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SUPPLEMENTAL METHODS 
 
 
Stimulus information, choice information, and their intersection 
 
In the following subsections, we review the measures that are used to quantify selectivity of 
neurons to stimulus, choice, and their intersection, and we comment on the strengths and 
weaknesses of the various measures. For simplicity, we assume that there are two possible 
stimuli and two possible choices; all of the measures except the one based on signal detection 
theory readily generalize to more. We will use an n-dimensional vector belonging to a set R,  

RÎr , to refer to a neural response quantified by a set of n response features, so
( )1,..., nr r r= . First we consider information about stimulus and choice separately, then we 

consider their intersection.  
 
Stimulus and choice information 
 
We start by describing various measures to quantify the relationship between response 
features and external variables. Because this treatment applies to both stimuli and behavioral 
choices, we use { }1,2x XÎ =  to refer to a generic external correlate; x refers either to 
stimulus, s  (belonging to a set { }1,2S = ), or choice, c  (belonging to a set { }1,2C = ). 
 
Fraction correct 
A simple quantification of sensory discriminability is the fraction correct – the fraction of 
times the stimulus decoded from a neural response feature on a single trial matches the actual 
stimulus on that trial (Quian Quiroga and Panzeri, 2009). Similarly, a simple quantification of 
choice discriminability is the fraction of choices decoded from a neural response that match 
the actual choice made by the animal. This measure depends on the choice we make for the 
decoding algorithm, of which there are many. Probably the most common one is a linear 
classifier (the decoding and decision boundaries drawn in Figs 3 and S1 are examples of it), 
which “draws” a linear boundary delimiting the parts of the response space that lead to 
decoding a particular value of the stimulus or choice. For two stimuli or responses, say x=1 or 
2, the boundary is specified by a direction, w, and a threshold, q, such that 
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Other methods, such as Bayesian decoding(Gelman et al., 2014), build a decoding rule that 
associates each neural response, r, with the value of the stimulus or choice, x. Often the 
decoded value is the one that maximizes the posterior probability, 
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where P(r|x) is the probability of response r given x, P(x) is the prior probability of stimulus 
or choice, and P(r) is the prior probability of response r.  
 
Decoding performance computed as fraction correct has several advantages over other, more 
complex, measures such as information-theoretic ones (Quian Quiroga and Panzeri, 2009): it 
is easy to compute, it has a very intuitive interpretation, and it is does not require a large 
amount of data to estimate accurately. It also has at least two disadvantages relative to 
information theoretic measures: it does not capture all ways in which a neural response may 
carry information (the fraction correct may be at chance level – the level one would predict 
without observing neural activity – even when the neural activity does convey some 
information about the stimulus or the choice), and it depends on the specific decoding 
algorithm used for the analysis. 
 
 
 
Area under the Receiver Operating Characteristic curve 
A measure based on signal detection theory computes the probability that a random sample 
from the distribution of one stimulus (or choice) is larger than a random sample from the 
distribution of the other stimulus (or choice). This measure in general requires a one-
dimensional response (but see (Haker et al., 2005; Safaai et al., 2013) for attempts to extend 
it to two-dimensional responses), which we’ll take to be w×r (in most applications the weight, 
w, picks out one of the components of r, but this is not necessary). In neuroscience, this 
measure is known as the neural sensitivity and choice probability for stimulus and choice 
selectivity respectively; see (Britten et al., 1996; Shadlen et al., 1996). The signal detection 
theory measure of discriminability of the external variable, x, based on w×r, is quantified by 
the Area Under the Receiver Operating Characteristic curve (AUROC, see ref. (Dayan and 
Abbot, 2001)), which is defined as 
 

': '
( | 2) ( ' | 1).AUROC p x p x

× < ×

= × = × =å å
r r w r w r

w r w r                     (S3) 

 
where, as above, x can take on the values 1 or 2. The AUROC can be understood in terms of 
a trade-off between the false alarm rate (the probability of choosing x=2 when x=1) and the 
hit rate (the probability of choosing x=2 when x is in fact equal to 2). In mathematical terms, 
it corresponds to the integral of the hit rate as a function of the false alarm rate, for all 
possible decision threshold values. AUROC is 0.5 if the conditional distributions of w×r 
given x=1 and x=2 are identical, and increases up to 1 as the two distributions become more 
and more separated. This measure is closely related to fraction correct under a linear decoder, 
and so has similar advantages and disadvantages: its advantages are data robustness and ease 
of interpretability; its disadvantages are that it does not capture all ways in which a neural 
response may carry information. In addition, its interpretation as a single-trial measure is not 
as direct as it is for fraction correct or mutual information. That’s because AUROC is the 
probability that the response of a random trial from one stimulus (or choice) is larger than the 
response in another random trial from the other stimulus (or choice). Turning the AUROC 
into a single trial measure thus requires the conceptual introduction of an “anti-neuron”. Such 
a neuron responds as if the non-presented stimulus (or choice) had been presented. For 
instance, if x=1 the anti-neuron responds as if x=2 (i.e. 𝑝 𝐰 ∙ 𝐫 𝑥 = 1) = 	𝑝 𝐰 ∙ 𝐫 𝑥 = 2), 
where 𝐫 is the response of the anti-neuron), and if x=2 the anti-neuron responds as if x=1 
(𝑝 𝐰 ∙ 𝐫 𝑥 = 2) = 	𝑝 𝐰 ∙ 𝐫 𝑥 = 1)). The AUROC then gives the probability that, in any 
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given trial, 𝐰 ∙ 𝐫 > 𝐰 ∙ 𝐫  if x=1 or 𝐰 ∙ 𝐫 < 𝐰 ∙ 𝐫  if x=2 (see (Britten et al., 1996)). This 
concept of antineuron does not necessarily have an immediate biological plausibility. 
Nevertheless, the AUROC increases monotonically as decoding gets easier, making it a good 
and often used measure of dependency.  
 
Generalized linear models 
An increasingly popular approach is to fit neural responses with generalized linear models. 
These are models that parametrize the neural response distribution as a function of a linear 
combination of behavioral and experimental variables – in our case, a linear combination of 
stimuli and choices. Once the models are fit to data, selectivity to stimuli and choice can be 
inferred from the weights linking those variables to the neural response (Park et al., 2014; 
Pillow et al., 2008). Large and statistically significant weights to a given variable imply a 
strong dependence on that variable. Statistically null weights to a variable imply that the 
neural response does not depend on it. The advantage of these models is that they have 
excellent convergence properties, and there are well-developed model regularization tools 
that allow fitting models to data even when there are a large number of external variables. 
The second advantage is an important one, as it means these model can be used to study the 
effect of large numbers of external variables on neural activity (Friedman et al., 2010). A 
disadvantage is that they make assumptions about the form of the response distribution; if 
those assumptions are wrong, the model may give misleading results. 
 
Information theoretic quantities  
Probably the most general measure of the relationship between the response and the stimulus 
or choice is the mutual information. Mutual information quantifies, in units of bits, the 
average reduction of uncertainty about which stimulus was presented (or which choice was 
taken) based on a single-trial observation of the neural response. Mutual information captures 
all possible relationships between a neural response and the stimulus or choice, including 
non-linear ones (Quian Quiroga and Panzeri, 2009; Shannon, 1948). Mutual information, 
I(X;R), between external variable x belonging to set X and neural response r belonging to set 
R  is defined as 
 

2
( | )( ; ) ( ) ( | ) log
( )x

P xI X P x P x
P r

=åå
r

rrR
  
               (S4) 

 
where P(x), P(r|x) and P(r) were defined above. The mutual information is zero only when 
the response is independent of x, as in that case no knowledge about x can be gained by 
observing the response. Unlike other simpler correlation measures, information captures all 
dependences between the response and the stimulus or the choice. Its main disadvantage is 
that it is extremely hard to compute from data (Panzeri et al., 2007). 
 
 
Intersection information 
 
Statistical intersection information 
The above measures focus on the stimulus and choice separately. However, as discussed in 
the main text, they don’t provide a direct measure of whether response features useful for 
decoding the stimulus are also used by the animal to make decisions. Here, we follow (Zuo et 
al., 2015), to describe a recently developed measure for it, which we refer to as the 
Intersection Information, denoted II. Conceptually, we can think of it either as the amount of 
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sensory information that is read out in a single trial from a given neural response feature, or 
the effect on task performance of the sensory information carried by the feature.  
 
The proposal of (Zuo et al., 2015) to empirically quantify intersection information from data 
tries to capture the contribution of neural features to task performance based on the idea that 
intersection information should be high when the accuracy of the sensory information carried 
by the neural feature co-varies with the correctness of the behavioral choice. That is, high 
intersection information is found when neural response feature, r, carries information about 
both the stimulus and choice, and, importantly, the choice is likely to agree, trial by trial, with 
the information that the neural response r provides about the stimulus. Therefore, a measure 
of intersection should be based on the probability that a correct behavioral choice co-occurs 
on a trial-by-trial basis with a correct representation of the stimulus by the neural response. 
This measure can be computed, from the probability of the animal’s choice 𝑐  and the 
stimulus ˆ ( )ˆs s= r  decoded from neural activity r conditional to the presentation of stimulus s: 
 

																																𝑝 𝑠, 𝑐 𝑠 =
1

𝑝(𝑠) 𝑝(𝑠, 𝐫, 𝑠, 𝑐)
𝐫

=
1

𝑝(𝑠) 𝑝 𝑠 𝐫 𝑝 𝑠, 𝐫, 𝑐 .
𝐫

																		(S5)	 

 
   
Note that the two distributions ˆ( | )p s r  and ( , , )p s cr  have slightly different interpretations. 
The first, ˆ( | )p s r , depends on the decoding algorithm and so is up to the experimenter; it 
contains, therefore, assumptions about sensory coding. This probability could be a 
deterministic decoder, such as Eq. (S1), with x=s, or it could be probabilistic – either a close 
approximation to ( | )p s r  as measured from data, or a parametric fit to a model. The second, 
( , , )p s cr , must correspond to the true distribution – the one measured from data. The 

decomposition on the right hand side of Eq. (S5) holds because by construction 𝑠 is assumed 
to depend exclusively on the neural response 𝑟 and not on the stimulus s.  
  
To evaluate the statistical significance of intersection information, we have to compare
ˆ( , | )p s c s  to the “chance” distribution ˆ( , | )np s c s  – the distribution we would obtain under 

the null hypothesis that there is no relationship between the accuracy of the neural 
representation of the stimulus in a trial and the correctness of the choice made by the animal 
in that same trial. This corresponds to a null hypothesis distribution ˆ( , | )np s c s  with the same 
distribution of decoded stimuli as the data (that is, ˆ ˆ( | ) ( | )np s s p s s= ) and with the same 
behavioral performance for each stimulus as the data ( ( | ) ( | )np c s p c s=  ), but for which the 
decoded stimulus is independent of choice at fixed stimulus: 
 
                                                        ˆ ˆ, | ) ( | ( |( ) ).n s c s p s s p c sp =                                         (S6) 
 
 
The null-hypothesis expression in Eq. (S6) reflects the fact that when no stimulus information 
carried by r is used for the task, the probability of the animal making a correct choice does 
not depend on whether or not the stimulus was decoded correctly on that trial, but depends 
only on the conditional probability of each choice given the stimulus.  
 
Importantly, ˆ( , | )p s c s  in Eq. (S5) and its null-hypothesis version in Eq. (S6) are both 
properly normalized probability functions. Thus, we can use these probabilities to define an 
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intersection measure.  
 
Our simple definition of intersection information II is the probability that the stimulus is 
decoded correctly and the animal makes the correct choice (where, as mentioned above, the 
correct association between presented stimulus and choice is experimenter-defined, and 
learned by the animal). In other words, intersection information, II, is the probability that the 
stimulus is decoded correctly given neural features, r, and that the correct choice is made on 
the same trial. Thus, this quantity measures the impact of the neural features on task 
performance, and it has the following expression: 
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where we assumed, without loss of generality, that the stimuli and choices are numbered so 
that the correct choice associated with stimulus s=i is choice c=i. 
 
 
The “chance” level for II is obtained by substituting 𝑝5 (Eq. S6) instead of 𝑝 in Eq. S7: 
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A value of II higher than chance means that there are more instances of trials with both 
correct decoding and correct choice than could be expected by chance (thus, chance 
intersection is the amount of intersection achieved when correctness of choice in a trial does 
not depend on the correctness of sensory information carried by the features in that trial). 
Furthermore, II is bounded from above by the behavioral and decoding performance, 
measured respectively as fraction of correct-behavior trials and trials where the stimulus was 
correctly decoded from the neural feature r: 
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and 
                           

1,2 1,2 1,2
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Thus, this intersection information is a reasonable quantification of the total impact on task 
performance of the neural response. A high value requires both high values of sensory 
information and near-optimal readout (the maximal value of II is reached when the sensory 
code is faultless and the readout uses all the sensory information). The values of II and its 
chance level for the three examples presented in Fig. 3 are shown in Fig. S1.  
 
Ref. (Zuo et al., 2015) elaborated that a neural code that affects behavior is also expected to 
lead the animal to make a behavioral erroneous choice when the stimulus decoded by neural 
activity is the wrong one (In Ref. (Zuo et al., 2015) these trials were termed the trials carrying 
misleading sensory information). Thus one possible way to further extend the definition of II 
is to consider separately as an additional quantification (Zuo et al., 2015), not only the sum 
over trials with correct decoding and correct behavioral choice (i.e., trials with c=s= ŝ =i as in 
Eq (S7)) but also the sum over trials with incorrect decoding and incorrect behavioral choice 
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(i.e. trials with s=1, ŝ=c=2, and trials with s=2, ŝ=c=1). The intersection measure computed 
over the unfaithful trials is useful to further test the statistical association between sensory 
information in a neural feature and behavior. In cases when two neural features carry equal 
amounts of intersection information only on the correctly decoded and behaviorally correct 
trials, neural features with higher intersection information in incorrectly decoded and 
behaviorally incorrect trials make a stronger case for a candidate neural code, as these feature 
show a tighter association with behavioral choice over all trials.  
 
 
Another normalization for intersection information measures, which was also introduced in 
(Zuo et al., 2015), is a quantity that we here denote as the fraction of intersection information, 
shortened as fII. It is the fraction of correctly-decoded trials on which the decoded stimulus 
coincides with that reported by the animal. Unlike II, fII does not depend on the fraction of 
times the stimulus is decoded correctly from neural feature r; it is given by 
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The “chance” level of fII is obtained by replacing  𝑝 in Eq. (S11) with  𝑝5 of Eq. (S6) and, as 
demonstrated by the following equation, simply equals the average fraction of behaviorally 
correct trials: 
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Two cases with the same alignment between decoding and decision boundary but different 
amounts of stimulus information would therefore have the same value of fII, but a different 
value of II (the case with larger stimulus information would give larger II). Thus, fII is more 
sensitive to the optimality of the readout – in the linear case, the alignment between the 
decoding and readout boundaries – than to the total impact of the neural feature r  on task 
performance.  
 
These intersection information measures can be used to rank features according to their 
potential importance for task performance. Importantly, the intersection information is low if 
a neural response feature has only sensory information and not choice information, or vice 
versa, or if the sensory information and choice information do not overlap. 
 
Understanding the relationship between the neuroscience question and the measure of 
intersection is an open area of research. Here we introduced the concept of intersection 
information from an empirical point of view, and we discussed its practical and conceptual 
importance for guiding future studies of the neural code. We expect the computational 
neuroscience community to evaluate this concept with rigor and in detail, and come up with 
optimal measures of it in the near future.  
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Interventional intersection information 
The intersection quantities defined in a statistical way in the previous sections were designed 
to be computed from naturally evoked responses. The generalization of these statistical 
quantities trivially extends to responses generated interventionally. Here we spell this out for 
the convenience of our readers.  
 
Let r be the neural features generated by intervention in one trial, and let c be the choice 
taken by the animal in response to this intervention. In brief, the interventional intersection 
quantities are obtained from the Eqs. (S7-S12) of the statistical intersection measures by 
replacing the statistical probability, ( | )p c r , of choice given neural feature obtained with 
natural responses with the analogous interventional probability of choice given neural feature 
r obtained under intervention. In the following, we discuss the meaning and implications of 
different ways of computing intersection information with intervention.  
 
The simplest interventional intersection measure that could be computed from intervention 
experiments is the interventional fraction of intersection information, fII, which (exactly as in 
the statistical case, Eq. (S11)) is defined simply as the fraction of intervention trials in which 
the behavioral choice reports the stimulus that would be decoded from the response, r, 
elicited by intervention. However, the interventional fII, like its analogous statistical measure, 
does not take into account whether the stimulus information (that is, fraction of correctly 
decoded trials) of the considered neural feature is small or large under naturally-evoked 
conditions. This is a problem if we want to be able to rank, after an interventional 
experiment, neural features in terms of their contribution to task performance (there could be 
two neural features that are similarly optimally read out according to fII, but one of the 
features may have higher sensory information and so have a larger impact on behavioral task 
performance). 
 
To measure an interventional analogue of II, we need to consider how likely it is that the 
evoked pattern, r, in natural conditions would appear for each stimulus. Thus, when 
calculating an interventional II, we need to use the distribution p(r|s) of neural features given 
the stimulus, s, measured under natural conditions. This can be achieved by summing over all 
tested elicited patterns r, and weighting the probabilities of ŝ  and c observed with each value 
of the interventionally evoked neural feature r with their natural probability p(r|s), as in Eqs. 
(S7-S12).  
 
This consideration emphasizes that computing the intervention intersection and evaluating 
the causal impact of a neural code demands a statistical analysis of the probability of 
naturally occurring patterns during the presentation of stimuli during the task. This is a key 
point of the framework we propose.  
 
 
 
Limitations of measuring separately sensory and readout information 
without measuring their single trial intersection 
 
To complement the material provided in the main text and in the above Supplemental 
Information sections, in this section we spell out more examples of the potential dangers of 
measuring separately sensory and readout information, without measuring their single trial 
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intersection. In particular, we consider examples of null (chance-level) intersection between 
sensory and information readout even when the neural features correlate with both choice and 
stimulus.  
 
One case in which a feature (or set of features) r may spuriously appear as both choice-
informative and stimulus-informative without truly contributing to the animal’s choice and 
performance is when the choice selectivity of r is inherited because r, although by itself it 
does not affect choice, inherits choice selectivity by being correlated with a variable that 
affects choice (Ince et al., 2012). One possibility is the case plotted in Fig. 3B and S1B. In 
this case, variable r2 does not affect choice (the decision boundary is vertical); however r2 
correlates (because of signal correlations) with r1, which instead affects choice. As a result, in 
this example r2 has spurious choice information (as shown in Fig S1B by the fact that the 
marginal probabilities of r2 are choice dependent). As detailed in the main text, this spurious 
choice selectivity can be revealed statistically and interventionally by studying the joint 
intersection information of the two variables and comparing it to the intersection information 
carried by each variable alone.  Another case when this confound may arise is if the 
selectivity of r to choice appears because r depends on the stimulus even if it has no effect on 
choice, but the choice correlates with the stimulus. This may happen for example if the 
animal performs the task above chance level (implying that there is a correlation between the 
presented stimulus and the animal’s choice) without relying on the information in the 
considered features r. This confound of spurious choice selectivity cannot be ruled out by 
measuring separately the neural feature’s information about choice and stimulus, see (Ince et 
al., 2012). However, our measure of intersection information II (Eqs. S7,S11) could rule out 
this confound because the chance level intersection information (Eq S8) corresponds 
precisely to a “null hypothesis” case of correctness of choice non depending on correctness of 
feature’s decoding (see Eq.S6 for the null hypothesis probability ˆ,( | )n sp c s ). Thus, within 
the intersection information framework this confounder may be ruled out simply by 
comparing II to its chance level. For traditional sensory and choice information measures, 
this confounder may be ruled out by conditioning the measure on the stimulus, as this 
removes the effect of any shared variability between neural features and choice that may be 
due only to separate covariation of choice and neural features with stimulus  (Ince et al., 
2012). 
 
A popular method to measure whether sensory information is transmitted to the readout 
consists in measuring the correlation of the “psychometric” behavioral performance of the 
animal, for example the fraction of correct discriminations as a function of a stimulus 
parameter, with the “neurometric” stimulus discriminability obtained by decoding single-trial 
responses (Newsome et al., 1989; Romo and Salinas, 2003). This measure is extremely useful 
and it has led to important results, for example about the role of timing in neural coding 
(Engineer et al., 2008; Luna et al., 2005; Newsome et al., 1989; Romo and Salinas, 2003). 
However, given that the neurometric to psychometric performance correlation does not 
consider the within-the-same trial relationship between the sensory signal carried by the 
neural features and the animals’ choice (but rather compares them only across a whole set of 
trials), it potentially suffers from similar confounders (discussed in the main text) that affect 
separate measures of choice and stimulus. In Fig. S1A, we show a case with no intersection 
information where the stimulus discriminability based on the two neural features 1 2( , )r r  (i.e. 
the neurometric performance of features 1 2( , )r r ) closely correlates with the psychometric 
performance of the animal. In this example, features 1 2( , )r r  also have significant choice 
probability (Britten et al., 1996) in the sense that the choice co-varies with the neural features 
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on a trial-by-trial basis at fixed (or uninformative) stimulus. This situation arises because the 
behavioral performance is determined by a third neural feature 3r  that has similar stimulus 
tuning to 1r  and 2r , and fluctuations along the dimension of 1 2( , )r r  that influences behavior 
are statistically independent from those along the dimension which encodes the stimulus.  In 
this example, however, features r1,r2 have null (chance-level) intersection information 
because there are no noise correlations between all the features (so r3 is independent of r1 and 
r2 conditioned on the stimulus). This implies that the single trial fluctuations of the stimulus 
information in r1,r2 do not influence choice in the same trial. 
 
To illustrate this quantitatively, we build on the tasks we described in the main text. There are 
two stimuli that lead to different response distributions. However, we add another parameter, 
called stimulus signal intensity (shortened to signal intensity) and denoted r in the following 
equations, that controls task difficulty by spreading out or compressing the response 
distributions (Fig. S1A3-A5). In the green vs blue stimulus exemplified in our paper, signal 
intensity could be the contrast of the blue or green stimulus with respect to background, so 
that zero signal intensity mean that the stimulus is invisible from the background and 100% 
signal intensity means that the stimulus is very well visible from the background. We’ll use 
the convention that the identity of the stimulus is encoded in the sign of r : say r <0 for the 
green stimulus, s=1, and r >0 for the blue stimulus, s=2, or 

( ) 1s J r= +  
where (·)J  is the Heaviside step-function. We consider three neural response features 1r , 2r  
and 3r  (Fig. S1A1), that may represent, for instance, the time of first spike of two neurons ( 1r  
and 2r ) and their total firing rate ( 3r ). We assume, for concreteness, that the neural response 
to a stimulus s  (with intensity r ) is given by the Gaussian conditional probability 
distribution 
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are the mean and the covariance matrix of the distribution, respectively, and s + , s-  and 3s  
are arbitrary parameters controlling sensory encoding noise. This immediately implies that  
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So 1r , 2r  and 3r  all have similar stimulus tuning, and 1r  and 2r share noise correlations. If we 
define 
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-

= +
= -

 

we have that r+  and r- are conditionally independent given the stimulus, i.e.
| ) ( ), | ) ( |(p pr r rr pr r r+ - + -= , and  
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Now, we suppose that the binary behavioral choice of the animal is given by  
3( ) ( ) 1c r rJ -= + +r  

where c=1 represents “left choice” and c=2 represents “right choice”. The two neural features 
1 2( , )r r  have higher-than-chance choice information and choice probability, as fluctuations in 
r-  will bias the choice on a trial-by-trial basis at fixed stimulus or for an uninformative 
stimulus with 0r = .  
 
From the definitions above, and considering that 2 2

3 3 )( ,) (r r r s s- - ++ N , we can compute 
the probability of a possible choice (c=2) given the stimulus: 
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where (·)F is the cumulative Gaussian function. Assuming that 2c =  is the correct choice for 
0r > , Eq. (S16) gives the probability that the animal performs correctly, i.e. the 

psychometric performance of the animal in the task (Fig. S1A2). 
 
Using the same approach, we can compute the neurometric performance of the 1 2( , )r r  neural 
features, defined as the probability of correct stimulus decoding using an ideal decoder. If we 
assume the green and blue stimuli to be equiprobable ( ( 0) ( 0) 1/ 2p pr r< = > = ), then by a 
symmetry argument the optimal decoder is that which operates along the sensory boundary 

0r+ =  indicated in Figure S1A3-5: ˆ ( ) 1s rJ += + . The probability of correct decoding can be 
then computed directly from Eq. (S15): 

                      ( ( 0 20 | 0) | 0)p r p r rr r
s+ +

+

æ ö
< < = > = ç ÷

è
F

ø
>                         (S17) 

By comparing Eqs. (S16) and (S17), it is apparent that if 
2

2
32

4
, ss s s s+

+ - -> = -  

then the neurometric curve for the 1 2( , )r r  code coincides with the psychometric curve of the 
experiment (Fig. S1A2), even though the intersection information of the neural features 
1 2( , )r r  is at chance level, as the faithfulness of the neural representation of the stimulus is 
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conditionally independent of the choice given the stimulus (see Eqs. (S7) and (S8)). Indeed, 
the faithfulness of stimulus encoding only depends on r+ , while the behavioral choice only 
depends on 3r r- + , and 3 3( , | ) ( | ) ( | )p r r r p r p r rr r r+ - + -+ = + . 
 
Patterned illumination to causally test hypothesis on the intersection 
between sensory information and readout 

To be informative about the neural code, ideally interventional approaches should achieve 
cellular resolution and high temporal precision in large subpopulations of cells several 
hundred microns into the brains of mammals (if complex behaviors are to be investigated, 
rodents or non-human primates models must be used). This is especially important for 
directly testing hypotheses about the relevance of a particular neural feature (e.g., spike 
timing or spike count) in particular subsets of neurons. In experimental animal models, 
optogenetics (Boyden et al., 2005; Lima and Miesenbock, 2005; Nagel et al., 2003; 
Zemelman et al., 2002; Zhang et al., 2007; Zhang et al., 2010) has become the technique of 
choice to perturb electrical activity in genetically-targeted cellular subpopulations. Most 
functional optogenetic studies in living animals have so far used the wide field approach as in 
Fig. 8C (Adamantidis et al., 2007; Beltramo et al., 2013; Gradinaru et al., 2009; Kravitz et al., 
2010; Tsai et al., 2009; Wimmer et al., 2015), which does not allow high spatial resolution 
within the illuminated region. However, recent optical developments now allow precise 
spatial targeting (Andrasfalvy et al., 2010; Baker et al., 2016; Papagiakoumou et al., 2010), 
an approach that is called patterned illumination; see Fig. 8D (Bovetti and Fellin, 2015). 
Patterned illumination is an umbrella term, and includes different approaches (see below) to 
deliver light to precise spatial locations. When combined with the light-sensitive optogenetic 
actuators, patterned illumination can reach near cellular resolution in perturbing electrical 
activity (Packer et al., 2015; Papagiakoumou et al., 2010; Rickgauer et al., 2014), thus 
promising to be a powerful tool for investigating the neural code driving behavior. 
Importantly, patterned illumination has recently been combined with laser scanning 
functional imaging in vivo, providing a unique all-optical tool for reading and perturbing 
neuronal circuits (Carrillo-Reid et al., 2016; Packer et al., 2015; Rickgauer et al., 2014; Szabo 
et al., 2014). We will briefly describe here the main technical advancements that have been 
developed to achieve patterned illumination in the mammalian brain, and discuss their main 
advantages and limitations. A more technical description of the techniques underlying 
patterned illumination and their combination with light-sensitive opsin actuators can be found 
in (Bovetti and Fellin, 2015; Emiliani et al., 2015; Grosenick et al., 2015).  
 
In general, patterned illumination can be performed in combination with both single- (Lutz et 
al., 2008; Szabo et al., 2014) and two-photon excitation (Andrasfalvy et al., 2010; Packer et 
al., 2012; Papagiakoumou et al., 2010; Papagiakoumou et al., 2013). Although single-photon 
patterned illumination might present some advantages for stimulation with fast refresh rates 
(> 1 kHz using, for example, digital micromirror devices), and is compatible with the 
excitation of most available opsins, it is unlikely to achieve single-cell resolution in deep 
regions of the mammalian brain. That’s because out-of-focus light activates cellular 
structures (cell bodies or processes) above and below the target neuron. In addition, scattering 
limits the applicability of single-photon patterned illumination in turbid mammalian brain 
tissues. In contrast, two-photon patterned illumination effectively restricts opsin activation in 
the axial direction (Helmchen and Denk, 2005), assuring cellular resolution hundreds of 
microns deep within the brain tissue. Patterned two-photon optogenetic illumination can be 
performed by scanning a diffraction limited spot over a given region of interest (Carrillo-Reid 
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et al., 2016; Mohanty et al., 2008; Prakash et al., 2012; Rickgauer and Tank, 2009), by 
providing simultaneous illumination on extended shapes in combination with temporal 
focusing (Andrasfalvy et al., 2010; Papagiakoumou et al., 2010), or by a combination of light 
patterning and scanning (Packer et al., 2012; Packer et al., 2015; Rickgauer et al., 2014).  
 
In the scanning approach, cells located within a large field of view (e.g., ~300 µm x 300 µm 
with a 40X objective or ~600 µm x 600 µm with a 20X objective), potentially containing 
hundreds of neurons, can be individually addressed. However, this approach does not allow 
the simultaneous illumination of different cells, and is limited in its time resolution because 
the sequential scanning mode takes time to address all the target cells. The use of acousto-
optic deflectors (Huang et al., 2016; Nadella et al., 2016) may decrease the time necessary to 
move from one location to the other, but efficient manipulation of the target neuron depends, 
among other things, on the photo-current rise-time, and therefore on the illumination dwell 
time. If long dwell times are needed to obtain efficient opsin activation, fast scanning 
methods might not represent the ultimate solution for stimulating many cells in short time 
windows. Regardless of these limitations, it has been suggested that using optimized spiral 
scanning approaches with small dimension galvanometric mirrors and activation of the 
excitatory opsin C1V1 (Yizhar et al., 2011), approximately 50 neurons can be sequentially 
addressed in 100 ms (Grosenick et al., 2015). 
 
Patterned illumination using extended two-photon shapes (for example, using liquid crystal 
spatial light modulators, LC-SLMs) (Dal Maschio et al., 2010; Nikolenko et al., 2008; 
Papagiakoumou et al., 2010) leads to the simultaneous illumination of larger sample areas. 
Compared to the scanning of diffraction limited spots, it might potentially be more effective 
in driving neural cells suprathreshold because it allows the simultaneous illumination of a 
larger portion of the target cell and thus it leads to the synchronous activation of a higher 
number of light-sensitive molecules. Moreover, in most configurations this method allows 
truly simultaneous illumination of multiple neurons. The main limitations include: the 
addressable area within the field of view is smaller than that of the scanning approach, the 
number of cells that can be simultaneously illuminated is limited by the total available laser 
power and tissue heating (Podgorski and Ranganathan, 2016). When series of different 
patterns need to be projected, the refresh rate of current LC-SLMs is limited (in the order of 
60-500 Hz). Although a direct demonstration of the applicability of this technology (using 
two-photon excitation) to stimulate cells in living mammals still awaits experimental 
validation, based on published work in brain slices (Begue et al., 2013; Papagiakoumou et al., 
2010) it is reasonable to hypothesize that about 10 neurons could be simultaneously 
stimulated in less than 40 ms when channlerhodopsin-2 is used. The use of other opsins (e.g., 
ReaChR) combined with low repetition rate laser sources may increase the number of 
addressable cells while minimizing the latency to action potential (AP) discharge and the AP 
jitter (Chaigneau et al., 2016). 
 
The combined scanning mirrors and LC-SLM patterned illumination approach might achieve 
activation of multiple neurons in large fields of views. For example the LC-SLM could be 
used to shape two-photon light into an extended area corresponding to the dimension of a cell 
body of a neuron, and galvanometric mirrors could be used to deflect this shape over multiple 
cells. In a similar way, an extended disk of two-photon excitation could be moved across 
different neurons (Rickgauer et al., 2014). Alternatively, an LC-SLM can be used to project 
small excitation spots centered on multiple cells and the galvanometric mirrors could be used 
to scan the spots on the extended area corresponding to the cell body (Packer et al., 2012; 
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Packer et al., 2015). Using this approach, 10-20 neurons have been simultaneously stimulated 
in 11-34 ms (Packer et al., 2015). 
 
To summarize, multiple approaches have been proposed to perform patterned two-photon 
illumination with near cellular resolution in living rodents. Current experimental approaches 
can manipulate in vivo a relatively small number (few tens) of cells with temporal resolution 
of few ms (Bovetti and Fellin, 2015; Emiliani et al., 2015; Grosenick et al., 2015). Much 
effort is currently devoted to combining patterned illumination with neurophysiological 
measurements in behavioral experiments, but the validity of this approach still awaits 
experimental demonstration. For example, it is still an open question whether stimulating a 
limited number of neurons will be sufficient to drive a behavioral response. Success in this 
task will most likely go through the optimization of stimulation protocols and the 
development of new technical solutions for efficiently manipulating the activity of hundreds 
to thousands of cells in three dimensions while maintaining high spatial and temporal 
resolution (see also main text). 
 
 
Details of the simulations implemented in this article 
 
The simulations in Figs 3 and 5 and in Fig. S1B were implemented by generating, for each of 
the two simulated stimuli s=1 and s=2, points in the r1, r2 space according to a Gaussian 
distribution ( , )µ ΣN with covariance matrix 

0.2 0.005
0.005 0.2

-æ ö
= ç ÷-è ø

Σ  

and mean vector µ  = (0.4, 0.4) for s=1 and µ= (0.6, 0.6) for s=2. The boxes in the two-
dimensional plots of the 1 2( , )R R  space in Figs. 3,4 and 6 have axes that span the range 
between 0 and 1 for each of the two neural features r1,r2. The simulations plotted n=100 trials 
per stimulus in the 1 2( , )R R  plane, but the marginal probabilities along the r1 and r2 axes of 
Fig. S1B were computed with n=106 simulated trials per stimulus.  
 
The simulations in Fig.S1A were generated according to the distribution for 1 2( , )r r  defined 
by Equations S13 and S14, with 0.18s+ = , 0.07s- = and 3 0.1s = , and s  set to either ±0.01 
(S1A3), ±0.06 (S1A4) and ±0.2 (S1A5). These parameters were chosen so that the neurometric 
and psychometric functions plotted in Fig. S1A2 did not completely overlap, for display 
purposes. The boxes in the two-dimensional plots of the 1 2( , )r r space in Figure S1A have 
axes that span the range between -0.5 and 0.5 for each of the two neural features r1 and r2.  
As in Figure 3 and Figure S1B, 100 trials per stimulus were plotted. 
 
Matlab code for the generation of these figures is available through Zenodo and GitHub 
(https://doi.org/10.5281/zenodo.191810). 
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Supplemental Figure S1 
 

Supplemental Figure S1 (related to Figure 3): further illustrations of intersection 
information.   
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A) example of a two features 1 2( , )r r  with null (chance-level) intersection information that has 
significant choice probability and whose neurometric function correlates well with the 
experiment’s psychometric function. The signal intensity of the stimulus is varied 
parametrically. A1) Simple schematic illustrating the dependence between stimulus, neural 
response and behavioral choice. The stimulus is encoded in both 1r and 2r  as well as in a third 
feature 3r , and the behavioral readout is based on a combination of 1 2r r-  and 3r  (see text for 
details). The stimulus tuning (trial-averaged response) of 1r  and 2r  is identical, and similar to 
that of 3r . A2) Comparison of the neurometric curve of the two features 1 2( , )r r (black; defined 
as the probability of correct decoding by an ideal stimulus decoder as a function of signal 
intensity, using 1r  and 2r ; Eq. (S17) and the psychometric curve for the experiment (red; 
defined as the probability of correct behavioral choice as a function of signal intensity; Eq. 
S16). A3-5) scatter plot of neural responses for different values of signal intensity, generated 
according to the distributions defined by Eqs. (S13) and (S14). Graphical conventions are as 
in Fig. 3A1, 3B1 and 3C1. Dashed black and red lines represent the sensory and decision 
boundaries, respectively. The region below the sensory boundary corresponds to responses 
that are decoded correctly from features 1 2( , )r r  if the green stimulus is shown; the region 
above the sensory boundary corresponds to responses that are decoded correctly if the blue 
stimulus is shown. Filled circles correspond to correct behavioral choices; open circles to 
wrong choices. As the stimulus signal intensity increases (from ±0.01, to ±0.06 and to ±0.02 
respectively in Figure S1A3, S1A4 and S1A5), responses to green and blue stimuli become 
further apart, and the number of error trials decreases. Notice, however, that there is no 
single-trial link between the neural representation of a stimulus and the behavioral choice, as 
the probability of behavioral error in a given trial is always unrelated to its position relative to 
the sensory boundary. B) This figure, which is identical to Fig. 3B1 with the addition of 
marginal probabilities of individual features, is a scatterplot of simulated neural responses to 
two stimuli, s=1,2 (corresponding to green and blue dots, respectively). The lines along the 
axes of the 2-D scatterplot represent the 1-D marginal projections of stimulus- and choice- 
fixed probabilities of r2 and r1, respectively. In this example (which is analogous to that in 
figure 3B1), the decision depends only on 1r , but 2r also possesses choice selectivity by virtue 
of its correlation with 1r , as can be seen from the marginal plots on the left. C) Sketch 
showing why, in the case of Fig. 3C, when feature 1r  and 2r  carry complementary stimulus 
information and the decoder is sensitive to both 1r  and 2r , the intersection information 
carried by the joint combination of features is larger than the intersection information carried 
by either alone. The right panel illustrates this by showing histograms of intersection 
information for individual features (left two) and their joint combination (right). The three 
panels on the left plot with solid colors (coded with the stimulus color) the regions of the 
1 2( , )r r  space that contribute to the intersection information if the sensory stimulus is decoded 

with 1r  only (first from left), with 2r  only (center), and jointly with 1 2( , )r r  (right). The larger 
the colored areas, the larger the intersection information. Decoding with both features 
maximizes the areas with congruent stimulus and choice information (no “white” areas that 
do not contribute to intersection). Decoding with either feature alone leads to areas of the 
1 2( , )r r  plane that cannot contribute to intersection because in these areas there is a mismatch 

between the decoded stimulus and the choice. The mismatch is indicated by regions (white 
areas in the feature plane) where the single-feature decoder wrongly decodes the stimulus, 
due to its failure to consider all the complementary stimulus information in the joint features.  
D) Intersection information values computed for the examples in Figure 3 using Eq. (S7), 
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compared with “chance” intersection information (Eq. (S8)) and “stimulus information”, 
quantified as the fraction of trials correctly decoded by the ideal linear stimulus decoder 
(sensory boundary). 
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