which occurred during the course of an epidemic of 

plague in the city of Bombay. It should first be explained 
that we have to regard this human epidemic as a reflection of a 
parallel epizootic amongst the rats of the city. As will be seen, 
the number of deaths gradually increases to a maximum and 
then falls. The figure also shows the course which our model 
would lead us to expect that the epidemic would follow. Of 
course the constants occurring in the schema are adjusted so 
as to give the best fit. One of these constants is a simple 
multiplier, which makes it possible to adjust the human results 
to the theory which really applies to the primary rat epidemic. 
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Fig. 12.?Epidemic of plague. 
dots = observed ; lines with rings = calculated. 

Fig. 12.?Epidemic of plague. 
dots = observed : lines with rings = calculated. 
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It will be seen that the general course of the epidemic is well 
represented by the theoretical curve. 

This result, that, according to the schema, the epidemic may 
exhaust itself long before all the susceptibles are affected, is one 
?f considerable interest. You are aware of course that various 

theories have been put forward as to why epidemics die out. 
One theory is that those who remain are relatively immune, 
that all the susceptibles are in fact attacked. A second is that 

during the course of the epidemic the materies morbi becomes 
less virulent, that the strain of the organism becomes attenuated 
by repeated passage through successive hosts, and that the 

epidemic dies out because of this loss of virulence. From what 
I have shown you it will be realised that it is not necessary to 
lntroduce any such assumptions. This is not of course to 

assert that they are untrue, only that the characteristic features 
?f the epidemic do not make it necessary to invoke them. 

Another interesting consequence of the above result, that 
the magnitude of the epidemic is approximately -twice the 
excess of the susceptible population above the threshold, is 

?ne repeatedly referred to in the literature. In a virgin 

community which so far has been free from the disease, most 
?f the population may be susceptible to it, and so a density of 

Population far in excess of the threshold is built up. The 

result is that when the disease is actually introduced a wide- 

spread epidemic is initiated, which affects a large proportion of 
the community. The larger the original excess, the greater the 

catastrophe. Hence we have cases such as the epidemics of 

tuberculosis amongst North American Indian tribes, and the 

catastrophic epidemics which occurred in earlier years 
in the 

islands of the Pacific. 
Let us now consider the second case where the population 

is being constantly supplied by an influx of fresh susceptibles 
whether by birth or by immigration. There is now the 

important difference, as compared with the first case, that a 

continuous process of disease is possible in the community, 
and that the disease does not necessarily die out. In fact, we 
have the case of endemic disease. When the schema is examined 

it is found that we again meet with the idea of the threshold. 
Here it turns up, for example, with the rate of immigration. 
^ is found that in order to ensure the continuance of the 

endemic condition, this rate of immigration must exceed a 

certain minimum or threshold value, and that above this the 
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incidence of the disease is proportional to the excess. We call 
the state of affairs where we have a steady rate of immigration 
and a constant incidence of the disease a steady state condition, 
and we note that the steady state of the sick is the " endemic 
level." It is in fact a kind of balance or equilibrium, and if 
the system is disturbed we may expect to have oscillations about 
this steady state, just as a disturbed balance swings about its 
equilibrium point. These oscillations will have a period 
determined by the characteristics of the system, and the 
successive oscillations will appear as successive epidemics, 
alternating with periods during which the disease is relatively 

quiescent. We are in fact led to the notion that under certain 
circumstances diseases may exhibit natural periodicities. 

Let us look at this matter from a somewhat different point 
of view. We have seen that when the population of susceptibles 
is above the threshold density, and infection is introduced, an 
epidemic will occur which on the principles of the law of mass 
action will reduce the population as far below the threshold 
value as it was previously in excess of it (Fig. n). If there 
is no immigration, of course, nothing more happens. If, 
however, fresh susceptibles are coming in (see Fig. 13), the 
population will gradually build itself up again. As long as 
the population of susceptibles is below the threshold level the 
disease will continue to die out (a), but once the threshold level 
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Fig. 13.?Diagram illustrating periodicity in endemic infection, 
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is exceeded (b), the number of ill will begin to increase. A 

point (c) will come when the disease is so intense that the 

number of individuals who turn ill per day is equal to the 
daily influx of susceptibles. At this point the population of 

susceptibles will have reached its maximum. The epidemic, 
however, will continue to grow (d) because the population of 

susceptibles still exceeds the threshold, and we will reach the 
maximum (e) of the epidemic as before when the population 
has returned to about its threshold density. After that point 
the chance of an individual who is ill recovering or dying 

becomes greater than his chance of infecting another individual, 
so that the number who are ill begins to fall (f) and continues 
to do so, and a point comes when it is so low that the daily 
number of those who turn ill becomes less than the daily 
inflow of new susceptibles. And so the process goes on, the 
number ill continuing to fall to a minimum which as before 
occurs when the number of susceptibles is at its threshold 
level. 

You may ask whether this kind of rhythmic process, the 
direct consequence of the law of mass action proceeding under 
certain conditions, ever occurs in nature. As an answer, let 
us examine the curve (Fig. 14) showing the notified number 
of cases of measles in Glasgow during a prolonged period of 
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Fig. 14.?Periodicity of measles in Glasgow, 
full line = cases, 

dotted line = susceptibles. 

Fig. 14.?Periodicity of measles in Glasgow, 
full line = cases, 

dotted line = susceptibles. 
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years (Soper, 1929). The periodic nature of the curve is 

evident. Actually the periodicity is not perfect. This is not 

unexpected in view of the manifold disturbing factors which 
must be present in any human community. Furthermore, 
even our schema when it is properly worked out does not lead 
to perfect oscillations?rather it is found they are oscillations 
which die out like a damped pendulum. Fresh disturbances 

are required to keep them going, and these may be expected to 
be supplied by the vagaries of climate and the accidents of 
communal life. Perhaps we get a fairly good analogy if we 

think of a pendulum subjected to odd knocks at random 
intervals ; its period of swing would on the whole be that of its 
natural oscillation, but the knocks would introduce irregularities 
and at the same time compensate for the natural dying out of 
the oscillation. 

The influence of the threshold density of the susceptible 
population has been emphasised in the foregoing, but a few 
further words on its nature and effects seem desirable. 

In the first place we note that the attainment of a high 
threshold density, by whatever means this may be brought 
about, is much to be desired, because (1) any population having 
a density below that of the threshold is not at risk from imported 
cases of disease, and (2), if an epidemic starts (the initial 

density having been above the threshold), then the greater the 
threshold density, the sooner does the epidemic reach its peak, 
and the smaller is its magnitude. 

Each disease has its own threshold density. The threshold 

rises with the rate of recovery, and the specific and non-specific 
death rates?that is to say, with all factors which deplete the 
number of sick. Thus any factor which reduces the period of 

illness, or more strictly the period of infectiveness, whether by 
death, recovery, or segregation, is advantageous to the com- 
munity in the sense that it raises the threshold. Early death 
and early recovery act beneficially in the same direction, and 
so also does early segregation. The threshold may also be 

raised by cutting down the chances of infection. If this cutting 
down of the infectivity be done with sufficient energy, a very 
large population of susceptibles may be built up, and kept free 
of serious epidemics. But such a community would be very 
unstable in the sense that any relaxation of care would result 
in a sudden fall of the threshold level, and so a serious epidemic 
might eventuate. An example is to be found in the case of 
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foot-and-mouth disease, where very vigorous precautions against 
the spread of infection must be enforced the instant a case 
comes to light if a general epidemic of the disease is to be 

avoided. Calculation shows that if a population is near its 

threshold level a relatively small increase in infectivity may 
produce quite a serious epidemic. Conversely, a small decrease 
effected by the sanitarian may have a surprisingly beneficial 
effect upon the public health. 

It is to be remembered that the factor k which we have 

called the " infectivity 
" is a composite one. It includes (a) the 

mobility of the members of the community whether sick or 

susceptible ; (F) the infectivity of the sick person ; and (c) the 
susceptibility of the persons at risk. Consequently any measures 
which reduce intercourse, infectivity, or susceptibility will raise 
the threshold and so reduce both the likelihood of occurrence 

of epidemics and their size if they do occur. 
A further conclusion is that the immigration of healthy 

susceptible individuals may be of serious epidemiological 
importance. The population density will thereby be raised 

above the threshold, and a flare-up will be likely to occur 
which will affect not only the immigrants but also a proportion 
of the original inhabitants who would otherwise have escaped. 
In considering the effects of large immigrations of human or 
animal populations, this possibility must be borne in mind. 

The foregoing is a mere sketch of a very large subject. 
I have tried to indicate some of the consequences which follow 

from a simple assumption, that a law of mass action can be 

applied to the interaction of human and animal populations 
just as it can be applied to populations of molecules or atoms. 
The principle is approximate rather than exact. Consequently 
it gives results which are only of a general character. The 

manifold complications of detail are neglected ; we concentrate 

our attention only on the wood and forget for the moment about 
the trees. It is, of course, important to deal with the individual 
trees, too, to study the details of particular epidemics, and the 

epidemiological peculiarities of particular diseases, but here we 
have looked from a wide perspective, and we have tried to 

perceive the common principle which lies behind a variety of 

phenomena exhibiting many superficial diversities. The 

common unifying principle is the same as that which plays 
so important a role in chemistry and in atomic physics, the 

principle of mass action. 

135 



A. G. McKendrick 

I have to express my thanks for permission to use Fig. 5 to the Royal 
Society of Edinburgh ; Fig. 10 to the Journal of Hygiene (Cambridge) ; 

Fig. 12 to the Royal Society; Fig. 14 to the Royal Statistical Society; 
and to Mrs E. K. Dawson for kindly drawing Figs. 1, 2, 3, 4, 11 and 13. 
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