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1 Overview of model reduction methods

1.1 The Galerkin projection

Methods of model reduction can be considered as a projection of the state-variables to a lower dimensional
subspace V : dim (V) = ñ of the original phase-space, within which some relevant set of the system’s
trajectories can be adequately approximated. Mathematically, applying such a projection to obtain a
reduced dynamical system is underpinned by the Galerkin projection [1] which will be introduced here.

Consider a basis B of the subspace V such that B = [b1, . . . , bñ] ∈ Rn×ñ. Assuming B has been selected
such that it provides an adequately accurate approximation of the original states x(t) within the subspace
V, then

x(t) ≈ Bx̃(t) (1)

with x̃(t) ∈ Rñ representing the reduced set of state-variables. Substituting this approximation into the
stoichiometric model form yields

B
dx̃

dt
= f(Bx̃(t)) +

l∑
i=1

gi(Bx̃(t))ui(t) + ρ(t) (2)
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where it is assumed that B is time-invariant. Additionally, ρ(t) ∈ Rn is termed the residual and addresses
the discrepancy emerging from the fact that Bx̃ is typically not an exact solution of the system for all times.

Now let W represent a subspace that is orthogonal to the residual ρ(t) with a basis C ∈ Rn×ñ such that
Cᵀρ(t) = 0. Hence, left multiplying equation (2) by Cᵀ produces

CᵀB
dx̃

dt
= Cᵀf(Bx̃(t)) +

l∑
i=1

Cᵀgi(Bx̃(t))ui(t) (3)

Assuming CᵀB is non-singular, this finally leads to a reduced dynamical system of the form

dx̃

dt
= (CᵀB)

−1
Cᵀf(Bx̃(t)) +

l∑
i=1

(CᵀB)
−1
Cᵀgi(Bx̃(t))ui(t). (4)

This simplification of a dynamical system to a lower dimensional subspace is known as the Petrov-Galerkin
projection. In the special case where B = C it is known simply as the Galerkin projection. In that case

(BᵀB)
−1
Bᵀ = B̄ (5)

Such that B̄ is a generalised left inverse of B and B̄B = Iñ (the ñ dimensional identity matrix).
Whilst the explanation given above provides an account of how to apply a Petrov-Galerkin projection,

it does not provide a methodology for finding suitable bases B and C for a given model.

1.2 Conservation analysis

To understand the nature of conservation relations and how they might be found computationally, first note
that a common means for representing the network structure underlying a system of chemical equations is
that of the stoichiometry matrix. This is an n×m matrix S, with each of the rows corresponding to a single
species and each of the columns to a reaction. The matrix is populated such that its entries sij give the net
value of the stoichiometric coefficients (product minus reactant) of the i-th species in the j-th reaction. If
the concentration of a particular species is not affected by a reaction the corresponding entry is populated
with a 0. Hence, the sign of the entry indicates whether the species is a net reactant or a net product in
the relevant reaction. A positive sign implies that the species is a product (i.e. the number of molecules is
increased by the reaction), whilst a negative sign indicates that the species is a reactant (i.e. the number
of molecules is decreased).

This matrix can be considered as mapping the vector of reaction rates v(x(t)) to the change in species
concentration. Hence it is possible to represent the system of ODEs in the form

ẋ(t) = Sv(x(t)). (6)

Now turning to conservation analysis and following the ideas outlined by Reder [2], the existence of
conservation relations in a model implies that

Γẋ(t) = 0 (7)

where Γ is an h × n matrix that will be referred to here as the conservation matrix, the rows of which
represent the linear combinations of species that are constant in time. Alternatively, by integration,

Γx(t) = c, (8)

the h individual elements of which are known as conservation relations, with c ∈ Rh representing a set of
constants known as conserved values.
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It is hence possible to express a model containing conservation relations in the form of a system of
differential algebraic equations (DAEs). To see this, first partition x into two subsets: xd an h dimensional
subset of the species with each element corresponding to a single species involved in a given conservation
relation termed the dependent species. And xi an n− h dimensional subset accommodating all remaining
state-variables, termed the independent species, such that

x(t) =

[
xd(t)
xi(t)

]
. (9)

Then from equation (8)

Γ

[
xd(t)
xi(t)

]
= c. (10)

This is a system of linear equations and hence if Γ is expressed in reduced row echelon form, such that

Γ = [Ih N0] (11)

with Ih representing the h dimensional identity matrix and N0 a h × (n − h) matrix, it becomes apparent
that

xd(t) = c−N0xi(t). (12)

This implies that the subset of dependent species xd can be eliminated from the governing system of ODEs
by substituting in the appropriate element of equation (12). Hence, given the stoichiometric form given
in equation (6), a system exhibiting conservation relations can be expressed in the form of a semi-explicit
system of DAEs, such that

ẋi = Siv(xi(t)), (13a)

xd(t) = N0xi(t)− c, (13b)

where equation (13b) has been exploited in equation (13a) to obtain a system of ODEs such that state-
variables xd are no longer explicitly given. Additionally, Si here represents the rows of the stoichiometric
matrix corresponding to the independent state-variables xi.

Obtaining the conservation matrix Γ, particularly for large systems, is often not feasible from simple
inspection. To understand a more algorithmic approach for obtaining this matrix, begin by recalling the
stoichiometric form of a model. Decomposing the stoichiometric matrix via the same partition as the set of
species leads to the system (

ẋd(t)
ẋi(t)

)
=

(
Sd

Si

)
v(xd(t),xi(t)). (14)

However, via differentiation of equation (12)

ẋd(t) = −N0ẋi(t) = −N0Siv(xd(t),xi(t)). (15)

Hence, Sd = −N0Si and therefore each conservation relation can be seen as corresponding to a linear
dependency in the stoichiometry matrix. As such, conservation relations can be found by seeking the left
null space Zn of S (i.e. via finding the null space of ST ) such that

Zn = {z ∈ Rn|Sᵀz = 0} , (16)

and hence Zᵀ
nS = 0. This implies that

Zᵀ
nSv (ẋ(t)) = 0 = Zᵀ

nẋ(t) (17)
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and therefore via comparison to equation (7) it is clear that

Zᵀ
n = Γ, (18)

such that the conservation matrix is equal to the transpose of the left null space of the stoichiometry matrix.
Hence, a more mathematically rigorous approach for finding conservation relations has been provided.

For very large systems (i.e. n > 100) Sᵀ will be a large and, typically, sparse matrix. As a result, solving
the system of linear equations

Sᵀz = 0 (19)

for each conservation relation may not always be numerically stable or efficient under traditional approaches
such as Gaussian elimination. Therefore, the combined algorithm employs QR factorisation via Householder
reflections, as is discussed in the main text.

1.3 Empirical balanced truncation

The description of empirical balanced truncation provided here is based upon the procedure given by Hahn
and Edgar [3]. The aim is to construct two covariance matrices, known as the empirical controllability
and observability Gramians, via repeated simulations of the system under perturbations of the input and
the initial conditions respectively. As in the linear case, the empirical controllability Gramian provides
information on how changes in the input will alter the state of the system. The empirical observability
Gramian provides information on the total magnitude of the output that any given initial condition of the
system can produce.

To construct the empirical Gramians, first recall that n refers to the original number of state-variables
and l to the number of inputs. Additionally, we here define s to refer to the number of perturbation
magnitudes and r to refer to the number of perturbation directions. Given this, we now define the following
terms:

• En
C = {eC,1, . . . , eC,l} representing the set of standard unit vectors in the input space Rl;

• En
O = {eO,1, . . . , eO,n} representing the set of standard unit vectors in the state space Rn;

• Pr
C = {PC,1, . . . , PC,r}, a set of r orthogonal (P ᵀ

C,iPC,i = I, ∀i) l × l matrices representing the
perturbation directions explored for the set of inputs;

• Pr
O = {PO,1, . . . , PO,r}, a set of r orthogonal (P ᵀ

O,iPO,i = I, ∀i) n × n matrices representing the
perturbation directions explored for the set of initial conditions; and

• M = {c1, . . . , cs} is a set of s positive, real constants representing the various magnitudes of the
perturbations;

The Gramians are then computed using finite trajectory samples measured at regularly placed, discrete
time points separated by a sampling interval ∆t. Additionally q is defined to be the number of points
in the sample. To ensure that accurate empirical Gramians are obtained it is required that the system
is approximately at equilibrium at some time t∗ ≤ q∆t. Using these discrete time point samples the
controllability Gramian is defined as

P :=

r∑
h=1

s∑
m=1

l∑
i=1

1

rsc2m

q∑
k=0

ψihm
k ∆t, (20)

where ψihm(t) =
(
xihm(t)− xihm

ss

) (
xihm(t)− xihm

ss

)ᵀ
and xihm(t) is the state or condition of system at time

t corresponding to the perturbed input u(t) = cmPC,heC,iδ(t) + u0. Additionally, u0 is the steady-state
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or unperturbed level of the input and xihm
ss represents the steady-state of the system produced under the

perturbed input.
Meanwhile, the observability Gramian is similarly defined as

Q :=

r∑
h=1

s∑
m=1

1

rsc2m

q∑
k=0

PO,hΦhm
k P ᵀ

O,h∆t, (21)

where
{

Φhm
}
ij

=
(
yihm(t)− yihm

ss

)ᵀ (
yjhm(t)− yjhm

ss

)
and yihm(t) is the output of the system corre-

sponding to the perturbed initial condition xihm(0) = cmPO,heO,i + x0, with x0 representing the original,
unperturbed initial condition of the system. Additionally, yihm

ss represents the steady-state of the output
under this perturbed initial condition.

Once the Gramians have been computed the aim is to construct a balancing transformation of the state-
variables which also acts to equalise and diagonalise the Gramians. This can be achieved by following the
approach outlined in Methods Section of the main text.

2 Chemotaxis model summary

The specific model of chemotactic signalling analysed in the main text was originally described in Tindall
et al. [4]. It is an 11 dimensional, nonlinear model describing a system of 12 biochemical reactions given by

CheA
k1(L)→ CheAP , (22a)

CheAP + CheY
k2

�
k−2

CheAP · CheY
k7

�
k−7

CheA · CheYP

k8

�
k−8

CheA + CheYP , (22b)

CheA · CheYP
k6→CheA · CheY

k10(L)→ CheAP · CheY, (22c)

CheA + CheY
k9

�
k−9

CheA · CheY, (22d)

CheYP + CheZ
k11

�
k−11

CheYP · CheZ
k12→ CheY + CheZ, (22e)

CheBP
k5→ CheB, (22f)

CheYP
k6→ CheY, (22g)

CheAP + CheB
k3→ CheA + CheBP . (22h)

Whilst a more detailed account of this network can be found in the original paper, the model can be
broadly understood as follows: Here, CheA represents a histidine kinase whose rate of autophosphorylation
is modulated via extracellular attractant-receptor binding (in this case represented in equations (22a) and
(22c) by the reaction rates k1(L) and k10(L), where L represents the concentration of extracellular ligand).
An increase in attractant binding results in a decreased rate of phosphorylation of CheA. Two response
regulator proteins (here represented by CheB and CheY and their interactions in equations (22b), (22d),
and (22h)) compete to bind with protein CheA. Once bound CheAP will transfer its phosphoryl group,
hence providing the only means of phosphorylation for proteins CheB and CheY. In the case of protein
CheY this phosphotransfer is also reversible via the reactions given in equation (22c). After they have
been phosphorylated both response regulator proteins steadily auto-dephosphorylate as given by equations
(22f) and (22g). In the case of protein CheY, however, this process can be greatly accelerated by forming
a complex with the phosphatase CheZ as described by equation (22e). Note that it is the concentration
of phosphorylated protein CheY that regulates the process of chemotaxis by binding with parts of the
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flagellar motor complex (the process is not explicitly described in this model). The model differentiates
itself somewhat from previously published approaches in that explicitly describes the intermediary complexes
involved in the phosphorylation of proteins CheB and CheY.

Employing the Law of Mass Action, chemical equations (22) can be modelled by the following system of
ODEs

dx1(t)

dt
= −k1u(t)x1(t) + k3x2(t)x10(t) + k8x4(t)− k−8x1(t)x8(t)− k9x1(t)x7(t) + k−9x5(t), (23a)

dx2(t)

dt
= k1u(t)x1(t)− k2x2(t)x7(t) + k−2x3(t)− k3x2(t)x10(t), (23b)

dx3(t)

dt
= k2x2(t)x7(t)− k−2x3(t)− k7x3(t) + k−7x4(t) + k1u(t)x5(t), (23c)

dx4(t)

dt
= −k6x4(t) + k7x3(t)− k−7x4(t)− k8x4(t) + k−8x1(t)x8(t), (23d)

dx5(t)

dt
= k6x4(t) + k9x1(t)x7(t)− k−9x5(t)− k1u(t)x5(t), (23e)

dx6(t)

dt
= k11x8(t)x9(t)− k−11x6(t)− k12x6(t), (23f)

dx7(t)

dt
= −k2x2(t)x7(t) + k−2x3(t)− k9x1(t)x7(t)

+ k−9x5(t) + k12x6(t) + k6x8(t), (23g)

dx8(t)

dt
= k8x4(t)− k−8x1(t)x8(t)− k11x8(t)x9(t) + k−11x6(t)− k6x8(t), (23h)

dx9(t)

dt
= −k11x8(t)x9(t) + k−11x6(t) + k12x6(t), (23i)

dx10(t)

dt
= −k3x2(t)x10(t) + k5x11(t), (23j)

dx11(t)

dt
= k3x2(t)x10(t)− k5x11(t), (23k)

where x1(t) = [CheA], x2(t) = [CheAP ], x3(t) = [CheAP · CheY], x4(t) = [CheA · CheYP ], x5(t) =
[CheA · CheY], x6(t) = [CheYP · CheZ], x7(t) = [CheY], x8(t) = [CheYP ], x9(t) = [CheZ], x10(t) = [CheB],
and x11(t) = [CheBP ]. The initial condition employed in analysing this system was

x1(0) = 2.579µM, x2(0) = 3.084µM, x3(0) = 0.079µM, x4(0) = 0.728µM,

x5(0) = 1.430µM, x6(0) = 2.962µM, x7(0) = 1.383µM, x8(0) = 3.118µM,

x9(0) = 0.838µM, x10(0) = 0.004µM, x11(0) = 0.276µM.

The specific parameterisation employed for this model can be found in Table 1.
To understand the input u, note that receptor binding of the extracellular chemotactic ligand (denoted

by L) is described by Michealis-Menten kinetics, such that

k1(L) = k10(L) = k1

(
1− Lh

Kh + Lh

)
, (24)

where K is a Michaelis-Menten constant and h is a Hill-coefficient. For the sake of simplicity the input u(t)
is thus defined here to be

u(t) = 1− Lh

Kh + Lh
(25)

such that k1(L) = k10(L) = k1u(t).
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Table 1. The set of parameter values associated with the chemotaxis signalling pathway
model in E. coli as detailed in [4].

Parameter Value Units

k1 3.75 s−1

k2 2.50× 106 (Ms)−1

k−2 15 s−1

k3 1.5× 107 (Ms)−1

k5 0.7 s−1

k6 8.5× 10−2 s−1

k7 650 s−1

k−7 50 s−1

k8 250 s−1

k−8 2.08× 107 (Ms)−1

k9 7.50× 106 (Ms)−1

k−9 15 s−1

k10 3.75 s−1

k11 5.60× 106 (Ms)−1

k−11 0.04 s−1

k12 4.90 s−1

AT 7.9 µM
BT 0.28 µM
YT 9.7 µM
ZT 3.8 µM
K 2.6 µM
h 1.2
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2.1 Reduction

In the following sections we will describe how the various steps of the combined model reduction algorithm
were applied to the model of bacterial chemotaxis and reproduce the results it obtained.

2.1.1 Nondimensionalisaton

The algorithm initially randomly samples a selection of 50 combinations of the original parameters in order
to compute a nondimensionalisation with the best numerical properties. This led to equations (26) with
the associated parameters from Table 2,

dz1(τ)

dτ
= −α1z1(τ)u(τ) + α4z2(τ)z10(τ) + z4(τ)− α9z1(τ)z8(τ)− α10z1(τ)z7(τ) + α11z5(τ), (26a)

dz2(τ)

dτ
= α1z1(τ)u(τ)− α2z2(τ)z7(τ) + α3z3(τ)− α4z2(τ)z10(τ), (26b)

dz3(τ)

dτ
= α2z2(τ)z7(τ)− α3z3(τ)− α7z3(τ) + α8z4(τ) + α1z5(τ)u(τ), (26c)

dz4(τ)

dτ
= −α6z4(τ) + α7z3(τ)− α8z4(τ)− z4(τ) + α9z1(τ)z8(τ), (26d)

dz5(τ)

dτ
= α6z4(τ) + α10z1(τ)z7(τ)− α11z5(τ)− α1z5(τ)u(τ), (26e)

dz6(τ)

dτ
= α13z8(τ)z9(τ)− α14z6(τ)− α16z6(τ), (26f)

dz7(τ)

dτ
= −α2z2(τ)z7(τ) + α3z3(τ)− α10z1(τ)z7(τ) + α11z5(τ) + α17z6(τ) + α6z8(τ), (26g)

dz8(τ)

dτ
= z4(τ)− α9z1(τ)z8(τ)− α12z8(τ)z9(τ) + α15z6(τ)− α6z8(τ), (26h)

dz9(τ)

dτ
= −α13z8(τ)z9(τ) + α14z6(τ) + α16z6(τ), (26i)

dz10(τ)

dτ
= −α4z2(τ)z10(τ) + α5z11(τ), (26j)

dz11(τ)

dτ
= α4z2(τ)z10(τ)− α5z11(τ). (26k)

Where t = k8τ , x1(t) = BT z1(τ), x2(t) = BT z2(τ), x3(t) = BT z3(τ), x4(t) = BT z4(τ), x5(t) = BT z5(τ),
x6(t) = AT z6(τ), x7(t) = BT z7(τ), x8(t) = BT z8(τ), x9(t) = AT z9(τ), x10(t) = BT z10(τ), and x11(t) =
BT z11(τ).

2.1.2 Conservation Analysis

Algorithm selects species CheA, CheA · CheY, CheZ, and CheBP for elimination via the application of
conservation relations.This can be achieved by substituting the following algebraic equations into the set of
nondimensionalised differential equations represented by equations (26),

[CheBP ] = BT − [CheB] (27)

[CheZP ] = ZT − [CheYP · CheZ] (28)

[CheA · CheY] = YT − [CheY]− [CheYP ]− [CheAP · CheY]− [CheA · CheYP ]− [CheYP · CheZ] (29)

[CheA] = AT − YT + [CheYP ] + [CheY] + [CheYP · CheZ]− [CheAP ] (30)
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Table 2. The set of nondimensionalised parameter values associated with the chemotaxis
signalling pathway model in E. coli as defined by equation (26).

Parameter Original Expression Value

α1
k1

k8
0.0150

α2
k2BT

k8
0.0028

α3
k−2

k8
0.06

α4
k3BT

k8
0.0168

α5
k5

k8
0.0028

α6
k6

k8
3.4× 10−4

α7
k7

k8
2.6

α8
k−7

k8
0.2

α9
k−8BT

k8
0.0233

α10
k9BT

k8
0.0084

α11
k−9

k8
0.06

α12
k11AT

k8
0.1770

α13
k11BT

k8
0.0063

α14
k−11

k8
1.6× 10−4

α15
k−11AT

k8BT
0.0045

α16
k12

k8
0.0196

α17
k12AT

k8BT
0.5530
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Table 3. An additional set of nondimensionalised parameter values associated with the
chemotaxis signalling pathway model in E. coli as defined by equation (31).

Parameter Original Expression Value

β1
AT

BT
28.21

β2
YT

BT
34.64

β3
ZT

BT
13.57

β4
ZT

AT
0.48

This yields the following system

dz2(τ)

dτ
=(z7(τ) + z8(τ)− z2(τ) + β1z6(τ) + β1 − β2)α1u(τ)

− α2z2(τ)z7(τ) + α3z3(τ)− α4z2(τ)z10(τ), (31a)

dz3(τ)

dτ
=(β2 − z7(τ)− z3(τ)− z4(τ)− β1z6(τ)− z8(τ))α1u(τ)

+ α2z2(τ)z7(τ)− α3z3(τ)− α7z3(τ) + α8z4(τ), (31b)

dz4(τ)

dτ
=− α6z4(τ) + α7z3(τ)− α8z4(τ)− z4(τ)

+ (z7(τ) + z8(τ)− z2(τ) + β1z6(τ) + β1 − β2)α9z8(τ), (31c)

dz6(τ)

dτ
=(β3 − z6(τ))α13z8(τ)− α14z6(τ)− α16z6(τ), (31d)

dz7(τ)

dτ
=− α2z2(τ)z7(τ) + α3z3(τ) + α17z6(τ) + α6z8(τ)

− (z7(τ) + z8(τ)− z2(τ) + β1z6(τ) + β1 − β2)α10z7(τ)

+ α11(β2 − z7(τ)− z3(τ)− z4(τ)− β1z6(τ)− z8(τ)), (31e)

dz8(τ)

dτ
=z4(τ) + α15z6(τ)− α6z8(τ)

+ (z7(τ) + z8(τ)− z2(τ) + β1z6(τ) + β1 − β2)α9z8(τ)− (z6(τ)− β4)α12z8(τ), (31f)

dz10(τ)

dτ
=− α4z2(τ)z10(τ)− α5z10(τ) + α5, (31g)

(31h)

with the additional nondimensional parameters given in Table 3

2.1.3 Lumping

The algorithm then proceeds to reduce the system via proper lumping to a 5 dimensional form. In this section
we will symbolically reproduce this reduced model. Through the forward selection procedure described in
the main text, the algorithm determines that the optimal scheme is to lump together state-variables z3(τ),
z4(τ), and z8(τ) as one. These variables correspond to the original species CheAP · CheY, CheA · CheYP ,
and CheYP , respectively.

If we assume a vector of state-variables, such that y(τ) = [y2(τ), y3(τ), y4(τ), y6(τ), y7(τ), y8(τ), y10(τ)]
ᵀ
,
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then this scheme corresponds to the lumping matrix

L =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1


.

Hence we have a set of reduced state-variables ỹ(τ) = Ly(τ) such that

z̃1(τ)

z̃2(τ)

z̃3(τ)

z̃4(τ)

z̃5(τ)


=



z2(τ)

z3(τ)

z4(τ) + z6(τ) + z8(τ)

z7(τ)

z10(τ)


Following the general descriptions provided in the main text it is now necessary to construct a generalised
right inverse L̄ of the lumping matrix prior to application of the Galerkin projection. Such a matrix can be
constructed by computing

L̄ = XLᵀ (LXLᵀ)
−1
, (32)

where X represents a diagonal matrix, typically containing steady-state values of the system. In the case
of the nondimensionalised model described above, this would yield a matrix of the form

L̄ =



1 0 0 0 0

0 1 0 0 0

0 0
z∗
4

z∗
4+z∗

6+z∗
8

0 0

0 0
z∗
6

z∗
4+z∗

6+z∗
8

0 0

0 0 0 1 0

0 0
z∗
8

z∗
4+z∗

6+z∗
8

0 0

0 0 0 0 1


.

Given these matrices it is then possible to construct a reduced description of the system’s dynamical
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Table 4. An additional set of parameter values associated with the lumped chemotaxis
signalling pathway model in E. coli as defined by equation (33).

Parameter Expression Values Used

γ1
z∗
4

z∗
4+z∗

6+z∗
8

0.0201

γ2
z∗
6

z∗
4+z∗

6+z∗
8

0.1855

γ3
z∗
8

z∗
4+z∗

6+z∗
8

0.7944

behaviour via the Galerkin projection, this yields the analytically reduced system

dz̃1(τ)

dτ
= (z̃4(t) + γ3z̃3(t)− z1(t) + β1γ2z̃3(t) + β1 − β2)α1u(t)

− α2z̃1(t)z̃4(t) + α3z̃2(t)− α4z̃1(t)z̃5(t) (33a)

dz̃2(τ)

dτ
= (β2 − z̃4(t)− z̃2(t)− γ1z̃3(t)− β1γ2z̃3(t)− γ3z̃3(t))α1u(t) + α2z̃1(t)z̃4(t)

− α3z̃2(t)− α7z̃2(t) + α8γ1z̃3(t) (33b)

dz̃3(τ)

dτ
= −α6γ1z̃3(t) + α7z̃2(t)− α8γ1z̃3(t) + (β3 − γ2z̃3(t))α13γ3z̃3(t)

− α14γ2z̃3(t)− α16γ2z̃3(t) + α15γ2z̃3(t)− α6γ3z̃3(t)− (γ2z̃3(t)− β4)α12γ3z̃3(t) (33c)

dz̃4(τ)

dτ
= −α2z̃1(t)z̃4(t) + α3z̃2(t) + α17γ2z̃3(t)

+ α6γ3z̃3(t)− (z̃4(t) + γ3z̃3(t)− z̃1(t) + β1γ2z̃3(t) + β1 − β2)α10z̃4(t)

+ α11(β2 − z̃4(t)− z̃2(t)− γ1z̃3(t)− β1γ2z̃3(t)− γ3z̃3(t)) (33d)

dz̃5(τ)

dτ
= −α4z̃1(t)z̃5(t) + α5z̃11(t), (33e)

(33f)

where the new parameters (γ1, γ2, and γ3) are defined in Table 4. The specific values reported were
calculated via the novel, averaged inverse approach that is outlined in the main manuscript.

2.1.4 Empirical Balanced Truncation

Given the system reduced via the application of nondimensionalisation, conservation and lumping described
by equations (33) and the parameter sets defined by Tables 2, 3 and 4, it is now possible to apply empirical
balanced truncation in order to achieve further reduction of this system following the combined model
reduction algorithm.

To construct the empirical Gramians we employed simulated data for 100 distinct perturbations to
both the unpertubed model input u0 = 1 and each of the unperturbed system’s initial conditions ỹ0, in all
instances perturbations were uniformly sampled from of 0.2 to 1.8 times the parameter in question’s original
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or unperturbed values. Following the approach described in Section 1.3, this yielded the Gramians

P =



2829.32 −3560.27 −4720.77 −86.65 53.06

−3560.27 5687.27 6741.01 99.49 −48.78

−4720.77 6741.01 8491.32 136.97 −71.36

−86.65 99.49 136.97 2.75 −1.85

53.06 −48.78 −71.36 −1.85 1.83


and

Q =



4.01 1.81 1.44 53.41 1328.71

1.81 0.84 0.68 24.87 598.31

1.44 0.68 0.58 20.31 474.48

53.41 24.87 20.31 735.38 17680.31

1328.71 598.31 474.48 17680.31 440366.67


.

Calculating the balancing transformation following the procedure given in the main text then yields

T =



0.0678 0.0304 0.0240 0.8977 22.4730

0.0110 0.0315 0.0468 0.9450 2.9809

−0.0128 0.0654 −0.0667 0.3988 −0.0943

−0.0118 −0.0249 0.0387 −2.0207 −0.8598

0.0923 −0.0038 0.0264 1.7307 0.0016


.

If we now seek to create the 2 dimensional reduced system described in the main text we first need to
define reduced variables x̃(τ) = [x̃1(τ), x̃2(τ)]

ᵀ
. However, to increase the accuracy of this reduced model

it should be residualised, such that for reconstructing the values of the set of nondimensionalised variables
y(τ) from this reduced model we have

z̃2(τ)

z̃3(τ)

z̃4(τ)

z̃6(τ)

z̃7(τ)

z̃8(τ)

z̃10(τ)


≈ L̄T−1



x̃1(τ)

x̃2(τ)

−0.1298

−0.5604

1.4330


.
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Given these state-variables, the reduced model is then

dx̃1(τ)

dτ
= 0.0185x̃1(τ)2 − 0.202x̃1(τ)x̃2(τ) + 0.0736x̃2(τ)2 + 4.74× 10−4u(τ)x̃1(τ)

− 0.0052u(τ)x̃2(τ) + 0.0117 + 0.0130u(τ) + 0.0484x̃1(τ) + 0.128x̃2(τ) (34a)

dx̃2(τ)

dτ
= 0.0026x̃1(τ)2 − 0.0279x̃1(τ)x̃2(τ) + 0.0101x̃2(τ)2 + 0.0010u(τ)x̃1(τ)

− 0.0092u(τ)x̃2(τ) + 0.0026 + 0.0197u(τ) + 0.0075x̃1(τ) + 0.0133x̃2(τ) (34b)

with associated initial conditions x̃1(0) = 1.6775 and x̃2(0) = 1.4560.

3 ERK activation model

Due to the size of the ERK activation model it is not possible to provide the same level of detail into its
reduction as was provided for the model of bacterial chemotaxis signalling. We have, however, provided a
number of Matlab files that describe the form of the model at various stages of reduction along with its
initial conditions, associated lumping matrices and their generalised inverses, the empirical gramians and
the balancing transformation. Use of these files does require Matlab’s Symbolic Math toolbox. All of this
is made available in Additional file 2 - ERK Activation Reduction Files.

4 Combined algorithm overview

In this section a more detailed account of the combined model reduction algorithm is provided. Figure 1
depicts the high level steps of the overall algorithm. The following sections correspond to each of these steps
and describe the specific process and implementation in Matlab by which they are achieved. This section
provides a more detailed unpacking of the algorithm steps given in Figure 2 of the main text.

Figure 1. A shortened overall schematic of the combined model reduction algorithm. This is
a submodule, schematic representation of the combined model reduction algorithm that will be detailed in
sections 3.1 to 3.5.

4.1 Importing SBML

• Have the user define an SBML file representing the model, referred to here as ‘SBML.xml’. Addition-
ally, define the desired input values u and outputs y(t) in terms of the species given in the model.
Finally, define a ‘natural’ or unperturbed input level u0 which corresponds to the initial condition of
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Figure 2. Import and symbolic conversion process in the combined model reduction
algorithm.

the pathway before any intervention occurs (for example the concentration of an extracellular ligand
considered as an input might be negligible until the administration of the particular drug of interest,
hence u0 = 0).

• The algorithm uses the LibSBML Matlab library along with the open-source SBToolbox2 package to
import SBML.xml as an SBmodel object named ‘mod’.

• Commands from the SBToolbox2 package are then additionally used to extract specific model infor-
mation from ‘mod’ as variables into the Matlab workspace. Specifically:

– the set of species named ‘Species’;

– the set of parameters named ‘Params’;

– the set of reactions named ‘Reacts’; and

– the stoichiometry matrix named ‘N ’.

• The model is simulated with the initial conditions given in the SBML file and under the undisturbed
input u0. Once steady-state has been reached this undisturbed equillibrium is defined to be the new
initial condition of the system.

• A symbolic representation of the model named ‘DiffFuncs’ and its variables is then constructed via
the Symbolic Matlab package. To achieve this the algorithm

– defines a set of symbolic variables xi(t) of equal length to the vector Species;

– creates a symbolic vector of reactions ‘SReacts’ by substituting Species(i) = xi(t) into Reacts;

– Redefines the outputs y(t) in terms of these new state-variables xi(t) via substitution; and

– computes DiffFuncs as the product of the stoichiometry matrix and SReacts, such that

DiffFuncs = N · SReacts.

• DiffFuncs can then be converted to a form for simulation via the functions ‘odeToVectorField’ and
‘matlabFunction’.

• For future reference, now simulate the system under all desired input values u and calculate the
outputs y(t) under each. Store these results as the original output of the system ‘OutO’.

4.2 Nondimensionalisation

• Begin by constructing a complete list of the parameters and their associated units:

– construct a list of each monomial term contained within SReact named SR. Here the inbuilt
‘strsplit’ function is employed to create the list of monomials and xi(t) = 1 is used for all i so as
to access only the coefficient of each monomial;
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Figure 3. Nondimesionalisation process in the combined model reduction algorithm.

– additionally, compute the degree of each monomial within SR;

– use this list of degrees to inform the fundamental units associated with the kinetic rate coefficient
of each monomial. Here use T to represent temporal units and M to represent mass based units;
and

– if the conserved totals are not given in the predefined model parameters Params, then it is
necessary to calculate them here via the steps outlined in Section 1.1.

• Substitute scaled variables, such that xi(t) = αizi(t) and t = βτ , into the symbolic system of ODEs
(DiffFuncs).

• Compute a list of the new coefficients of each monomial in this scaled system of ODEs (NDP).

• Use the list of units to create a list of possible nondimensionalisations for the system (the algorithm
is restrained to [β] = T such that β is the reciprocal of a 1/T kinetic rate coefficient and [αi] = M, ∀i
such that each αi is chosen from the list of conserved total masses. Other nondimensionalisations for
rate terms associated with nonlinear monomials will exist, but the algorithm is currently limited in
this regard for the sake of computational efficiency).

• Even for modestly sized systems (∼10’s of ODEs) this will produce a very large list of possible
nondimensionalisations. Hence, instead of evaluating them all, randomly select a sample of 50 possible
nondimensionalisations (or use the total number if this is less than 50).

• Loop through this possible list of rescalings, substituting each into NDP with individual rescaling
referred to as NDP(i).

– For each possible rescaling calculate the range
RNDP(i) = log10 (max {NDP(i)})− log10 (min {NDP(i)})

– Retain the rescaling that obtains the minimum value of RNDP(i).

• Substitute this nondimensionalisation into the symbolic system of ODEs to be regarded as the new
model.

4.3 Conservation analysis & application

• Use an empirical Jacobian estimation algorithm around the initial conditions of the model. Here this
is achieved using the SBtoolbox2 command ‘SBjacobian’.

• Use this Jacobian estimate to approximate the speed of each reactant by simply using the diagonal
elements. Rank the species in terms of these elements with larger values corresponding to faster
species.

• Apply Matlab’s inbuilt QR factorisation and reduced row echelon form algorithms to obtain the
conservation relations for the model. Essentially this follows the approaches outlined in Section 1.2;
apply QR factorisation ‘qr’ with pivoting to the stoichiometry matrix N to yield an orthogonal matrix
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Figure 4. Conservation analysis and application process in the combined model reduction
algorithm.

Q, an upper triangular matrix R, and a pivot matrix P . Use the ‘rref’ function to place R in
reduced row echelon form, and finally re-transform this matrix under P to yield the previously defined
conservation matrix Γ.

• Substitute in initial conditions to obtain values for conserved totals.

• Solve conservation relations for particular species, favouring those species approximated to be the
slowest.

• Substitute solutions into DiffFuncs to give a reduced set of ODEs (dismissing those differential equa-
tions corresponding to state-variables that have been reduced to algebraic relations). This reduced
set of ODEs is now treated as the new model.

4.4 Proper lumping routine

Figure 5. The proper lumping process in the combined model reduction algorithm.
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• Begin by setting the ‘previous lumping matrix’ (LPrev) and its generalised inverse (L̄Prev) equal to the
n dimensional identity matrix In.

• Create table to store lumping results, named here as ‘ResTab’.

• Enter the first loop which is designed at each step to reduce the model by one further dimension.
Here, iterate for i from 1 to (n− 1).

– Calculate the new reduced dimension ñ = n− i and set the ‘previous dimension’ variable nprev =
ñ+ 1.

– Create a list of reduced symbolic variables zi(t), for i = 1 . . . ñ.

– Load previous lumping matrix (LPrev) and its generalised inverse (L̄Prev).

– Create a list of all possible proper, linear lumpings to dimension ñ based upon a one dimensional
lumping of LPrev (there will be 1

2 (nprev [nprev − 1]) possible lumpings to trial as it represents all
possible pairings of the current nprev state-variables). This list is referred to here as ‘TempTab’.

– Enter a parallelised second loop using Matlab’s ‘parfor’ function. Here, each thread trials a
possible lumping from TempTab and calculates the error and stiffness coefficient associated with
it. Iterate for j from 1 to size(TempTab).

∗ The one dimensional nPrev to ñ lumping matrix is defined by the j-th entry of TempTab,
and is constructed here as LTemp.

∗ Then the new overall lumping matrix is computed as L = LPrev · LTemp.

∗ To trial both the steady-state and average lumping inverses, L̄ and L̂ respectively, now enter
a final loop. Here, iterate for k from 1 to 2.

· If k = 1: Define X = diag
(
LPrevx

∗
u0

)
, such that X represents an nprev × nprev diagonal

matrix of the steady-state values x∗
u0

of the system under the unperturbed input.

· Calculate L̄Temp = XLᵀ
Temp

(
LTempXL

ᵀ
Temp

)−1

.

· If k = 2: Use the novel average inverse defined in main text, such that L̄Temp = L̂.

· Now compute the overall lumping inverse such that L̄ = L̄Temp · L̄Prev.

· Construct the reduced system as ż(t) = Lf(L̄z(t)) by substituting ‘reconstructed’ state-
variables L̄z into DiffFuncs and then lumping this vector of symbolic equations via L.

· Simulate this reduced model and calculate error as compared with the output of the orig-
inal system (OutO). Additionally, re-estimate Jacobian and hence the stiffness coefficient
χñ. Record both the error and stiffness for the specific lumping in TempTab.

∗ End the lumping inverses loop.

– End parallelised loop.

– Select the lumping regime within a small error bound of the minimum error with the lowest
stiffness coefficient.

– Set LPrev = L and L̄Prev = L̄.

– Record these ‘optimal’ error and stiffness results for reduction ñ in ResTab.

• End main loop.

• Select the lowest error lumping below the threshold stiffness coefficient (set currently to χñ < 250
based upon numerical experimentation) and save the corresponding reduced model as the new system.

• Let nL represent the new dimensionality of the model after lumping.
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Figure 6. Empirical balanced truncation process in the combined model reduction algorithm.

4.5 Empirical balanced truncation routine

Compute the empirical controllability Gramian P following the approach outlined in Section 1.3:

• Define P as an empty nL × nL matrix.

• Define a list of s random input perturbation sizes (M). Here, typically 100 random sizes from 0 to
the magnitude of u are selected.

• Define a list of r perturbation directions in input space. Here the algorithm currently employs r = 2
corresponding to an increase in all inputs and a decrease in all inputs. Additionally, define P (h) to
represent an l × l diagonal matrix of the h-th perturbation direction.

• Define a set of l unit vectors in input space (E). Recall that l simply represents the number of inputs
in the model.

• Enter the first loop going through each of the perturbation sizes. This loop is parallelized using
Matlab’s ‘parfor’ function. Here, iterate through m from 1 to s.

– Enter the second loop going through each of the perturbation directions. Here, iterate through
h from 1 to r.

∗ Enter the third loop going through each of the inputs. Here, iterate through i from 1 to l.

· Define a perturbed input up = M(m)P (h)E(i) + uss.

· Simulate the system under the perturbed input up at q time-points equally spaced by a
difference of ∆t, to yield xihm(t).

· Additionally define the steady-state of this simulation as xihm
ss .

· Calculate PTemp = ∆t
(
xihm(t)− xihm

ss

) (
xihm − xihm

ss

)ᵀ
.

· Finally, add the contribution to the overall Gramian as

P = P +
1

rsM(m)2
PTemp

∗ End the third loop.

– End the second loop.

• End the first loop.
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• Return the empirical controllability Gramian P.

Now compute the empirical observability Gramian Q following the approach outlined in Section 1.3:

• Define Q as an empty nL × nL matrix.

• Define a list of s random input perturbation sizes (M). Here, typically 100 random sizes from 0 to
the magnitude of x0 are selected.

• Define a list of r perturbation directions in state-space. Here the algorithm currently employs r = 2
corresponding to an increase in all initial conditions and a decrease in all initial conditions. Addition-
ally, define P (h) to represent an nL × nL diagonal matrix of the h-th perturbation direction.

• Define a set of nL unit vectors (E) corresponding to each of the state-variables.

• Enter the first loop going through each of the perturbation sizes. This loop is parallelized using
Matlab’s ‘parfor’ function. Here, iterate through m from 1 to s.

– Enter the second loop going through each of the perturbation directions. Here, iterate through
h from 1 to r.

∗ Define a temporary matrix W for storing results from the following loop.

∗ Enter the third loop going through each of the inputs. Here, iterate through i from 1 to ñ.

· Define a perturbed initial condition xp = M(m)P (h)E(i) + x0.

· Additionally, recalculate the conserved totals using the perturbed initial conditions (so
as to avoid violating conservation).

· Simulate the system under the undisturbed input uss with the perturbed initial condition
xp at q time-points equally spaced by a difference of ∆t, to yield an output yihm(t).

· Additionally define the steady-state of the output of this simulation as yihm
ss .

· Calculate w = yihm(t)− yihm
ss .

· Concatenate each column of w into the i-th row of W .

∗ End the third loop.

∗ Calculate QTemp = WW ᵀ.

∗ Finally, add the contribution to the overall Gramian as

Q = Q+
∆t

rsM(m)2
P (h)QTempP (h)ᵀ.

– End the second loop.

• End the first loop.

• Return the empirical observability Gramian Q.

Given P and Q, now compute the balancing transformation as follows:

• Perform a Cholesky factorisation of both of the Gramians using Matlab’s inbuilt ‘chol’ function. This
yields P = LᵀL and Q = RᵀR.

• Take a singular value decomposition of the newly formed matrix LRᵀ, via Matlab’s inbuilt ‘svd’
function, to obtain LRᵀ = UΣV ᵀ with Σ an nL × nL matrix (of the form Σ = diag(σ2

1 , . . . , σ
2
nL

)).

• Finally this yields a balancing transformation T = Σ− 1
2V ᵀR and its inverse T̄ = LᵀUΣ− 1

2 .
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Now seek to truncate the system one dimension at a time as follows:

• Define new reduced dimension ñ < nL.

• Calculate the transformed initial conditions x̃0 = Tx0, such that x̃0,i ∈ x̃0 represents the i-th trans-
formed initial condition.

• Now define reduced variables with residuals x̄(t) =
{
x̃1(t), . . . , x̃ñ(t), x̃∗0,ñ+1, . . . , x̃

∗
0,nL

}
, where x̃∗0,i

represents the initial condition of the i-th truncated, balanced state-variable.

• Hence construct the reduced system as ˙̃x(t) = PTLf
(
L̄T̄ x̄(t)

)
via substitution into DiffFuncs, where

P = [Iñ 0].

• Simulate this reduced system and compare to the original output (OutO) to obtain a measure of error.

Finally, return the lowest dimensional system that maintains an acceptable maximal relative error bound
ε < εc. In the paper this has been set such that εc = 0.05.
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