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1. GENERATIVE MODELS

Latent space model. The formal description of the generative model for the latent space em-
bedding with asymmetric effects is as follows:

ps ~ U(07 OO)
Pe ~ U(O7 OO)
8i | ps ~ N(0,03)
g | ps ~ N(0,p2)

pa ~ U(0,00)
zia | pa ~ N(0, p3) —1<24<1
by, ~ U(—00, 00) ked{l,...., K —1}, byp_1 < b,
by = —00,bg = 0

o~ 1U(0,1)
h(i.5:k)
@(i,j,k):/ N(z|0,1)dz
fije = (6,4, k) — ®(i, 5,k — 1)

a;j | fi; ~ Categorical(f;;) N

with h(i,j,k) = (by — ||z; — zj|l2 + d; + €;)/0. The symbol ~ should be read as ‘follows the
distribution’. In this model, a;; represents the categorical class of the connection between nodes :
and j. As the latent space model considers only the relative distances between nodes, the positions
z may be arbitrarily scaled, rotated and translated throughout the latent space. In order to have
the posterior distribution be consistent across different samples, we constrain the positions to lie
within the D-dimensional unit hypercube by requiring —1 < z;4 < 1. This implies a maximum
distance between any two nodes of 2v/D.

Extending the model to integrate both anterograde and retrograde tracing data is straightfor-
ward by incorporating the additional likelihood term

ri; | fi; ~ Categorical(f;;)

into the model. Here, r;; represents the retrograde connection while the original a;; parameter
represents the anterograde connection. Notably, both types of observations depend on the same
latent distances. Note that in the Hamiltonian Monte Carlo framework (see below), improper
priors such as U(0, 00) are allowed as long as the resulting posterior remains proper [1].
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Latent eigenmodel. In the latent eigenmodel, the distance l;; = ||z; — z;||2 is replaced by
lij = szTAzj, with A a diagonal matrix with elements \;; drawn from a standard Gaussian
distribution [2]. Other hyperpriors and random effects are the same as in the LSM.

ps ~ U(07 OO)
Pe ™~ U(Ov OO)
8i | ps ~ N(0, p3)
& | ps ~ N(0,p?)

pa ~ U(0,00)
st | pa~ N0, 2) 1<z <]
Ais ~ N(0,1)
by, ~ U(—00, ) kef{l,...,K -1}, bey < b,
bp = —00,bg = 0
o~ U(0,1)
h(i,5,k)
@(i,j,k):/ N(z]0,1)dz
fije = ®(i,j, k) — ®(i,j,k—1)
a;j | £;; ~ Categorical(f;;) EER

with h(i, j, k) = (be + 2] Azj + 6; + €;) /0.

Empirical class frequency baseline. In the first baseline, we assume the probability distribu-
tion of class weights f is shared across all connections. Furthermore, we place a flat prior on f,
e.g.:
f ~ Dirichlet(1x)
a;; | f ~ Categorical(f) ,

so that the posterior can be obtained analytically as P(A [ f) = J[,_, Dirichlet(1x + ), with
A — Zi;éj ]l[a,;j = k]

Random effects baseline. The random effects baseline assumes there is no latent space, but
that connectivity is explained entirely by the random effects § and e:

ps ~ U(07 OO)
Pe ~ U(O, OO)
8i | ps ~ N(0, p3)
gi | ps ~ N(0,p2)

by, NU(—OO,OO) ke {1,...,K—1}, brp—1 < by,
bo = —0Q, bK =0
o~ 1U(0,1)
h(i.5,k)
@(i,j,k):/ N(z|0,1)dz
fige = (6,4, k) — ®(i, 5,k — 1)
a;j | fi; ~ Categorical(f;;) 1£7

with h(i, j, k) = (by + 6; +¢;)/0.



Fixed-positions model. In the fixed-positions model, z is simply taken from the anatomical
locations of the ROI. This leaves

pPs ~ U(O7OO)
Pe ~ U(07OO)
ei | ps ~ N(0,02)
by, NU(—OO,OO) ke {1,...,K—1}, br—1 < by,
bo = —OO,bK =0
o~ 1U(0,1)

h(i,j,k)
B(i, 5, k) = / N(z|0,1)dz

fijk = (I)(’Lu]vk) - (I)(Z,_Lk - 1)
a;j | £;; ~ Categorical(f;;) 1£7

with again h(i, j, k) = (bx — ||z; — ;|2 + d; + €;)/0, but now z is observed.

2. IMPLEMENTATION

The models are implemented using the probabilistic programming language Stan [? | and Mat-
labStan [3], which interfaces Stan and Matlab. Stan implements the no-U-turn Hamiltonian Monte
Carlo sampler [4]. For each different model, four parallel sampling chains are executed. Conver-
gence to the posterior distribution is determined by computing the potential scale reduction factor
(PSRF) [5] for parameters l;;, f;; and o (where applicable). Once all PSRF scores are below 1.1
(typically after 6000 — 10 000 iterations), the chains are considered to be converged®. Subsequently,
the chains are merged and downsampled to 1000 samples for efficient further analysis.

3. COMPUTATIONAL DEMANDS

Per iteration of the Hamiltonian Monte Carlo algorithm, a total of (D +2)p+ K + 2 parameters
need to be estimated. However, making general claims about the computational cost of the
HMC approach is difficult as convergence depends the ease of which the latent positions can be
determined, which in turn depends on the dimensionality D and the latent structure in the data.
For example, we noticed that during the cross-validation procedure, the D = 1 case was easy to
compute, but difficult to obtain convergence for (taking as much as 10000 iterations), while higher
dimensional latent spaces had more computational cost per iteration, yet converged much faster
(in as few as 4000 iterations). To provide a guideline for the efficiency of the approach, Fig. 1
shows the computation time per 100 iterations for the data used in this paper, using a single Intel
Xeon CPU E5-2670 @ 2.60GHz per sampling chain. The approximately linear trends that are
shown in these results may be used to extrapolate running times for connectomes with a larger
number of nodes than used here. For example, prediction of connectivity for a connectome of 1000
nodes, using a 2-dimensional latent space and the same hardware as above, should take roughly
four days to compute.

4. CONNECTIVITY FOR D ={1,...,5}

Figures 2—6 show the predicted connectomes for all considered latent dimensionalities. The
dimensionality with the optimal generalization performance is indicated. The figures show clearly
how a one-dimensional latent space has difficulty capturing the structure in the data, and that
increasingly higher dimensionalities fit increasingly better.

LThe latent eigenmodel proved to have difficulty converging fully when using the data fusion approach for the
mouse neocortex data, for dimensions D > 3. For these cases, we considered the model to be converged when at
least 80% of the parameters had a PSRF score below 1.1.
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FI1GURE 1. Running time of 100 iterations of the Hamiltonian Monte Carlo algorithm on each of
the different data sets that are considered in the main text. The figures confirm the (approxi-
mately) linear dependence on the most important parameters of the model; the dimensionality D
(left panel) and the number of nodes in the connectome p (right panel).
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FIGURE 2. Predicted connectomes for D = {1,...,5} for the macaque visual connectome.
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FIGURE 3. Predicted connectomes for D = {1,...,5} for the macaque cerebral connectome.

5. PREDICTION PERFORMANCE FOR RECIPROCAL AND NON-RECIPROCAL CONNECTIONS

In the macaque visual cortex data, 540 connections are observed in both directions, while 113
connections are known only in one direction. For the macaque cerebral cortex, these numbers are
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FIGURE 5. Predicted connectomes for D = {1,...,5} for the mouse retrograde connectome.
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FIGURE 6. Predicted connectomes for D = {1,...,5} for the mouse connectome using both
anterograde and retrograde data.

812 and 1798, respectively?. To investigate whether knowing both the anterograde and retrograde
observation for a potential connection affects the prediction performance, we computed the cross-
validation performance measures for these different types of connections separately. Figure 7 shows
these results. In general, there is no qualitative difference in the relative performances of the
different methods and baselines when disentangling the reciprocal and non-reciprocal connections.

6. CHANGES IN CONNECTIVITY

Tables 1 and 2 show for the macaque visual system the change in relative degree when comparing
the empirical connectome with the connectome completed by the LSM. Similarly, Tables 3 and 4
show for the macaque cerebral cortex the change in relative degree when comparing the empirical
connectome with the connectome completed by the LSM.

2For the mouse neocortex data, all connections have been observed reciprocally, and this data set has hence
been ignored in this analysis.
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FIGURE 7. Model performance. The prediction performance of the latent space model, the
latent eigenmodel and the baseline approaches, quantified using the negative log-likelihood (NLL),
the mean absolute error (MAE), the false-positive rate (FPR) and the false-negative rate (FNR),
for only reciprocal connections (left two columns) and only non-reciprocal connections (right two
columns). All measures are obtained using ten-fold cross-validation. Error bars indicate one
standard deviation over the ten folds.

REFERENCES

[1] Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich, Michael Be-
tancourt, Marcus Brubaker, Jigiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic
programming language. Journal of Statistical Software, 76(1):1-32, 2017.

[2] P D Hoff. Modeling homophily and stochastic equivalence in symmetric relational data. In
J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 657-664. Curran Associates, Inc., 2008.

[3] B Lau. MatlabStan: the MATLAB interface to Stan, 2015. URL http://mc-stan.org/
matlab-stan.html.

[4] M D Hoffman and A Gelman. The No-U-Turn sampler: Adaptively Setting Path Lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15:30, 2014.

[5] A Gelman and D B Rubin. Inference from iterative simulation using multiple sequences.
Statistical Science, 7(4):457-472, 1992.


http://mc-stan.org/matlab-stan.html
http://mc-stan.org/matlab-stan.html

TABLE 1. Relative observed and predicted degrees for each ROI in the macaque visual system
connectome, for anterograde connections. The relative degree is defined as the number of connec-
tions divided by the number of possible connections. Rows are sorted by the difference in relative
degree, in descending order.

ROI Observed Predicted ROI Observed Predicted

V4t 0.89 0.61 STPa 0.26 0.32
FEF 0.92 0.72  MDP 0.11 0.17
PITv 0.21 0.40 V3a 0.46 0.52
AITd 0.24 0.38 MIP 0.11 0.17
vOoT 0.71 0.59 V4 0.67 0.61
MST1 0.42 0.54 T7a 0.45 0.50
CITv 0.24 0.35 VIP 0.53 0.57
PITd 0.25 0.36 LIP 0.70 0.66
CITd 0.24 0.34 TF 0.59 0.62
DP 0.40 0.50 VP 0.45 0.48
TH 0.36 0.45 PIP 0.50 0.52
MSTd 0.70 0.61 FST 0.62 0.64
PO 0.39 0.47 V3 0.48 0.49
AlTv 0.24 0.31 V1 0.26 0.27
STPp 0.36 0.43 V2 0.48 0.48
46 0.53 0.47 MT 0.53 0.53

TABLE 2. Relative observed and predicted degrees for each ROI in the macaque visual system
connectome, for retrograde connections. The relative degree is defined as the number of connec-
tions divided by the number of possible connections. Rows are sorted by the difference in relative
degree, in descending order.

ROI Observed Predicted ROI Observed Predicted

CITd 0.06 0.33 V3a 0.44 0.52
PITd 0.13 0.35 TH 0.40 0.46
DP 0.75 0.55 V4 0.68 0.62
FEF 0.94 0.75 STPa 0.27 0.32
MIP 0.00 0.17 MSTI1 0.50 0.55
MDP 0.00 0.16 AITd 0.33 0.37
V4t 0.75 0.59 V3 0.45 0.48
LIP 0.47 0.59 FST 0.68 0.65
VIP 0.43 0.54 PITv 0.39 0.42
46 0.65 0.54 Ta 0.56 0.54
V2 0.38 0.48 STPp 0.44 0.46
PIP 0.37 0.47 AITv 0.29 0.31
VP 0.35 0.45 V1 0.26 0.27
CITv 0.26 0.34 MSTd 0.58 0.59
vOoT 0.50 0.58 MT 0.50 0.51

PO 0.59 0.51 TF 0.63 0.63




TABLE 3. Relative observed and predicted degrees for each ROI in the macaque cerebral cortex
connectome, for anterograde connections. The relative degree is defined as the number of connec-
tions divided by the number of possible connections. Rows are sorted by the difference in relative
degree, in descending order.

ROI Observed Predicted ROI Observed Predicted
12 1.76 1.798662 9 1.21 1.20
LIP 1.93 1.839565 MT 1.17 1.18
STPi 1.83 1.829971 F4 1.14 1.18
PGa 1.62 1.618966 V2 1.24 1.19
46v 1.62 1.641715 PBr 1.07 1.16
23 1.83 1.634263 TEOm 0.93 1.05
Insula 1.76 1.715188 LB 1.03 1.24
STPc 1.76 1.738232 24d 1.21 1.10
8B 1.56 1.533170 TEO 0.90 1.02
MST 1.72 1.595749 Top 1.10 1.02
9-46v 1.48 1.550750 S2 0.90 1.02
STPr 1.59 1.674020 29-30 1.07 1.04
Temporal-pole 1.34 1.529253 ProM 0.90 0.99
8m 1.59 1.584705 TPt 1.07 1.06
TA 1.69 1.581570 PBc 0.97 1.05
TH-TF 1.41 1.475802 31 1.03 0.95
46d 1.52 1.474743 DP 1.03 1.04
9-46d 1.52 1.463230 OPAI 0.62 0.89
TEam-a 1.45 1.532129 32 0.83 0.95
13 1.21 1.367773 F6 1.07 0.99
45B 1.28 1.360930 Pi 0.76 1.02
OPRO 1.14 1.279584 7B 0.97 0.94
F5 1.48 1.490845 2 0.97 1.02
24b 1.59 1.412569 PIP 0.79 0.84
Perirhinal 1.48 1.545821 V3 0.83 0.90
24a, 1.21 1.323258 TEad 0.69 0.91
F7 1.45 1.356939 3 0.86 0.86
81 1.31 1.385450 F1 1.14 0.96
FST 1.24 1.260681 14 0.69 0.89
8r 1.24 1.357227  Aud-core 0.66 0.90
MB 1.38 1.531420 V6A 0.79 0.84
24c 1.41 1.232569 V3A 0.69 0.72
45A 1.14 1.302214 AIP 0.59 0.63
TEav 1.14 1.300204 5 0.90 0.83
44 1.24 1.290662 V4t 0.55 0.65
IPa 1.21 1.289748 Gu 0.45 0.72
F2 1.45 1.299643 VIP 0.86 0.85
TEpd 1.10 1.239588 25 0.38 0.65
TEpv 1.10 1.257874 MIP 0.72 0.74
10 1.00 1.076933 V1 0.52 0.59
Tm 1.21 1.140865 V6 0.34 0.48
TEam-p 1.17 1.283718 Piriform 0.17 0.54
Entorhinal 1.00 1.246137 Prostriate 0.45 0.54
V4 1.14 1.155382  Subiculum 0.24 0.60
F3 1.21 1.064390 1 0.41 0.48

11 0.97 1.163655




TABLE 4. Relative observed and predicted degrees for each ROI in the macaque visual system
connectome, for retrograde connections. The relative degree is defined as the number of connec-
tions divided by the number of possible connections. Rows are sorted by the difference in relative
degree, in descending order.

ROI Observed Predicted ROI Observed Predicted

46d 1.13 1.22 V4 0.77 0.79
STPi 0.99 1.06 8B 1.27 1.30
B 1.07 1.13 ProM 0.79 0.81
81 2.00 1.95 F7 1.41 1.43
TA 1.33 1.38 MT 1.15 1.17
STPc 1.43 1.47 DP 1.22 1.21
F1 0.60 0.65 10 1.35 1.34
TEpd 1.09 113 5 0.86 0.87
F5 1.24 1.27 STPr 1.43 1.44
Tm 1.52 1.49 8m 1.70 1.71
F2 1.05 1.09 PBr 1.20 1.19
V2 0.68 0.71 V1 0.73 0.72
9-46v 1.64 1.66 24c 1.20 1.20
2 0.74 0.76  9-46d 1.62 1.62

TEO 1.18 1.20
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