Title:

Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in *Arabidopsis thaliana* by modulating auxin-cytokinin signaling components.

Authors:

Sharmila Singh¹^{\$}, Alka Singh¹^{\$}, Sandeep Yadav¹^{\$}, Vibhav Gautam¹, Archita Singh¹ and Ananda K. Sarkar¹*

Supplemental Figures S1-S6 and Table S1, S2

(a) Sirtinol treatment affects the gravity response of roots. To analyze this, wild type seeds were germinated and grown on $10 \,\mu\text{M}$ sirtinol and their response was measured at 2 dag. Scale bar 1 mm.

(b) To check the accumulation of gravity sensing starch granules, wild type seeds were germinated and grown on 10 μ M sirtinol and at 2 dag lugol staining was performed. Scale bar 10 μ m. Bold black arrows depict the direction of root growth on a vertically placed control and sirtinol containing half MS media plates.

Fig. S2. Effect of sirtinol, IAA and 2,4- D on LR development.

(a,c) Sirtinol inhibit primary root growth of wild type, in 2,4-D like manner. To measure root growth, 5 days old wild type seedlings were transferred on sirtinol (5 μ M), IAA (1 μ M) and 2,4-D (1 μ M) medium and root length was measured at 0, 1, 3 and 5 dat. Error bars represent ±SD (n=15). One-way ANOVA was performed for statistical analysis. Asterisks indicate significant statistical differences, ***P<0.001, **P<0.01, *P<0.05. Experiment was repeated two times with reproducible results (n=15). Scale bar 1cm.

(c) Sirtinol affects LR development of wild type, in a manner different to IAA but similar to 2,4-D. To analyze the LR growth pattern, 5days old wild type seedlings were transferred on sirtinol (5 μ M), IAA (1 μ M) and 2,4-D (1 μ M) containing half MS medium and LR growth was observed at 1, 3 and 5 dat. Scale bar 1mm.

Sirtinol affects LR initiation by modulating cell division in root. To analyze the cell division defect in roots, 5 days old *CyclinB1;1:GUS* seedlings were transferred to half MS, sirtinol (5 μ M) and 2,4-D (10 μ M) containing half MS medium plates and GUS staining was performed at 24 hrs of the treatment. Scale bar 50 μ m. Black stars mark developing LRPs.

Fig. S4. Effect of sirtinol treatment on GATA23:GUS expression.

Sirtinol affects LR initiation by modulating cell division in root. To analyze the cell division defect in roots, 5 days old *GATA23:GUS* seedlings were transferred to half MS, sirtinol (5 μ M) and 2,4-D (10 μ M) containing half MS medium plates and GUS staining was performed at 24 hrs of the treatment. Scale bar 50 μ m. Black stars mark developing LRPs.

Sirtinol affects LR spacing by inhibiting cytokinin biosynthesis and signaling genes. To analyze this, 5 days old wild type seedlings were transferred to half MS and sirtinol (5 μ M) containing half MS medium plates. Expression level of cytokinin biosynthesis and signaling genes was quantified using real time qRT-PCR after 2 hrs of transfer (only root tissue). Error bars indicate ±SE of three independent experiments. One-way ANOVA was performed for for statistical analysis. Asterisks indicate significant statistical differences, ***P<0.001, **P<0.01, **P<0.05.

Fig. S6. Effect of sirtinol, IAA, 2,-4D and NAA treatment on LR patterning genes.

Sirtinol affects LR initiation and LR spacing. To analyze this 5 days old wild type seedlings were transferred to half MS and sirtinol (5 μ M), IAA (10 μ M), NAA (10 μ M) and 2,4-D (10 μ M) containing half MS medium plates. Expression level of LR pattering genes was quantified by real time qRT-PCR after 2 h of transfer (only root tissue). Error bars indicate ±SE of three independent experiments. One-way ANOVA was performed for statistical analysis. Asterisks indicate significant statistical differences, ***P<0.001, **P<0.01, *P<0.05.

S.No.	Category	% of plants
i	Upward	28.68%
ii	Horizontal	30.28%
iii	Down	25.58%
iv	Tilted	10.85%
V	Less retarded root	5%

Table S1. Category of sirtinol treated seedlings.

 Table S2. List of primers used in this study.

S. No.	Primer Name	Sequence
1	PLT1 F	TAGCGTCCAATCAAACGATG
2	PLT1 R	CGGATGGTGAAGCTTTGTC
3	PLT2 F	CAACGACAATATCGACAACCC
4	PLT2 R	CGTTGGTTTGATGAATGTCG
5	SCR F	CACCTACTGTATGGGTTGACG
6	SCR R	GAAGAGGAAGGATCAAGGAGC
7	SHR F	CGTGCCTTCTCCGACAAAGAC
8	SHR R	GTCATGCGGTTGAAGAGAGC
9	WOX5 F	GATTGTCAAGAGGAAGAGAAGGTGA
10	WOX5 R	AGCTTAATCGAAGATCTAATGGCG
11	PIN 1 P	TCGCTTCAGAGTTCAAGAAACC
12	PIN 1 P	CTCGGAGTAGGACCTTTAGAACC
13	PIN 2 F	CAACAAATCTCACGGCGGAG
14	PIN 2 R	CGTAGCTATTAGTGTAACCGTGACG
15	PIN 3 F	CGGGTCTTAACGTTTTCGG
16	PIN 3 R	TTCTCCTCCGAAATCTCCAC
17	PIN 4 F	TAACACTAACAGTTCTGTTCCG
18	PIN 4 R	CTCTTGCAGTTGCTGTTGG
19	PIN 7 F	CACAAGCTTCGGTGTAACTC

20	PIN 7 R	AAGCAACAAGAGCCCAAATG
21	ARF7 F	GCTCATATGCATGCTCCACA
22	ARF7 R	GCAATGCATCTCTGTCATATTTG
23	ARF19 F	CACCGATCACGAAAACGATA
24	ARF19 R	TGTTCTGCACGCAGTTCAC
25	IAA14 F	TCCTAGTTACGTGGGAATACG
26	IAA14 R	GGCACATTAGCATGAAGAGG
27	GATA23 F	TTTGATGGATCCAAGGAAGC
28	GATA23 R	GTCCACCTCTCCACATTGGT
29	LBD16 F	CGTGCGAGAGACTCATCATC
30	LBD16 R	TAAGAGCCAAAGCCTGAAGC
31	LBD9 F	TGTGCAAAGGGATGTGTGTT
32	LBD9 R	CGATCGCTAATGGGAAGATG
33	KNAT1 F	AGTCCCATTCACATCCTCAAC
34	KNAT1 R	ATGGTTCTTGAGTTCCCGATC
35	KNAT2 F	ACCGGAGACAATCAAAGACTG
36	KNAT2 R	TGTAGGTTTGGAGTAAGCGAGG
37	WUS F	GAGTAGCCATGTCTATGGATCTATGG
38	WUS R	CCTTCTAGACCAAACAGAGGCT
39	CLV3 F	CTCATGCTCACGTTCAAGGAC
40	CLV3 R	CTTCGTCTTTGCCTTCTCTGC
41	AS1 F	GTATGATGCCGTCTTGTAGTGG
42	ASI R	CCTTTGTCTACACGTCTTCTCTG
43	AS2 F	AAGACGCAGTGAACTCTTTGG
44	AS2 R	GGCGAGTAAGTTGATGCAAG
45	ARR1 F	CGTCTGGTCTGTTGAATTGC
46	ARR1 R	TCCAAGCCGTCTTAGATATATCC
47	ARR5 F	GCTGCGAGTAGATATCATTAGCTTC
48	ARR5 R	GTTTGGACTGTTGAGCTGC
49	ARR12 F	GTTTGGACTGTTGAGCTGC
50	ARR12 R	ATTAGCCACACCACTGATCC
51	SHY2 F	AGCTGAGGCTGGGATTACC
52	SHY2 R	CAACAATCTGAGCCTTTCG
53	IPT3 F	GTGGAGGCTCTAGTGGATGAC
54	IPT3 R	TCTCTGACTTCCTCAACCATTCC
55	IPT5 F	CACCGTCCACGACACTTAC
56	IPT5 R	CCGGAAGTCAACGCAATC
57	IPT7 F	CAAGAAGTGGAAGATGTCTATGC
58	IPT7 F	TCCTCCGCCGTAAGATGC
59	ACT7 F	GGTCGTACAACCGGTATTGT
60	ACT7 R	GATAGCATGTGGAAGTGAGAA
61	UBQ F	AAGGTTCAGCGTTTGAGGAAG
02	UBŲK	GUAICUAICIACUCIACAACAU