## **De-novo NAD<sup>+</sup> synthesis regulates SIRT1-FOXO1 apoptotic** pathway in response to NQO1 substrates in lung cancer cells

## SUPPLEMENTARY FIGURES AND TABLES



**Supplementary Figure S1: NQO1 substrates have no significant effect on FOXO3 and FOXO4 activation. A.** FOXO3 or FOXO4 mRNA levels. **B.** FOXO3 nuclear translocation.



Supplementary Figure S2: Activation of FOXO1 by TSA or  $\beta$ -lap is NQO1-dependent. A. FOXO1 mRNA levels. B. FOXO1 protein levels. C. NQO1 silencing efficacy D. FOXO1 mRNA levels. E. FOXO1 protein levels. F. FOXO1 mRNA levels in H596-NQO1<sup>+/+</sup> cells/H596-NQO1<sup>-/-</sup> cells. Data are shown as mean  $\pm$  SEM of three independent experiments, \*P<0.05, \*\*P<0.01 VS control; #P<0.05, #P<0.01, DIC or NQO1 siRNA pretreatment VS corresponding control, Student's *t* test.



Supplementary Figure S3: FOXO1 silencing reverses TSA and  $\beta$ -lap induced decrease of ATP. The amount of ATP was determined with Molecular Probes' ATP Determination Kit and relative ATP % was calculated with untreated cells as negative control. Data are shown as mean  $\pm$  SEM of three independent experiments, \*P<0.05, \*\*P<0.01 VS control; #P<0.05, #P<0.01, DIC or NQO1 siRNA pretreatment VS corresponding control, Student's *t* test.



Supplementary Figure S4: NQO1 substrates reduce SIRT1 mRNA level. A. SIRT1 mRNA level during time course of TSA exposure. B. SIRT1 mRNA level during time course of  $\beta$ -lap exposure. Data are shown as mean  $\pm$  SEM of three independent experiments, \*P<0.05, \*\*P<0.01 VS control, Student's *t* test.



Supplementary Figure S5: TSA or  $\beta$ -lap induced SIRT1 repression is NQO1-dependent. A. SIRT1 mRNA levels. B. SIRT1 and Ac-FOXO1 protein levels. Data are shown as mean  $\pm$  SEM of three independent experiments, \*P<0.05, \*\*P<0.01 VS control; #P<0.05, DIC pretreatment VS corresponding control, Student's *t* test.



Supplementary Figure S6: NAC combats against the effects of NQO1 activation. A. SIRT1 mRNA levels. B. NAD<sup>+</sup> levels and SIRT1 activity. C. PARP-1 and Ac-FOXO1 protein expression. D. Cytotoxicity. Data are shown as mean  $\pm$  SEM of three independent experiments, \*P<0.05, \*\* P<0.01 VS control; #P<0.05, ##P<0.01, NAC pretreatment VS corresponding control, Student's *t* test.



Supplementary Figure S7: NQO1 substrates induce PARP-1 activation. PAR polymer formation after TSA A. or  $\beta$ -lap B. Data are shown as mean  $\pm$  SEM of three independent experiments, \*P<0.05, \*\* P<0.01 VS control, Student's *t* test.



Supplementary Figure S8: PARP-1 inhibitor DPQ reverses TSA or  $\beta$ -lap induced cell death. A. SIRT1 mRNA. B. NAD<sup>+</sup> levels and SIRT1 activity. C. Ac-FOXO1 accumulation. D. Cytotoxicity. Data are shown as mean  $\pm$  SEM of three independent experiments, \*P<0.05, \*\* P<0.01 VS control; #P<0.05, ##P<0.01, DPQ pretreatment VS corresponding control group, Student's *t* test.



Supplementary Figure S9: De-novo NAD<sup>+</sup> synthesis regulates NQO1 activation induced cytotoxicity. A. Levels of the major intermediates involved in NAD<sup>+</sup> synthesis detected by LC-MS<sup>n</sup>. B. NAD<sup>+</sup> levels. C. Cytotoxicity. Data are shown as mean  $\pm$  SEM of three independent experiments, \*P<0.05, \*\*P<0.01 VS control, Student's *t* test.



Supplementary Figure S10: NQO1 substrates compensatively up-regulate NAD<sup>+</sup> synthetic enzymes. A. NAD<sup>+</sup> synthetic enzymes mRNA levels after TSA exposure. B. NAD<sup>+</sup> synthetic enzymes mRNA levels after  $\beta$ -lap. Data are shown as mean  $\pm$  SEM of three independent experiments, \*P<0.05, \*\* P<0.01 VS control, Student's *t* test.



Supplementary Figure S11: Tryptophan affects little on NQO1 substrates cytotoxicity. NQO1 substrates cytotoxicity with or without tryptophan pretreatment.



Supplementary Figure S12: LAT1 silencing increases NQO1 activation induced cell death. Cells were pretreated with LAT1 siRNA for 24 h and the efficacy was evaluated by western blot A. The NAD<sup>+</sup> level B. Cells were then treated with TSA (40  $\mu$ M, 24 h) or  $\beta$ -lap (5  $\mu$ M, 2 h withdraw, 12 h). The mRNA level and enzyme activity of SIRT1 C. The mRNA level of FOXO1 D. The protein levels of Ac-FOXO1 and SIRT1 E. Cytotoxicity F. and apoptosis test G. were performed after cells treated with TSA (40  $\mu$ M, 48 h) or  $\beta$ -lap (5  $\mu$ M, 2 h withdraw, 24 h). Data are shown as mean ± SEM of three independent experiments (\*P<0.05, \*\*P<0.01, TSA or  $\beta$ -lap treatment compared with control cells; #P<0.05, ##P<0.01, LAT1 siRNA treatment compared with scrambled siRNA treatment).

Supplementary Table S1: siRNA sequences

| siRNA siRNA sequences |                                                         |  |  |
|-----------------------|---------------------------------------------------------|--|--|
| FOXO1 siRNA           | AGUCUAAGCGCUCAAUGAACAUGCC;<br>GGCAUGUUCAUUGAGCGCUUAGACU |  |  |
| NQO1 siRNA            | AAAUGAUGGGAUUGAAGUUCAUGGC;<br>GCCAUGAACUUCAAUCCCAUCAUU  |  |  |
| SIRT1 siRNA           | UACAAAUCAGGCAAGAUGCUGUUGC;<br>GCAACAGCAUCUUGCCUGAUUUGUA |  |  |
| LAT1 siRNA            | CACAGACUGCCAGGCUCCUACGACA,<br>UGUCGUAGGAGCCUGGCAGUCUGUG |  |  |

| Gene      | Primer sequences                                  |
|-----------|---------------------------------------------------|
| FOXO1     | TCATGTCAACCTATGGCAG;<br>CATGGTGCTTACCGTGTG;       |
| FOXO3     | CATCATGGCAAGCACAGAGT;<br>CAGGTCGTCCATGAGGTTTT;    |
| FOXO4     | CAGCCAGTTCATCAAGGTTCAC;<br>CCACATATCCGCTTCTTCACG; |
| SIRT1     | TCAGTGTCATGGTTCCTTTGC;<br>AATCTGCTCCTTTGCCACTCT;  |
| PARP-1    | GGCACTCTTGGAGACCATGTCA;<br>AAGGCGAATGCCAGCGTTAC   |
| CD38      | GCTAAAACAACCACAGCGACTGG;<br>ACCCCGCCTGGAGCCCTA TG |
| NAMPT     | AAGAGACTGCTGGCATAGGA;<br>ACCACAGATACAGGCACTGA;    |
| QPRT      | CACGTGGCAGGCACGAGGAGG;<br>GAGGGAGAAATCAAGGGCTGG;  |
| IDO       | TCACAGACCACAAGTCACAGC;<br>AGTTGGCAGTAAGGAACAGCA;  |
| TDO       | CTTAGTAAAGGTGAAAGACGG;<br>GTCCATAAGAGAAGTCAGCA;   |
| KMO       | AGAGATGCGAGCACATGTCAA;<br>CCATGGTCTTCTCAAGCGGA    |
| y+LAT1    | GAAGGAGGAGCATCAGACCA;<br>CCCAGTTCCGCATAACAAAG;    |
| ATA2      | AACTACTCCTACCCACCAAG;<br>TAAGGTGGTGTTTATTGTTTC;   |
| homo-ACTB | AAGAGCTACGAGCTGCCTGAC;<br>TCCTGCTTGCTGATCCACAT    |

## Supplementary Table S2: Primer sequences for qRT-PCR

| Name of Antibody                                                 | Manufacturer               | Cat. No. |  |
|------------------------------------------------------------------|----------------------------|----------|--|
| SIRT1                                                            | Santa Cruz Biotechnology   | sc-15404 |  |
| FOXO1                                                            | Cell Signaling Technology  | 2880     |  |
| FOXO3                                                            | Cell Signaling Technology  | 2497     |  |
| Ac-FOXO1                                                         | Santa Cruz Biotechnology   | sc-49437 |  |
| NQO1                                                             | epitomics                  | S2173    |  |
| LAT1                                                             | Abcam                      | ab32070  |  |
| PARP-1                                                           | Cell Signaling Technology  | 9542     |  |
| TRAIL                                                            | Cell Signaling Technology  | 3219     |  |
| BIM                                                              | Cell Signaling Technology  | 2933     |  |
| FasL                                                             | BD pharmingen <sup>™</sup> | 556374   |  |
| BCL-6                                                            | Santa Cruz Biotechnology   | sc-858   |  |
| GAPDH                                                            | Shengxing                  | SAP1646  |  |
| Anti-rabbit IgG, HRP-linked Antibody                             | Cell Signaling Technology  | 7074     |  |
| Anti-mouse IgG, HRP-linked Antibody                              | Cell Signaling Technology  | 7076     |  |
| Goat anti-Rabbit IgG (H+L) Secondary<br>Antibody, FITC conjugate | Life Technologies          | 65-6111  |  |
| Anti-rabbit IgG Alexa Fluor <sup>®</sup> 594<br>Conjugate        | Life Technologies          | R37117   |  |

| Su | pp  | lementary | Table S | S3: | Details | of | antibodies | used i | n this | study       |
|----|-----|-----------|---------|-----|---------|----|------------|--------|--------|-------------|
|    | r r |           |         |     |         |    |            |        |        | ~ ~ ~ ~ ~ , |

| Compound                                 | m/z of precursor ion | m/z of product ion | DP | СЕ |
|------------------------------------------|----------------------|--------------------|----|----|
| NAD <sup>+</sup>                         | 664.3                | 136.3              | 95 | 60 |
| NAAD                                     | 665.2                | 665.2              | 87 | 5  |
| NMN                                      | 335.2                | 123.2              | 47 | 21 |
| NAMN                                     | 336.1                | 124.0              | 51 | 20 |
| NAM                                      | 123.2                | 80.2               | 55 | 28 |
| NADH                                     | 666.3                | 649.2              | 93 | 23 |
| TRP                                      | 205.2                | 90.9               | 44 | 53 |
| <sup>15</sup> N2 labeled TRP             | 207.2                | 91.9               | 44 | 53 |
| <sup>15</sup> N labeled NAD <sup>+</sup> | 665.3                | 136.3              | 95 | 60 |
| <sup>15</sup> N labeled NADH             | 667.3                | 650.2              | 93 | 23 |
| 2-ClAde                                  | 302.2                | 169.9              | 70 | 25 |

| Supplementary Table S4 | : Parameters of NAD <sup>+</sup> and NAD | * synthetic intermediates in MRN | I detection with LC-MS |
|------------------------|------------------------------------------|----------------------------------|------------------------|