Supplementary Information for

Highly planar diarylamine-fused porphyrins and their remarkably stable radical cations

Norihito Fukui,^a Wonhee Cha,^b Daiki Shimizu,^a Juwon Oh,^b Ko Furukawa,^c Hideki Yorimitsu,^a Dongho Kim,^b and Atsuhiro Osuka^a

^aDepartment of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

^bSpectroscopy Laboratory of Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea.

^cCenter for Instrumental Analysis, Niigata University, Nishi-ku, Niigata 950-2181, Japan.

Contents

- 1. Instrumentation and Materials
- 2. Experimental Procedures
- 3. Compound Data
- 4. ¹H NMR Dilution Titration
- 5. X-Ray Crystal Structures
- 6. Electrochemical Properties
- 7. ESR Spectra
- 8. Temperature Dependent Magnetic Susceptibility
- 9. DFT Calculations
- 10. Fluorescence Decay and Time-resolved TA Spectra
- 11. Z-Scan Curves in TPA Measurements
- 12. References

<u>1. Instrumentation and Materials</u>

¹H NMR (600 MHz) and ¹³C NMR (151 MHz) spectra were taken on a JEOL ECA-600 spectrometer. Chemical shifts were reported as delta scale in ppm relative to CHCl₃ (δ = 7.26) for ¹H NMR and to CDCl₃ (δ = 77.16) for ¹³C NMR. UV/Vis absorption spectra were recorded on a Shimadzu UV-3600 spectrometer. High-resolution APCI-TOF mass spectra were taken on a Bruker micrOTOF. X-Ray data were taken at –180 °C with a Rigaku XtaLAB P200 diffractometer by using graphite monochromated Cu-K_{\alpha} radiation (λ = 1.54187 Å). The structures were solved by direct method SIR-97 and refined by SHELXL-97 program.^[51] Preparative separations were performed by silica gel column chromatography (Wako gel C-200, C-300, and C-400). Toluene was distilled from CaH₂. THF was purified by passing through a neutral alumina column under N₂. CHCl₃ was purified by passing through an alumina column. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Palau'Chlor was purchased from Sigma-Aldrich.

2. Experimental Procedures

Singly phenoxazine-fused Ni(II) porphyrin 9. A flask containing meso-phenoxazino Ni(II) porphyrin 7 (111 mg, 100 µmol), DDQ (227 mg, 1.0 mmol), and Sc(OTf)₃ (492 mg, 1.0 mmol) was purged with argon, and then charged with ClCH₂CH₂Cl (17.5 mL) and MeNO₂ (17.5 mL). The mixture was stirred at 70 °C for 1 h. The reaction was quenched by addition of a saturated aqueous NaHCO3 solution. The organic phase was separated and washed with water and brine, and dried over anhydrous Na₂SO₄. After removal of the solvent *in vacuo*, the reaction mixture was diluted with THF and filtered through a small plug of alumina with copious washings (THF). After removal of the solvent in vacuo, the residue was separated by silica gel chromatography eluting with CH₂Cl₂/hexane. Recrystallization from CH₂Cl₂/MeOH gave 9 (63.9 mg, 57.5 μmol, 58%). ¹H NMR (600 MHz, CDCl₃, 60 °C): δ = 9.16 $(d, J = 4.6 \text{ Hz}, 1\text{H}, \beta), 8.97 \text{ (s, 1H, }\beta), 8.68 \text{ (d, }J = 4.6 \text{ Hz}, 1\text{H}, \beta), 8.66 \text{ (d, }J = 4.6 \text{ Hz}, 1\text{H}, \beta), 8.63 \text{ (d, }J = 4.6 \text{ Hz}, 1\text{H}, \beta), 8.61 \text{ (d, }J = 4.6 \text{ Hz}, 1\text{$ 8.60 (d, J = 4.6 Hz, 1H, β), 8.52 (d, J = 4.6 Hz, 1H, β), 8.17 (d, J = 7.8 Hz, 1H, phenoxazine), 7.79 (t, J = 1.8 Hz, 1H, Ar), 7.72 (t, J = 1.8 Hz, 1H, Ar), 7.71 (t, J = 1.8 Hz, 1H, Ar), 7.47 (t, J = 7.8 Hz, 1H, phenoxazine), 7.31 (d, J = 7.8 Hz, 1H, phenoxazine), 7.21 (d, J = 7.8 Hz, 1H, phenoxazine), 7.03 (t, J = 7.8 Hz, 1H, phenoxazine), 7.00 (d, J = 7.8 Hz, 1H, phenoxazine), 6.59 (t, J = 7.8 Hz, 1H, phenoxazine), and 1.60-1.30 (m, 54H, tert-butyl) ppm (The signals for the some protons of the 3,5-di-tert-butylphenyl groups are too broad to analyze because of flapping of the porphyrin skeleton and/or rotation of the 3,5-di-*tert*-butylphenyl groups.); ¹³C NMR (151 MHz, CDCl₃, 60 °C): δ = 149.74, 149.41, 149.34, 148.40, 147.85, 144.40, 143.80, 143.21, 142.94, 141.33, 140.26, 140.11, 139.83, 139.78, 134.88, 134.76, 134.48, 133.83, 133.13, 132.90, 132.60, 131.58, 131.25, 128.75, 128.71, 128.63 (overlap), 127.57, 126.01, 124.58, 123.57, 121.39, 121.34, 121.20, 121.13 (overlap), 119.19, 119.07, 117.99, 117.35, 116.10, 115.34, 114.89, 114.40, 35.25, 35.18 (overlap), 31.91, and 31.87 (overlap) ppm; APCI-TOF-MS: *m*/*z* = 1109.5472. Calcd for C₇₄H₇₇N₅⁵⁸NiO: 1109.5487 [M]⁻; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]) = 393 (4.10 × 10⁴), 462 (1.48 × 10⁵), and 621 nm (2.52 × 10⁴).

Doubly phenoxazine-fused Ni(II) porphyrin 4Ni. A flask containing 9 (11.1 mg, 10 µmol) was purged with argon, and then charged with ClCH₂CH₂Cl (3.0 mL) and FeCl₃ (16.2 mg, 100 µmol) dissolved in MeNO₂ (0.5 mL). The mixture was stirred at 90 °C for 1 h. The reaction was quenched by addition of a saturated aqueous NaHCO₃ solution. The organic phase was separated and washed with water and brine, and dried over anhydrous Na₂SO₄. After removal of the solvent *in vacuo*, the reaction mixture was diluted with THF and filtered through a small plug of alumina with copious washings (THF). After removal of the solvent *in vacuo*, the residue was passed through a small plug of silica gel with copious washings (CHCl₃). After removal of the solvent *in vacuo*, a flask containing the residue, Pd₂(dba)₃ (9.2 mg, 10 µmol), and SPhos (8.2 mg, 20 µmol) was purged with argon, and then charged with toluene (1.0 mL), NEt₃ (14 µL, 100 µmol), and HCOOH (4 µL, 100 µmol). The mixture was stirred at 120 °C for 1 h. The reaction mixture was diluted with CH₂Cl₂. After removal of the solvent *in vacuo*, the residue was hings (CH₂Cl₂). After removal of Senter et al. 20 °C for 1 h. The reaction mixture was diluted with CH₂Cl₂ and filtered through a small plug of Celite^{*} with copious washings (CH₂Cl₂/MeOH gave **4Ni** (6.4 mg, 5.8 µmol, 58%). ¹H NMR (600 MHz, CDCl₃, 25 °C, 10 mM): δ = 8.91 (s, 2H, β), 8.76 (d, *J* = 4.8 Hz, 2H, β), 8.71 (d, *J* = 4.8 Hz, 2H, β), 8.05 (d, *J* = 1.9 Hz, 2H, β).

Ar), 8.02 (d, J = 1.9 Hz, 4H, Ar), 8.00 (d, J = 6.9 Hz, 2H, phenoxazine), 8.12 (t, J = 1.9 Hz, 2H, Ar), 7.75 (t, J = 1.9 Hz, 1H, Ar), 7.21 (t, J = 6.9 Hz, 2H, phenoxazine), 6.51 (d, J = 6.9 Hz, 2H, phenoxazine), 1.58 (s, 36H, *tert*-butyl), and 1.54 (s, 18H, *tert*-butyl) ppm; ¹³C NMR (151 MHz, CDCl₃, 25 °C, 10 mM): $\delta = 149.30$, 149.11, 146.34, 144.54, 142.36, 141.80, 141.33, 141.16, 133.52, 130.98, 129.06, 128.82, 127.71, 127.02, 125.25, 121.10, 120.76, 120.18, 120.12, 119.34, 117.80, 114.43, 114.40, 113.66, 111.72, 35.27, 35.21, 32.00, and 31.95 ppm; APCI-TOF-MS: m/z = 1107.5294. Calcd for C₇₄H₇₅N₅⁵⁸NiO: 1107.5331 [M]⁻; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]) = 447 (1.62 × 10⁵), 570 (1.27 × 10⁴), and 614 nm (3.33 × 10⁴).

Doubly phenoxazine-fused free base porphyrin 4H2. Conc. H2SO4 (1.0 mL) was added slowly to a mixture of 4Ni (23.9 mg, 21.5 µmol) and TFA (2.0 mL) at 0 °C. The reaction mixture was stirred at 0 °C in air for 1.5 h, and then poured into water at 0 °C. After neutralization with NaOH and Na₂CO₃ at 0 °C, the product was extracted with CH₂Cl₂, and the organic extract was washed with brine, and dried over anhydrous Na₂SO₄. After removal of the solvent in vacuo, the residue was separated by silica gel chromatography eluting with CH2Cl2/hexane. Recrystallization of the separated solids from CH2Cl2/MeOH gave 4H2 (9.5 mg, 9.0 µmol, 42%). ¹H NMR (600 MHz, CDCl₃, 25 °C, 5.0 mM): δ = 9.18 (s, 2H, β), 8.77 (d, J = 4.6 Hz, 2H, β), 8.64 (d, J = 4.6 Hz, 2H, β), 8.40 (d, J = 6.9 Hz, 2H, phenoxazine), 8.19 (d, J = 1.9 Hz, 4H, Ar), 8.07 (d, J = 1.9 Hz, 2H, Ar), 7.86 (t, J = 1.9 Hz, 2H, Ar), 7.76 (t, J = 1.9 Hz, 1H, Ar), 7.58 (t, *J* = 6.9 Hz, 2H, phenoxazine), 7.13 (d, *J* = 6.9 Hz, 2H, phenoxazine), 1.60 (s, 36H, tert-butyl), 1.54 (s, 18H, *tert*-butyl), and –0.53 (br s, 2H, inner NH) ppm; ¹³C NMR (151 MHz, CDCl₃, 25 °C, 5.0 mM): δ = 149.37, 148.93, 145.45, 142.07, 141.57, 129.67, 129.51, 126.32, 121.38, 121.32, 121.17, 120.66, 120.56, 118.92, 114.96, 114.31, 113.09, 112.54, 35.31, 35.18, and 31.99 (overlap) ppm (The signals for the carbons of the porphyrin skeleton were too broad to analyze because of exchange of the inner NH protons.); APCI-TOF-MS: m/z = 1051.6089. Calcd for $C_{74}H_{77}N_5O$: 1051.6134 [M]-; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]) = 367 (3.31 × 10⁴), 452 (1.56 × 10⁵), 549 (8.56 × 10³), 591 (2.23×10^4) , 620 (1.29×10^5) , and 680 nm (3.74×10^4) ; Fluorescence (CH₂Cl₂, $\lambda_{ex} = 452$ nm): $\lambda_{max} = 686$ and 755 nm, $\Phi_F = 686$ 24.3%.

Doubly phenoxazine-fused Zn(II) porphyrin 4Zn. 4H² (7.5 mg, 7.1 µmol) was dissolved in CH₂Cl₂ (5 mL). After addition of an excess amount of Zn(OAc)₂·2H₂O (10 mg, 46 µmol) dissolved in MeOH (1 mL), the mixture was stirred for 1.5 h at room temperature with shielded from the light in air. The residue was passed through a small plug of silica-gel with copious washings (CH₂Cl₂). After removal of the solvent *in vacuo*, the residue was separated by silica gel chromatography eluting with CH₂Cl₂/hexane. Recrystallization of the separated solids from CH₂Cl₂/MeOH gave **4Zn** (4.5 mg, 4.0 µmol, 57%). ¹H NMR (600 MHz, CDCl₃, 25 °C, 1.5 mM): δ = 9.29 (s, 2H, β), 8.91 (d, *J* = 4.6 Hz, 2H, β), 8.78 (d, *J* = 4.6 Hz, 2H, β), 8.44 (d, *J* = 7.8 Hz, 2H, phenoxazine), 8.20 (d, *J* = 1.4 Hz, 4H, Ar), 8.04 (d, *J* = 1.4 Hz, 2H, Ar), 7.86 (t, *J* = 1.4 Hz, 2H, Ar), 7.74 (t, *J* = 1.6 Hz, 1H, Ar), 7.57 (t, *J* = 7.8 Hz, 2H, phenoxazine), 7.13 (d, *J* = 7.8 Hz, 2H, phenoxazine), 1.59 (s, 36H, *tert*-butyl), and 1.52 (s, 18H, *tert*-butyl) ppm; ¹³C NMR (151 MHz, CDCl₃, 25 °C, 5.0 mM): δ = 154.13, 149.43, 149.17, 149.04, 148.84, 145.07, 142.41, 142.35, 133.71, 133.57, 131.42, 129.77,

129.41, 128.18, 125.92, 122.55, 121.49, 120.96, 120.50, 120.20, 118.95, 115.54, 115.50, 114.25, 111.98, 35.31, 35.19, 32.01, and 31.68; APCI-TOF-MS: m/z = 1113.5233. Calcd for C₇₄H₇₅N₅⁶⁴ZnO: 1113.5269 [M]⁻; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻ ¹cm⁻¹]) = 436 (9.88 × 10⁴), 450 (2.71 × 10⁵), 591 (1.27 × 10⁴), and 640 nm (3.75 × 10⁴); Fluorescence (CH₂Cl₂, λ_{ex} = 452 nm): λ_{max} = 648 and 706 nm, Φ_F = 15.7%.

Doubly diphenylamine-fused free base porphyrin 10H2. 10Ni (21.9 mg, 20 µmol) was placed in a Schlenk flask. The flask was filled with argon. Toluene (1.0 mL) was added to the flask. To the solution, 4-methylphenylmagnesium bromide (0.26 mL, 0.2 mmol, 0.66 M THF solution) was then added. The mixture was stirred at room remperature for 1.5 h. The reaction was quenched with 3 M HCl aq. and extracted with CH₂Cl₂ three times. The combined organic layer was washed with a saturated aqueous NaHCO₃ solution and brine and then dried over anhydrous Na₂SO₄. After removal of the solvent *in vacuo*, the residue was separated by silica gel chromatography eluting with CH2Cl2/hexane. Recrystallization of the separated solids from CH2Cl2/MeOH gave **10H**₂ (11.7 mg, 11.3 µmol, 56%). ¹H NMR (600 MHz, CDCl₃, 25 °C): δ = 9.38 (s, 2H, β), 9.07 (d, J = 8.7 Hz, 2H, diphenylamine), 9.02 (d, J = 8.7 Hz, 2H, diphenylamine), 8.84 (d, J = 4.6 Hz, 2H, β), 8.68 (d, J = 4.6 Hz, 2H, β), 8.32-8.10 (br d, J = 518 Hz, 4H, Ar), 8.04 (d, J = 1.9 Hz, 2H, Ar), 7.88 (t, J = 1.9 Hz, 2H, Ar), 7.83 (t, J = 8.7 Hz, 2H, diphenylamine), 7.76-7.70 (m, 3H, Ar + diphenylamine), 1.61 (br s, 36H, tert-butyl), 1.52 (s, 18H, tert-butyl), and -0.58 (br s, 2H, inner NH) ppm; ¹³C NMR (151 MHz, CDCl₃, 25 °C): δ = 149.40, 148.87, 142.05, 141.51, 134.82, 132.22, 131.03, 129.85, 129.67, 126.00, 125.52, 125.24, 123.91, 123.69, 121.72, 121.19, 120.70, 118.65, 114.99, 113.74, 35.31, 35.16, and 31.96 (overlap) ppm (The signals for the carbons of the porphyrin skeleton were too broad to analyze because of exchange of the inner NH protons.); APCI-TOF-MS: *m*/*z* = 1037.6308. Calcd for C₇₄H₇₉N₅: 1037.6341 [M]⁻; UV/Vis $(CH_2Cl_2): \lambda_{max} (\varepsilon [M^{-1}cm^{-1}]) = 440 (1.79 \times 10^5), 453 (1.79 \times 10^5), 551 (9.66 \times 10^3), 593 (2.65 \times 10^4), 618 (1.20 \times 10^4), and 678$ nm (3.52 × 10⁴); Fluorescence (CH₂Cl₂, λ_{ex} = 452 nm): λ_{max} = 683 and 750 nm, Φ_F = 16.8%.

Doubly diphenylamine-fused Zn(II) porphyrin 10Zn. 10H² (19.4 mg, 18.7 µmol) was dissolved in CH₂Cl₂ (30 mL). After addition of an excess amount of Zn(OAc)₂·2H₂O (22.5 mg, 0.10 mmol) dissolved in MeOH (1.0 mL), the mixture was stirred for 1.5 h at room temperature with shielded from the light in air. The residue was passed through a small plug of silica-gel with copious washings (CH₂Cl₂). After removal of the solvent *in vacuo*, the residue was separated by silica gel chromatography eluting with CH₂Cl₂/hexane. Recrystallization of the separated solids from CH₂Cl₂/hexane gave **10Zn** (13.7 mg, 12.4 µmol, 67%). ¹H NMR (600 MHz, CDCl₃, 25 °C): δ = 9.45 (s, 2H, β), 9.10 (d, *J* = 8.3 Hz, 2H, diphenylamine), 9.04 (d, *J* = 8.3 Hz, 2H, diphenylamine), 8.95 (d, *J* = 4.6 Hz, 2H, β), 8.81 (d, *J* = 4.6 Hz, 2H, β), 8.32-8.10 (br d, *J* = 866 Hz, 4H, Ar), 8.05 (d, *J* = 1.8 Hz, 2H, Ar), 7.88 (t, *J* = 1.8 Hz, 2H, Ar), 7.83 (t, *J* = 8.3 Hz, 2H, diphenylamine), 7.76-7.70 (m, 3H, Ar + diphenylamine), 1.61 (br s, 36H, *tert*-butyl), and 1.53 (s, 18H, *tert*-butyl) ppm; ¹³C NMR (151 MHz, CDCl₃, 25 °C): δ = 153.68, 150.15, 149.18, 149.09, 148.79, 142.35, 142.26, 135.49, 134.76, 133.50, 131.45, 130.41, 129.71, 129.54, 126.13, 125.30, 125.10, 123.94, 123.83, 122.90, 120.99, 120.52, 119.32, 116.23, 114.92, 35.31, 35.17, and 31.98 (overlap) ppm; APCI-TOF-MS: *m*/*z* = 1099.5463. Calcd for C₇₄H₇₇N₅₆₄Zn:

1099.5476 [M]⁻; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]) = 439 (2.31 × 10⁵), 453 (3.68 × 10⁵), 585 (1.58 × 10³), and 632 nm (4.66 × 10⁴); Fluorescence (CH₂Cl₂, λ_{ex} = 452 nm): λ_{max} = 640 and 695 nm, Φ_F = 12.9%.

β-Dichloro phenoxazine-fused Ni(II) porphyrin 13. 4Ni (22.2 mg, 20 µmol) was dissolved in CHCl₃ (12 mL). The mixture was stirred at 0 °C, and Palau'Chlor (2.0 mL, 44 µmol, 22 mM CHCl₃ solution) was added dropwise over 10 min. Then, the mixture was stirred at room temperature for 2.5 h. The reaction mixture was diluted with CH₂Cl₂ and filtered through a small plug of silica gel with copious washings (CH₂Cl₂). After removal of the solvent *in vacuo*, recrystallization from CHCl₃/MeOH gave **13** (18.2 mg, 15.4 µmol, 77%). ¹H NMR (600 MHz, CDCl₃, 25 °C, 1.6 mM): δ = 9.12 (d, *J* = 6.8 Hz, 2H, phenoxazine), 8.86 (d, *J* = 5.0 Hz, 2H, *β*), 8.60 (d, *J* = 5.0 Hz, 2H, *β*), 7.82 (d, *J* = 1.9 Hz, 2H, Ar), 7.72-7.68 (m, 5H, Ar), 7.67 (t, *J* = 1.9 Hz, 2H, Ar), 7.41 (t, *J* = 6.8 Hz, 2H, phenoxazine), 6.96 (d, *J* = 6.8 Hz, 2H, phenoxazine), and 1.46 (br s, 54H, *tert*-butyl) ppm; The ¹³C NMR signals were too weak to analyze because of the low solubility.; APCI-TOF-MS: *m/z* = 1175.4510. Calcd for C₇₄H₇₃N₅⁵⁸NiO³⁵Cl₂: 1175.4551 [M]⁻; UV/Vis (CH₂Cl₂): λ_{max} (*ε* [M⁻¹cm⁻¹]) = 402 (4.37 × 10⁴), 455 (1.68 × 10⁵), 598 (1.46 × 10⁴), and 628 nm (2.94 × 10⁴).

β-Dichloro phenoxazine-fused Ni(II) porphyrinium hexachloroantimonate [13]*. 13 (9.4 mg, 8.0 µmol) was dissolved in CH₂Cl₂ (20 mL). The mixture was stirred at room temperature, and tris(4-bromophenyl)aminium hexachloroantimonate (10 mL, 8.8 µmol, 0.88 mM CH₂Cl₂ solution) was added to the mixture. Then, the mixture was stirred at room temperature in air for 10 min. The reaction mixture was diluted with CH₂Cl₂ and filtered through a small plug of silica gel with copious washings (CH₂Cl₂). After removal of the solvent *in vacuo*, recrystallization from CH₂Cl₂/hexane gave [13]* (9.5 mg, 6.3 µmol, 79%). ¹H NMR (600 MHz, CDCl₃, 25 °C): δ = 1.64 (br s, 18H, *tert*-butyl) and 1.58 (br s, 36H, *tert*-butyl) ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]) = 403 (5.34 × 10⁴), 467 (7.01 × 10⁴), 543 (1.93 × 10⁴), 609 (1.19 × 10⁴), 677 (1.19 × 10⁴), 1092 nm (1.11 × 10⁴), and 1583 nm (7.05 × 10²).

β-Dichloro diphenylamine-fused porphyrin 14. 10Ni (11.0 mg, 10 μmol) was dissolved in CHCl₃ (2.0 mL). The mixture was stirred at 0 °C, and Palau'Chlor (0.5 mL, 21 μmol, 42 mM CHCl₃ solution) was added dropwise over 10 min. Then, the mixture was stirred at room temperature for 7 h. The reaction mixture was diluted with CH₂Cl₂ and filtered through a small plug of silica gel with copious washings (CH₂Cl₂). After removal of the solvent *in vacuo*, recrystallization from CH₂Cl₂/MeOH gave 14 (10.1 mg, 8.7 μmol, 87%). ¹H NMR (600 MHz, CDCl₃, 25 °C): δ = 9.63 (d, *J* = 7.8 Hz, 2H, diphenylamine), 8.81 (d, *J* = 5.0 Hz, 2H, *β*), 8.74 (d, *J* = 7.8 Hz, 2H, diphenylamine), 8.61 (d, *J* = 5.0 Hz, 2H, *β*), 7.86 (d, *J* = 1.9 Hz, 2H, Ar), 7.75 (t, *J* = 1.9 Hz, 2H, Ar), 7.70 (t, *J* = 1.9 Hz, 1H, Ar), 7.68 (t, *J* = 7.8 Hz, 2H, diphenylamine), 1.50 (br s, 36H, *tert*-butyl), and 1.48 (s, 18H, *tert*-butyl) ppm (The signals for the some protons of the 3,5-di-*tert*-butylphenyl groups are too broad to analyze because of flapping of the porphyrin skeleton.); ¹³C NMR (151 MHz, CDCl₃, 25 °C): δ = 149.33, 149.27, 146.05, 143.48, 140.07, 139.08, 137.60, 134.33, 133.14, 131.07, 128.84, 128.34, 126.65, 126.48, 126.24, 124.71 (overlap), 122.97, 122.31, 121.14, 121.10,

119.33, 117.98, 116.19, 115.78, 35.18, 35.15, and 31.85 (overlap); APCI-TOF-MS: m/z = 1161.4719. Calcd for C₇₄H₇₅N₅⁵⁸Ni³⁵Cl₂: 1161.4758 [M]-; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]) = 453 (1.86 × 10⁵), 570 (1.40 × 10⁵), and 615 nm (3.27 × 10⁴).

β-Dichloro diphenylamine-fused Ni(II) porphyrinium hexachloroantimonate [14]*. 14 (17.5 mg, 15.0 µmol) was dissolved in CH₂Cl₂ (10 mL). The mixture was stirred at room temperature, and tris(4-bromophenyl)aminium hexachloroantimonate (13.5 mg, 16.5 µmol) was added to the mixture. Then, the mixture was stirred at room temperature in air for 5 min. The reaction mixture was diluted with CH₂Cl₂ and filtered through a small plug of silica gel with copious washings (CH₂Cl₂). After removal of the solvent *in vacuo*, recrystallization from CH₂Cl₂/hexane gave [14]* (20.5 mg, 13.7 µmol, 91%). ¹H NMR (600 MHz, CDCl₃, 25 °C): δ = 1.61 (br s, 18H, *tert*-butyl) and 1.57 (br s, 36H, *tert*-butyl) ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹cm⁻¹]) = 441 (7.19 × 10⁴), 460 (8.00 × 10⁴), 543 (2.26 × 10⁴), 663 (1.45 × 10⁴), and 903 nm (8.89 × 10³).

3. Compound Data

Figure S 2. ¹³C NMR spectrum of 9 in CDCl₃ at 60 °C. *Solvent.

Figure S 3. Observed (top) and simulated (bottom) HR-APCI-TOF MS of 9.

Figure S **4**. UV/Vis absorption spectrum of **9** in CH₂Cl₂.

Figure S 6. ¹³C NMR spectrum of 4Ni in CDCl₃ at 25 °C. *Solvent.

Figure S 7. Observed (top) and simulated (bottom) HR-APCI-TOF MS of 4Ni.

Figure S 8. UV/Vis absorption spectrum of 4Ni in CH₂Cl₂.

Figure S 9. 1H NMR spectrum of 4H2 in CDCl3 at 25 °C. *Solvent and impurities.

Figure S 10. ¹³C NMR spectrum of 4H₂ in CDCl₃ at 25 °C. *Solvent.

Figure S 11. Observed (top) and simulated (bottom) HR-APCI-TOF MS of 4H2.

Figure S 12. UV/Vis absorption (solid line) and emission (dashed line) spectra of 4H2 in CH2Cl2.

Figure S **13.** ¹H NMR spectrum of **4Zn** in CDCl₃ at 25 °C. *Solvent.

Figure S 14. ¹³C NMR spectrum of 4Zn in CDCl₃ at 25 °C. *Solvent.

Figure S 15. Observed (top) and simulated (bottom) HR-APCI-TOF MS of 4Zn.

Figure S 16. UV/Vis absorption (solid line) and emission (dashed line) spectra of 4Zn in CH₂Cl₂.

Figure S 17. ¹H NMR spectrum of **10H**² in CDCl₃ at 25 °C. *Solvent and impurities.

Figure S 18. ¹³C NMR spectrum of **10H**² in CDCl₃ at 25 °C. *Solvent.

Figure S 19. Observed (top) and simulated (bottom) HR-APCI-TOF MS of 10H2.

Figure S 20. UV/Vis absorption (solid line) and emission (dashed line) spectra of 10H2 in CH2Cl2.

Figure S 21. ¹H NMR spectrum of **10Zn** in CDCl₃ at 25 °C. *Solvent and impurities.

Figure S 22. ¹³C NMR spectrum of **10Zn** in CDCl₃ at 25 °C. *Solvent.

Figure S 23. Observed (top) and simulated (bottom) HR-APCI-TOF MS of 10Zn.

Figure S 24. UV/Vis absorption (solid line) and emission (dashed line) spectra of 10Zn in CH₂Cl₂.

Figure S 25. 1H NMR spectrum of 13 in CDCl3 at 25 °C. *Solvent and impurities.

Figure S 26. Observed (top) and simulated (bottom) HR-APCI-TOF MS of 13.

Figure S 27. UV/Vis absorption spectrum of 13 in CH₂Cl₂.

Figure S 28. ¹H NMR spectrum of **14** in CDCl₃ at 25 °C. *Solvent and impurities.

Figure S 29. ¹³C NMR spectrum of 14 in CDCl₃ at 25 °C. *Solvent.

Figure S 30. Observed (top) and simulated (bottom) HR-APCI-TOF MS of 14.

Figure S 31. UV/Vis absorption spectrum of 14 in CH₂Cl₂.

Figure S 32. ¹H NMR spectrum of **[13]**⁺ in CDCl₃ at 25 °C. *Solvent and impurities.

Figure S 33. UV/Vis absorption spectrum of **[13]**⁺ in CH₂Cl₂.

Figure S 34. ¹H NMR spectrum of [14]⁺ in CDCl₃ at 25 °C. *Solvent and impurities.

Figure S 35. UV/Vis absorption spectrum of [14]+ in CH₂Cl₂.

4. ¹H NMR Dilution Titration^[S2]

Estimation of the dimerisation constant (KD)

$$2A \rightleftharpoons A_2 \text{ for which } K_D = \frac{[A_2]}{[A]^2}$$
 (1)

Starting from the *law of mass action* expression for *K*_D in Eq. 1, we can write:

$$K_D = \frac{[A_2]}{(C - 2[A_2])^2}$$
(2)

where $[A_2]$ is the dimer concentration and *C* is the total concentration of target compound in solution. Rearrangement of Eq. 2 gives:

$$\frac{1}{2}K_DC = \frac{2[A_2]}{c} + \frac{c}{2[A_2]} - 2 \tag{3}$$

Then, replacing $\frac{2[A_2]}{c}$ by *x* gives Eq. 4.

$$\frac{1}{2}K_D C = x + \frac{1}{x} - 2 \tag{4}$$

Therefore, the value of *x*, for which 0 < x < 1, is given by:

$$x = \left(1 + \frac{K_D C}{4}\right) - \sqrt{\left(1 + \frac{K_D C}{4}\right)^2 - 1}$$
 (5)

The fraction *x* is related to the calculated chemical shift δ_{calc} through Eq. 6

$$x = \frac{(\delta_0 - \delta_{calc})}{(\delta_0 - \delta_{\infty})} \tag{6}$$

where δ_0 and δ_{∞} are the chemical shifts of the free monomer and dimer, respectively. By using Eq. 5 and Eq. 6, δ_{calc} can be written as:

$$\delta_{\text{calc}} = \delta_0 + (\delta_\infty - \delta_0)(1 + \frac{1 - \sqrt{8K_D C + 1}}{4K^D C})$$
(6)

*K*_D value was estimated by minimizing the RSS-value (Eq. 7), by interatively varying *K*_D, δ_0 , and δ_{∞} , using Solver in

Microsoft Excel.

$$RSS = \sum (\delta_{\rm obs} - \delta_{\rm calc})^2 \qquad (7)$$

Figure S 36. NOESY spectrum of **4Ni** in CDCl₃ at 25 °C.

Figure S 37. ¹H NMR spectra of **4Ni** in CDCl₃ under different concentrations: (a) 10 mM, (b) 5.0 mM, and (c) 1.0 mM at 25 °C.

 $K_D = 7.2 \times 10 \text{ M}^{-1}$

Figure S 38. ¹H NMR dilution titration of **4Ni**.

Figure S 39. ¹H NMR spectra of 4H₂ in CDCl₃ under different concentrations: (a) 8.3 mM, (b) 6.3 mM, and (c) 2.1 mM at 25 °C.

C (mM)	x	$\delta_{ m obs}$ of ${ m H_{D}}$ (ppm)
10.0	0.292	6.91
8.3	0.264	6.95
7.5	0.245	7.00
6.3	0.221	7.03
5.7	0.208	7.08
5.0	0.191	7.11
4.2	0.168	7.13
2.1	0.099	7.26
1.0	0.052	7.35

 $K_D = 2.9 \times 10 \text{ M}^{-1}$

Figure S 40. ¹H NMR dilution titration of 4H₂.

Figure S 41. ¹H NMR spectra of **4Zn** in CDCl₃ under different concentrations: (a) 8.3 mM, (b) 6.3 mM, and (c) 2.1 mM at 25 °C.

C (mM)	x	$\delta_{ m obs}$ of ${ m H_{D}}$ (ppm)
7.7	0.464	6.57
6.6	0.436	7.19
3.9	0.345	6.83
1.9	0.236	7.06
1.5	0.204	7.12
1.3	0.183	7.19
0.77	0.464	6.57

 $K_D = 1.0 \times 10^2 \text{ M}^{-1}$

Figure S **42**. ¹H NMR dilution titration of **4Zn**.

Figure S **43**. ¹H NMR spectra of **13** in CDCl₃ under different concentrations: (a) 2.6 mM, (b) 0.97 mM, and (c) 0.16 mM at 25 °C.

C (mM)	x	$\delta_{ m obs}$ of ${ m H_{D}}$ (ppm)
2.6	0.592	6.93
1.6	0.519	6.96
0.97	0.434	7.04
0.65	0.364	7.13
0.51	0.325	7.17
0.32	0.252	7.23
0.16	0.159	7.30

 $K_D = 7.0 \times 10^2 \text{ M}^{-1}$

Figure S 44. ¹H NMR dilution titration of **13**.

Figure S **45**. ¹H NMR spectra of **10Ni** in CDCl₃ under different concentrations: (a) 40 mM, (b) 10 mM, and (c) 2.0 mM at 25 °C.

Figure S 46. ¹H NMR spectra of 10H₂ in CDCl₃ under different concentrations: (a) 26 mM and (c) 5.2 mM at 25 °C.

Figure S 47. ¹H NMR spectra of **10Zn** in CDCl₃ under different concentrations: (a) 19 mM and (c) 3.9 mM at 25 °C.

5. X-Ray Crystal Structures

Figure S 48. X-Ray crystal structures of **9**. (a) Top view and (b,c) side views. Thermal ellipsoids are shown at the 50% probability level. Solvent molecules, *tert*-butyl groups, and all hydrogen atoms are omitted for clarity.

Figure S 49. X-Ray crystal structures of 4Ni. (a) Top view and (b) side view of the single molecule. (c) Over view, (d) top view, and (e) side view of the π -stacked dimer. Thermal ellipsoids are shown at the 50% probability level. Solvent molecules, *tert*-butyl groups, and all hydrogen atoms are omitted for clarity.

Figure S **50**. X-Ray crystal structures of **10Ni**. (a) Top view and (b) side view of the single molecule. (c) Over view and (d) top view of the π -stacked dimer. (e,f) Side views of the packing structure. Thermal ellipsoids are shown at the 50% probability level. Solvent molecules, *tert*-butyl groups, and all hydrogen atoms are omitted for clarity.

Figure S 51. X-Ray crystal structures of **13**. (a) Top view and (b) side view of the single molecule. (c) Over view, (d) top view, and (e) side view of the π -stacked dimer. Thermal ellipsoids are shown at the 50% probability level. Solvent molecules, *tert*-butyl groups, and all hydrogen atoms are omitted for clarity.

Figure S 52. X-Ray crystal structures of [13]⁺. (a) Top view and (b) side view of the single molecule. (c) Over view, (d) top view, and (e) side view of the π -stacked dimer. Thermal ellipsoids are shown at the 50% probability level. Solvent molecules, *tert*-butyl groups, and all hydrogen atoms are omitted for clarity.

Figure S 53. X-Ray crystal structures of 14. (a) Top view and (b) side view of the single molecule. (c) Over view, (d) top view, and (e) side view of the π -stacked dimer. Thermal ellipsoids are shown at the 50% probability level. Solvent molecules, *tert*-butyl groups, and all hydrogen atoms are omitted for clarity.

Figure S 54. X-Ray crystal structures of [14]⁺. (a) Top view and (b) side view of the single molecule. (c) Over view, (d) top view, and (e) side view of the π -stacked dimer. Thermal ellipsoids are shown at the 30% probability level. Solvent molecules, *tert*-butyl groups, and all hydrogen atoms are omitted for clarity.

Compound	9	4Ni	10Ni
Empirical Formula	C74H77N5NiO, 0.3(C2H5OH), 0.41 (CHCl3)	C74H75N5NiO, 1.5(C6H5CH3)	C74H77N5Ni, CHCl3, CH3CN
Mw	1170.47	1243.27	1251.30
Crystal System	Triclinic	Monoclinic	Monoclinic
Space Group	<i>P</i> -1 (No. 2)	<i>P</i> 21/ <i>n</i> (No. 14)	<i>C</i> 2/ <i>c</i> (No. 15)
а	12.375(7) Å	21.181(7) Å	36.653(7) Å
b	16.832(10) Å	10.751(4) Å	21.504(4) Å
С	18.491(10) Å	29.482(10) Å	17.115(3) Å
α	110.391(8)°	_	_
β	98.378(15)°	100.128(9)°	98.833(7)°
γ	106.7253(10)°	_	_
Volume	3325(3) Å ³	6609(4) Å ³	13330(4) Å ³
Ζ	2	4	8
Density (calcd.)	1.169 g/cm ³	1.250 g/cm ³	1.247 g/cm ³
Completeness	0.974	0.992	0.990
Goodness-of-fit	1.092	1.029	1.047
R_{1} [I>2 σ (I)]	0.0837	0.0714	0.0768
wR_2 (all data)	0.2483	0.2075	0.2444
Solvent System	CHCl ₃ /EtOH	toluene/MeOH	CHCl ₃ /MeCN
CCDC No.	1469156	1469155	1469154

Table S 1. Crystal data and structure refinements for 9, 4Ni, and 10Ni.

Compound	13	[13]+	14	[14]+
	2(C74H73Cl2N5NiO), 1.5(CHCl3)	C74H73Cl2N5NiO,	2(C74H75Cl2N5Ni),	C74H75Cl2N5Ni,
		SbCl ₆ ,	1.5(CHCl3), C3H7OH,	SbCl ₆ ,
Empirical Formula		2(C6H14), CH2Cl2	H ₂ O	0.5(CH2Cl2)
Mw	2535.01	1767.68	3143.91	1540.91
Crystal System	Triclinic	Tetragonal	Monoclinic	Monoclinic
Space Group	<i>P</i> -1 (No.2)	<i>I</i> 41/ <i>a</i> (No. 88)	<i>C</i> 2/ <i>c</i> (No. 15)	<i>P</i> 2 ₁ / <i>n</i> (No. 14)
а	18.141(3) Å	57.941(6) Å	72.720(9) Å	27.888(11) Å
Ь	20.0791(19) Å	57.941(6) Å	13.4081(16) Å	9.758(3) Å
С	20.299(2) Å	10.6631(12) Å	33.152(4) Å	29.846(11) Å
α	62.0374(10)°	_	_	_
β	79.030(16)°	_	102.869(4)°	113.508(6)°
γ	87.782(14)°	_	_	_
Volume	6400.6(14) Å ³	35798(8)	31513(7) Å ³	7448(5) Å ³
Ζ	2	16	8	4
Density (calcd.)	1.315 g/cm ³	1.312 g/cm ³	1.325 g/cm ³	1.374 g/cm ³
Completeness	0.970	0.964	0.964	0.986
Goodness-of-fit	1.045	1.079	1.064	1.004
R_{1} [I>2 σ (I)]	0.0791	0.0992	0.0996	0.0826
wR_2 (all data)	0.2451	0.2692	0.2800	0.2363
Solvent System	CHCl ₃ /EtOH	CH2Cl2/hexane	CHCl ₃ / ⁱ PrOH	CH2Cl2/heptane
CCDC No.	1469157	1469158	1469159	1469160

Table S 2. Crystal data and structure refinements for 13, [13]⁺, [14] and [14]⁺.

6. Electrochemical Properties

Cyclic voltammograms and differential pulse voltammograms were obtained under the following conditions; solvent: CH₂Cl₂, electrolyte: 0.1 M *n*Bu₄NPF₆, working electrode: glassy carbon, counter electrode: Pt, reference electrode: Ag/AgClO₄, scan rate: 0.05 V/s (E > 0.27 V) and 0.50 V/s (E < 0.27 V).

Figure S 55. (a) Cyclic voltammograms and (b) differential pulse voltammograms of 10Ni.

Figure S 56. (a) Cyclic voltammograms and (b) differential pulse voltammograms of 4Ni at 2.2 mM.

7. ESR Spectra

ESR spectra for the toluene solution samples of [13]⁺ and [14]⁺ were measured by using JEOL JES-FA200 spectrometer at room temperature. Samples of [13]⁺ and [14]⁺ (0.049 and 0.047 mM in toluene, respectively) were degassed by freeze-pump-thaw cycles in quartz tube and sealed by frame. The observed ESR signals for were reproduced by a single gaussian signal without hyperfine structure of g = 2.0031 and 2.0029, respectively.

Figure S 57. Observed ESR spectrum of **[13]**⁺ (0.049 mM in toluene) at room temperature (*g* = 2.0031).

Figure S 58. Observed ESR spectrum of **[14]**⁺ (0.047 mM in toluene) at room temperature (*g* = 2.0029).

8. Temperature Dependent Magnetic Susceptibility

Magnetic susceptibility was measured for the powder sample of **[13]**⁺ and **[14]**⁺ with the temperature range from 2 to 350 K at 0.5 T magnetic field by a Quantum Design MPMS-2S instrument.

The simulated χT values of **[13]**⁺ were obtained by Bleaney–Bowers singlet-triplet model (Eq. 8) with fitted parameters of $f_1 = 0.50$, $f_2 = 0.15$, and $J_1/k_B = -30.4$ K.

$$\chi T = f_1 \frac{N_A g^2 \mu_B^2}{k_B [3 + \exp(-2J_1/k_B T)]} + f_2 \frac{N_A g^2 \mu_B^2}{2k_B}$$
(8)

The simulated χT values of **[14]**⁺ were obtained by Bonner–Fisher model (Eq. 9, 10) with fitted parameters of f = 0.94 and $J_1/k_B = -1.6$ K.

$$\chi T = f \frac{Ng^2 \mu_B^2}{k_B} \frac{0.25 + 0.14995x + 0.30094x^2}{1 + 1.9862x + 0.68854x^2 + 6.0626x^3} \quad (9)$$
$$x = \frac{|J_1|}{k_B T} \quad (10)$$

Figure S 59. Temperature dependent magnetic susceptibility of [13]+ (red) and [14]+ (black) by SQUID measurement. Circles: abserved χT value. Solid line: simulated.

9. DFT Calculations

All calculations were carried out using the *Gaussian 09* program.^[53] The geometry was obtained from X-ray structures. The calculations of **4Ni** and **7** were performed by the density functional theory (DFT) method with restricted B3LYP (Becke's three-parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional)^[54] level, employing basis sets 6-31G(d) for C, H, O, and N and LANL2DZ for Ni. The calculation of **[6Ni]**⁺ and **[13]**⁺ was performed by DFT method with unrestricted B3LYP level, employing basis sets 6-31G(d) for C, H, O, N, and Cl and LANL2DZ for Ni. *tert*-Butyl groups were replaced with hydrogen atoms to simplify the calculation.

Figure S 60. Energy diagrams and Kohn-Sham orbital representations of 4Ni and 7.

Figure S 61. Energy diagrams and Kohn-Sham orbital representations of [13]+.

Figure S 62. (a) Spin density distribution and (b) selected values of **[4Ni]**⁺ (isovalue: 0.001; the molecular geometry was optimized based on the X-ray crystal structure of **[13]**⁺).

10. Fluorescence Decay and Time-resolved TA Spectra

The time-correlated single-photon-counting (TCSPC) system was used for fluorescence decay profiles.^[55] The transient absorption spectra were obtained by using home-made femtosecond time-resolved transient absorption (fs-TA) spectrometer. The spectrometer consists of an optical parametric amplifier (OPA; Palitra, Quantronix) pumped by a Ti:sapphire regenerative amplifier system (Integra-C, Quantronix) operating at 1 kHz repetition rate and an optical detection system.^[55]

Compound	10H2	10Zn	$4H_2$	4Zn
Radiative decay rate (k _r) [s ⁻¹]	3.5 x 10 ⁷	5.2 x 10 ⁷	4.7 x 10 ⁷	5.9 x 10 ⁷
Non-radiative decay rate (kոr) [s ⁻¹]	$1.7 \ge 10^8$	$3.5 \ge 10^8$	$1.3 \ge 10^8$	3.1×10^{8}

Table S 3. Radiative and non-radiative rate constants of 10H₂, 10Zn, 4H₂, and 4Zn.

Figure S 63. Time-correlated single photon counting (TSCPC) decay curves of a) 10H₂, b) 10Zn, c) 4H₂, and d) 4Zn.

Figure S 64. TA spectra (left) and decay profiles (right) of a) 10H₂, b) 10Zn, c) 4H₂, and d) 4Zn in CH₂Cl₂ with photoexcitation at 685 nm for 4H₂ and 10H₂, and 649 nm for 4Zn and 10Zn.

Figure S 65. TA spectra (left) and decay profiles (right) of **13** in a) methyl cyclohexane, b) toluene, and c) CH₂Cl₂ with photoexcitation at 615, 640, and 640 nm, respectively.

Figure S 66. TA spectra (left) and decay profiles (right) of **14** in a) methyl cyclohexane, b) toluene, and c) CH₂Cl₂ with photoexcitation at 615, 640, and 620 nm, respectively.

Figure S 67. TA spectra (left) and decay profiles (right) of a) **[13]**⁺ and b) **[14]**⁺ in toluene with photoexcitation at 690 nm.

11. Z-Scan Curves in TPA Measurements

The two-photon absorption (TPA) cross-section were measured using the open-aperture Z-scan method with 130 fs pulses from an optical parametric amplifier (Light Conversion, TOPAS) operating at a 2 kHz repetition rate using a Ti:sapphire regenerative amplifier system (Spectra-Physics, Hurricane).^[56]

Figure S 68. Z-scan curves of a) **13**, b) **14**, c) **[13]**⁺, and d) **[14]**⁺ in toluene.

Figure S 69. One photon absorption (black solid line and left vertical axis) and two photon absorption (red line connecting red square symbols and right vertical axis) of a) **13**, b) **14**, c) **[13]**⁺, and d) **[14]**⁺

12. References

- [S1] SHELXL-97 program for refinement of crystal structures from diffraction data, University of Goettingen, Goettingen (Germany); G. Sheldrick, T. Schneider, *Methods Enzymol.* 1997, 277, 319. SIR-97 program for solution of crystal structures from diffraction data: A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 1999, 32, 115-119.
- [S2] a) I. Horman, B. Dreux, *Helv. Chim. Acta* 1984, 67, 754; b) C.-J. Wallentin, T. Wixe, O. F. Wendt, K.-E. Bergquist, K. Wärnmark, *Chem. Eur. J.* 2010, 16, 3994.
- [S3] G aussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc.: Wallingford, CT, 2009.
- [S4] a) A. D. Becke, J. Chem. Phys. 1993, 98, 1372; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1998, 37, 785.
- [S5] D. Shimizu, J. Oh, K. Furukawa, D. Kim, A. Osuka, Angew. Chemie Int. Ed. 2015, 54, 6613.
- [S6] P. Kim, S. Ham, J. Oh, H. Uoyama, H. Watanabe, K. Tagawa, H. Uno, D. Kim, Phys. Chem. Chem. Phys. 2013, 15, 10612.