How Native and Alien Metal Cations Bind ATP: Implications for Lithium as a Therapeutic Agent

Todor Dudev,^{†,*} Cedric Grauffel,[‡] and Carmay $Lim^{\ddagger,\$,*}$

[†]Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
[‡]Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
[§]Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan

	Mg (α $\beta\gamma$)	Mg(αβ)	Mg(αγ)	Μg(βγ)	Mg(γγ)	Mg(α)	Mg(β)	Mg(γ)
Mg (α $\beta\gamma$)	0	1.6	0.4	1.9	2.0	1.7	1.1	1.6
Mg(αβ)		0	1.4	2.4	1.8	1.7	1.7	2.1
Μg(αγ)			0	2.0	2.1	1.6	1.4	1.8
Μg(βγ)				0	3.1	3.4	1.7	1.3
Mg(γγ)					0	1.4	2.3	2.8
Mg(α)						0	2.3	2.9
$Mg(\beta)$							0	1.0
Mg(γ)								0

 Table S1a. RMSD of the ATP heavy atoms between different ATP-Mg complexes

 Table S1b. RMSD of the ATP heavy atoms between different ATP-Li complexes

	Li(αβγ)	Li(αβ)	Li(αγ)	Li(βγ)	Li(γγ)	Li(α)	Li(β)	Li(γ)
Li (αβγ)	0	1.5	0.6	1.8	1.9	1.7	1.4	0.5
Li(αβ)		0	1.6	0.9	1.7	0.8	0.1	1.4
Li(αγ)			0	1.8	2.2	1.7	1.6	0.3
Li(βγ)				0	1.8	0.6	0.8	1.6
Li(γγ)					0	1.7	1.7	2.1
Li(α)						0	0.8	1.6
$Li(\beta)$							0	1.4
$Li(\gamma)$								0

	Μg(αβγ)	$Mg (\alpha\beta\gamma) - Li(\alpha)$	Mg ($\alpha\beta\gamma$) –	Mg ($\alpha\beta\gamma$) –	$Mg (\alpha\beta\gamma) - OH^{bridge}$			
		LI(U)	ы(р)	ΕΙ(γ)	$Li(\alpha)$	UΠ Li(β)	UΠ Li(βγ)	UH Li(γ)
Μg(αβγ)	0	0.2	0.2	0.2	0.3	0.3	0.2	0.5
Mg(αβγ) - Li(α)		0	0.3	0.3	0.4	0.4	0.3	0.6
Mg (αβγ) – Li(β)			0	0.1	0.3	0.3	0.1	0.4
Mg(αβγ) - Li(γ)				0	0.3	0.3	0.2	0.4
$ \begin{array}{c} \mathbf{Mg}(\alpha\beta\gamma) - \\ \mathbf{OH}^{\mathrm{bridge}} - \\ \mathbf{Li}(\alpha) \end{array} $					0	0.1	0.3	0.1
$\frac{\mathbf{Mg}(\alpha\beta\gamma) - \mathbf{OH}^{\text{bridge}} - \mathbf{Li}(\beta)}{\mathbf{Li}(\beta)}$						0	0.6	0.2
$ \begin{array}{c} \mathbf{Mg}(\alpha\beta\gamma) - \\ \mathbf{OH}^{\mathrm{bridge}} - \\ \mathbf{Li}(\beta\gamma) \end{array} $							0	0.4
$Mg(\alpha\beta\gamma) - OH^{bridge} - Li(\gamma)$								0

Table S2a. RMSD of the ATP heavy atoms of ATP-Mg($\alpha\beta\gamma$)-Li complexes

Table S2b. RMSD of the ATP heavy atoms of ATP-Mg(αβ)-Li / ATP-Mg(βγ)-I	j
complexes relative to the respective ATP-Mg($\alpha\beta$)/ ATP-Mg($\beta\gamma$) complex	

	$Mg(\alpha\beta)$		$Mg(\beta\gamma)$
$Mg(\alpha\beta) - OH^{bridge} - Li(\alpha)$	0.6	$Mg(\beta\gamma) - OH^{bridge} - Li(\alpha)$	1.0
$Mg(\alpha\beta) - OH^{bridge} - Li(\beta)$	0.2	$Mg(\beta\gamma) - OH^{bridge} - Li(\beta)$	0.3
$Mg(\alpha\beta) - OH^{bridge} - Li(\gamma)$	0.3	$Mg(\beta\gamma) - OH^{bridge} - Li(\gamma)$	0.2
$Mg(\alpha\beta) - OH^{bridge} - Li(\beta\gamma)$	0.3	$Mg(\beta\gamma) - OH^{bridge} - Li(\alpha\beta)$	0.2

	Li–O _H (Å)		
X-Ray:			1.94 ± 0.05
B3LYP	/	6-31+G(d,p)	1.97
B3LYP	/	6-311++G(d,p)	1.97
B3LYP	/	6-311++G(2d,2p)	1.98
SVWN	/	6-31+G(d,p)	NA
SVWN	/	6-311++G(d,p)	2.30
SVWN	/	6-311++G(2d,2p)	2.60
M062X	/	6-31+G(d,p)	1.92
M062X	/	6-311++G(d,p)	1.96
M062X	/	6-311++G(2d,2p)	1.97
M06HF	/	6-31+G(d,p)	1.91
M06HF	/	6-311++G(d,p)	1.92
M06HF	/	6-311++G(2d,2p)	1.92
BMK	/	6-31+G(d,p)	1.93
BMK	/	6-311++G(d,p)	1.94
BMK	/	6-311++G(2d,2p)	1.94

Table S3a. Experimental vs. computed metal-O distance in tetrahydrated Li⁺.

 Table S3b. Experimental vs. computed geometries of the CSD entry 'fecwit':

	l	Method	$Li-O_{H}(Å)$	$Li-O_C(Å)$
X-Ray:			1.97	1.88
M062X	/	6-311++G(d,p)	1.95	1.85
M062X	/	6-311++G(2d,2p)	1.95	1.83
M062X	/	6-31+G(d,p)	1.96	1.85
M062X	/	6-31+G(2d,2p)	1.95	1.83
B3LYP	/	6-311++G(d,p)	2.00	1.86
B3LYP	/	6-311++G(2d,2p)	2.01	1.86
B3LYP	/	6-31+G(d,p)	2.00	1.86
B3LYP	/	6-31+G(2d,2p)	2.00	1.86
SVWN	/	6-311++G(d,p)	2.09	1.83
SVWN	/	6-311++G(2d,2p)	2.44	1.86
SVWN	/	6-31+G(d,p)	3.09	1.89
SVWN	/	6-31+G(2d,2p)	3.11	1.88
BMK	/	6-311++G(d,p)	1.96	1.83
BMK	/	6-311++G(2d,2p)	1.96	1.86
BMK	/	6-31+G(d,p)	1.96	1.83
BMK	/	6-31+G(2d,2p)	1.96	1.82
M06HF	/	6-311++G(d,p)	NA	NA
M06HF	/	6-311++G(2d,2p)	1.95	1.87
M06HF	/	6-31+G(d,p)	1.95	1.83
M06HF	/	6-31+G(2d,2p)	1.95	1.83

 Table S3c. Experimental vs. computed geometries of the CSD entry 'ejezup':

	Μ	ethod	Li-O _p (Å)	Li-O _w (Å)
X-Ray:			1.90	1.92
B3LYP	/	6-311++G(d,p)	1.89	2.01
B3LYP	/	6-31+G(d)	1.88	2.02
B3LYP	/	6-31+G(d,p)	1.89	2.02
B3LYP	/	6-31+G(2d,2p)	1.88	2.02
B3LYP	/	6-31+G(3d,p)	1.88	2.02
B3LYP	/	6-311++G(2d,2p)		
SVWN	/	6-311++G(d,p)	1.91	2.60
SVWN	/	6-31+G(d)	1.90	2.60
SVWN	/	6-31+G(d,p)	1.90	2.56
SVWN	/	6-31+G(2d,2p)	1.90	2.59
SVWN	/	6-31+G(3d,p)	1.86	2.58
SVWN	/	6-311++G(2d,2p)	1.91	2.60
M062X	/	6-311++G(d,p)	1.87	1.97
M062X	/	6-31+G(d)	1.87	2.07
M062X	/	6-31+G(d,p)	1.87	2.02
M062X	/	6-31+G(2d,2p)	1.93	2.04
M062X	/	6-31+G(3d,p)	1.84	1.96
M062X	/	6-311++G(2d,2p)	1.90	2.01
M06HF	/	6-311++G(d,p)	1.93	1.97
M06HF	/	6-31+G(d)	1.93	1.96
M06HF	/	6-31+G(d,p)	1.93	1.96
M06HF	/	6-31+G(2d,2p)	1.92	1.97
M06HF	/	6-31+G(3d,p)	1.90	1.98
M06HF	/	6-311++G(2d,2p)	1.92	1.97
BMK	/	6-311++G(d,p)	1.89	1.98
BMK	/	6-31+G(d)	1.86	1.98
BMK	/	6-31+G(d,p)	1.86	1.97
BMK	/	6-31+G(2d,2p)	1.85	1.98
BMK	/	6-31+G(3d,p)	1.87	1.97
BMK	/	6-311++G(2d,2p)	1.89	1.97

	N	Mg–O (Å)	
X-Ray:			2.07 ± 0.03
B3LYP	/	6-31+G(d)	2.09
B3LYP	/	6-31+G(d,p)	2.09
B3LYP	/	6-31+G(2d,2p)	2.08
B3LYP	/	6-31+G(3d,p)	2.08
B3LYP	/	6-31+G(3d,2p)	2.07
B3LYP	/	6-311++G(d,p)	2.08
B3LYP	/	6-311++G(2d,2p)	2.08
SVWN	/	6-31+G(d)	2.04
SVWN	/	6-31+G(d,p)	2.03
SVWN	/	6-31+G(2d,2p)	2.02
SVWN	/	6-31+G(3d,p)	2.02
SVWN	/	6-31+G(3d,2p)	2.02
SVWN	/	6-311++G(d,p)	2.03
SVWN	/	6-311++G(2d,2p)	2.02
M062X	/	6-31+G(d)	2.05
M062X	/	6-31+G(d,p)	2.04
M062X	/	6-31+G(2d,2p)	2.03
M062X	/	6-31+G(3d,p)	2.04
M062X	/	6-31+G(3d,2p)	2.03
M062X	/	6-311++G(d,p)	2.04
M062X	/	6-311++G(2d,2p)	2.03
M06HF	/	6-31+G(d)	2.05
M06HF	/	6-31+G(d,p)	2.05
M06HF	/	6-31+G(2d,2p)	2.04
M06HF	/	6-31+G(3d,p)	2.04
M06HF	/	6-31+G(3d,2p)	2.04
M06HF	/	6-311++G(d,p)	2.05
M06HF	/	6-311++G(2d,2p)	2.04
BMK	/	6-31+G(d)	2.06
BMK	/	6-31+G(d,p)	2.06
BMK	/	6-31+G(2d,2p)	2.05
BMK	/	6-31+G(3d,p)	2.04
BMK	/	6-31+G(3d,2p)	NA
BMK	/	6-311++G(d,p)	2.05
BMK	/	6-311++G(2d,2p)	2.05

Table S3d. Experimental vs. computed metal-O distance in hexahydrated Mg²⁺:

 Table S3e. Experimental vs. computed geometries of the CSD entry 'geqbio':

Method			Mg–O _H	$Mg_{-O_{P1}}$	Mg–O _{P2}	Mg-O _{P1} -P	Mg-O _{P2} -P
		(Å)	(Å)	(Å)	(°)	(°)	
X-Ray:	1		2.13	2.09	2.05	133.5	133.5
B3LYP	/	6-31+G(d)	2.21	2.08	2.08	125.8	133.8
B3LYP	/	6-31+G(d,p)	2.22	2.08	2.08	125.8	133.4
B3LYP	/	6-31+G(2d,2p)	2.22	2.07	2.07	126.0	133.3
B3LYP	/	6-31+G(3d,p)	2.22	2.07	2.07	126.4	133.3
B3LYP	/	6-31+G(3d,2p)	2.23	2.06	2.07	126.4	133.2
B3LYP	/	6-311++G(d,p)	2.22	2.08	2.08	127.3	134.2
B3LYP	/	6-311++G(2d,2p)	2.22	2.07	2.07	126.2	133.2
SVWN	/	6-31+G(d)	2.11	2.06	2.04	135.1	122.0
SVWN	/	6-31+G(d,p)	2.11	2.06	2.04	134.9	121.8
SVWN	/	6-31+G(2d,2p)	2.12	2.05	2.03	132.2	124.0
SVWN	/	6-31+G(3d,p)	2.11	2.05	2.02	133.6	123.3
SVWN	/	6-31+G(3d,2p)	2.12	2.05	2.02	132.7	123.8
SVWN	/	6-311++G(d,p)	2.12	2.06	2.04	135.5	122.9
SVWN	/	6-311++G(2d,2p)	2.12	2.04	2.06	122.2	130.8
M062X	/	6-31+G(d)	2.14	2.07	2.04	135.6	123.4
M062X	/	6-31+G(d,p)	2.14	2.08	2.04	135.6	123.0
M062X	/	6-31+G(2d,2p)	2.14	2.06	2.03	134.8	123.6
M062X	/	6-31+G(3d,p)	2.14	2.06	2.03	134.7	123.7
M062X	/	6-31+G(3d,2p)	2.15	2.05	2.03	134.7	123.8
M062X	/	6-311++G(d,p)	2.15	2.07	2.04	136.5	124.4
M062X	/	6-311++G(2d,2p)	2.14	2.06	2.03	135.2	123.6
M06HF	/	6-31+G(d)	2.15	2.07	2.07	124.3	132.8
M06HF	/	6-31+G(d,p)	2.15	2.07	2.07	124.1	132.7
M06HF	/	6-31+G(2d,2p)	2.15	2.06	2.05	124.2	131.8
M06HF	/	6-31+G(3d,p)	2.15	2.06	2.05	124.5	132.1
M06HF	/	6-31+G(3d,2p)	2.15	2.06	2.05	124.3	132.0
M06HF	/	6-311++G(d,p)	2.15	2.06	2.06	125.6	133.5
M06HF	/	6-311++G(2d,2p)	2.15	2.06	2.05	124.8	132.3
BMK	/	6-31+G(d)	2.16	2.09	2.05	135.9	124.3
BMK	/	6-31+G(d,p)	2.18	2.06	2.06	128.1	129.7

BMK	/	6-31+G(2d,2p)	NA	NA	NA	NA	NA
BMK	/	6-31+G(3d,p)	2.18	2.04	2.04	129	130.5
BMK	/	6-31+G(3d,2p)	NA	NA	NA	NA	NA
BMK	/	6-311++G(d,p)	2.17	2.08	2.04	136.7	125.6
BMK	/	6-311++G(2d,2p)	2.18	2.05	2.05	128.5	130.1

Figure S1. M062X/6-311++G(d,p)-optimized structure of ATP–Mg(βγγ).

Figure S2. M062X/6-311++G(d,p)-optimized structures of Li⁺ monodentately bound to ATP-Mg- $\alpha\beta\gamma$

Figure S3. M062X/6-311++G(d,p)-optimized structures of ATP-Mg- $\alpha\beta$ -Li or ATP-Mg- $\beta\gamma$ -Li mononuclear complexes

в

D

F

н

Figure S4. M062X/6-311++G(d,p)-optimized structures of $[Li_2(H_2O)_6ATP]^{2-}$.