Low-dose Actinomycin-D treatment re-establishes the tumoursuppressive function of P53 in *RELA*-positive ependymoma

Supplementary Materials

Supplementary Figure S1: (A) Representative pictures of a p53 positive and a p53 negative primary ependymoma after IHC staining. (B) Representative pictures of p53 IHC performed on mouse brain sections after orthotopical transplantation of EP1NS and SJ-BT57 cells in the posterior fossa. The EP1NS mouse tumours exhibit a moderate p53 staining, whereas SJ-BT57 tumours show a stronger p53 accumulation. (C) Immunohistochemistry of p53 *in vitro* of EP1NS (left) and SJ-BT57 (right) cells showing a strong p53 accumulation in SJ-BT57 and a moderate p53 signal in EP1NS cells. (D) Supratentorial *RELA*-positive ependymoma (n = 38; TMA cohort) show no significant association between p53 IHC positivity and relapse (left; P = 0.29) or mortality (right; P = 0.61) using *Fisher's exact test*.

Supplementary Figure S2: Protein analysis of primary ependymomas (PF-EPN-A and PF-EPN-B) and two samples of the EP1NS cells (duplicate) showing the absence of p14 in the EP1NS cells underlining the homozygous *CDKN2A* loss in the EP1NS (ST-EPN-RELA) cell line.

Supplementary Figure S3: Microscopic pictures of the EP1NS (A) and SJ-BT57 (B) cells after 96 hours Actinomycin-D treatment at different concentrations as labelled and the DMSO control showing the disruption of neurospheres after low- and high-dose treatment.

Supplementary Figure S4: MTS cell viability assay of 96 hours Actinomycin-D treatment of different cell lines of glioblastoma (A) and medulloblastoma (B, C) cells. ActD, Actinomycin-D; IC, Inhibitory Concentration.

Supplementary Figure S5: MTS cell viability assay of EP1NS (A) and SJ-BT57 (B) ependymoma cell lines after 96 hours treatment with different concentrations of Nutlin-3 showing an IC-50 of 1.2 µM for the EP1NS and a 8.3-fold higher IC-50 for the SJ-BT57 cells.

Supplementary Figure S6: Flow cytometric analysis with 7AAD and Annexin V staining of Actinomycin-D treated SJ-BT57 cells for 48 hours. The diagrams represent the DMSO control (A) as well as different concentrations of the agent including 0.1 nM (B), 0.5 nM (C), 1 nM (D), 5 nM (E), 10 nM (F) and 100 nM (G).

Supplementary Figure S7: FACS analysis of low-dose (5 nM) and high-dose treatment of the DAOY cells demonstrating apoptosis only after high-dose treatment of the cells.

Supplementary Figure S8: Flow cytometric analysis after 7AAD and Annexin V staining of EP1NS (left panel) and SJ-BT57 (right panel) cells following 48 hours treatment with Nutlin-3. Illustrated are the DMSO controls, 10 µM and 100 µM Nutlin-3 treatments of the SJ-BT57 and EP1NS cells respectively.

Supplementary Figure S9: Ingenuity pathway analysis of significant differentially regulated genes between high-dose (100 nM) and low-dose (5 nM) Actinomycin-D conducted separately for both cell lines, (A) SJ-BT57 and (B) EP1NS. The p53 pathway proved to be the top upregulated pathway after low-dose treatment with the cytostatic agent in the EP1NS cells.

Supplementary Figure S10: Protein analysis of DAOY medulloblastoma cells after 6 hours treatment with Actinomycin-D confirming the absence of upregulation of p53-related genes and demonstrating constant levels of p53 in a *TP53* mutated cell line.

Supplementary Figure S11: Western blot analysis of 5 nM Actinomycin-D treated SJ-BT57 (A) and EP1NS (B) cells for 2 hours, 6 hours and 8 hours as well as their respective DMSO controls of SJ-BT57 (C) and EP1NS (D) cells indicating time-dependent upregulation of p53-associated partners after exposure of the cells to 5nM Actinomycin-D, while no difference is observed after DMSO treatment.

Supplementary Figure S12: Protein analysis of ependymoma cells after 6 hours treatment with Nutlin-3 showing a dose-dependent response upon the agent in the EP1NS, yet no effect in the SJ-BT57 cells.

Patient	mutation	exon	AA change	Exon number	Genomic description	CpG site	Splice site	WT base	WT codon	Mutant codon	Effect	location
EPN-005	g.del11045/46CT	2	-	2-exon	g.del11045/46CT	no	no	-	-	-	-	supratentorial
EPN-026	c.447C > T	5	p.S149S	5-exon	g.12435C > T	no	no	С	TCC	TCT	silent	infratentorial
EPN-031	c.509C > T	5	p.T170M	5-exon	g.12497C > T	yes	no	С	ACG	ATG	missense	infratentorial
EPN-030	c.743G > A	7	p.R248Q	7-exon	g.13380G > A	yes	no	G	CGG	CAG	missense	supratentorial

Supplementary Table S1: p53 mutation in 130 primary tumors (4/130 = 3%)

Supplementary Table S2: p53-associated differentially regulated genes in both cell lines (EP1NS, SJ-BT57) including the fold change value of low- versus high-dose Actinomycin-D treatment

Both cell lines		SJ-B	SJ-BT57 EP1NS		S
Molecular Sub	otype	PF-E	CPN-A	ST-EI	PN-RELA
Gene	Fold change	Gene	Fold change	Gene	Fold change
MDM2	6.239	GADD45G	5.864	PUMA	19.263
PUMA	5.916	JMY	5.838	PIK3R1	16.355
PIK3R1	5.524	PML	5.663	GADD45A	12.124
PIK3R3	4.557	MDM2	5.118	FAS	9.713
SIRT1	4.173	TP53BP2	4.864	MDM2	8.535
GADD45G	4.139	SIRT1	4.133	PIK3C3	8.454
PIK3C3	4.125	PIK3R4	3.948	TP53INP1	7.043
GADD45A	4.112	MAPK14	3.894	CCNG1	6.426
TP53BP2	4.025	PIK3R1	3.283	PML	6.044
JMY	3.897	CHEK1	3.262	PIK3R3	5.588
PIK3R4	3.785	PIK3R3	3.167	TP53I3	5.45
PTEN	3.306	PTEN	3.078	C12orf5	5.127
TP53I3	3.232	PIK3C3	2.926	TNFRSF10B	4.976
PML	3.091	GNL3	2.749	DRAM1	4.455
MAPK14	3.075	PUMA	2.596	CDKN1A	4.28
GNL3	3.062	SNAI2	2.157	PTEN	4.251
FAS	2.949	PIK3CB	2.049	SIRT1	4.245
C12orf5	2.903	PIASI	2.015	TNFRSF10A	4.07
DRAM1	2.755			CSNK1D	3.982
SNAI2	2.711			PCNA	3.62
TNFRSF10B	2.54			GNL3	3.495
CHEK1	2.469			PIK3R4	3.49
CSNK1D	2.418			SNAI2	3.278
MED1	2.22			RRM2B	3.275
RRM2B	2.207			SCO2	3.226
				GADD45G	3.1
				ADCK3	3.073
				JMY	3.022
				MED1	2.997
				CCNK	2.857
				JUN	2.743
				HIF1A	2.558
				TP53BP2	2.517
				PMAIP1	2.507
				MAPK14	2.397
				RPRM	2.225
				PIK3CA	2.175