
Supplementary Discussion 
 
Projection of US states based on IBD 
 
Here we discuss results of an analysis of IBD aggregated across US states (see Supplementary 
Methods). US states sharing high levels of IBD on average are positioned close to each other in 
a projection onto the first two principal components (PCs), evoking a distinct relationship to US 
geography arising from isolation-by-distance (Fig. 1): PC 1 correlates with a North-South 
geographic axis, and PC 2 correlates with an East-West geographic axis. The North-South 
separation is stronger for eastern states, as one might expect given recent mass European 
settlement7, 8. An exception is Louisiana, positioned roughly equidistant between Northern and 
Southern states in Fig. 1; this likely reflects the history of 17th century French colonists in 
Acadia (current day Atlantic Canada and Maine), who were expelled during the French and 
Indian War, and some of whom later resettled in the Spanish colony of Luisiana, now 
Louisiana9. Results from IBD network clustering further support this finding (see the main text). 
This observation suggested that the signature of a recent historical migration within North 
America could in fact be identified by examining patterns of IBD among present-day Americans. 
 
Genetic differentiation between clusters 
 
To assess the connection between IBD clustering and global populations, we measured 
differentiation in common genetic variation (FST) between the 6 largest clusters detected in the 
IBD network (Supplementary Table 8), clusters detected in the sub-networks (Supplementary 
Table 5), and the clusters ("stable subsets") identified in the spectral analysis (Supplementary 
Table 4). FST between Jewish, Irish, Scandinavian, Finnish, Hawaiian and African American 
stable subsets (Supplementary Table 4) closely matches FST estimated from comparable 
worldwide populations. For example, compare FST = 0.078–0.081 between African American 
and European-origin stable subsets (Irish, Scandinavian, Finnish) to European–African FST of 
0.09610. Also, FST = 0.005–0.007 between Jewish and European-origin stable subsets are 
similar to FST estimates of 0.008–0.011 between Italian/Ashkenazi Jews and French/North 
Italians11. Our FST estimates are typically slightly lower than others'; this is expected because 
our samples were not recruited to specifically capture genetic variation of ancestral populations, 
as in 1000 Genomes13 or People of the British Isles14, and the clusters likely contain more 
admixed individuals than the comparable cohorts. Here, we use FST calculated from the stable 
subsets because they appear to be more representative of global populations than the 
hierarchical clustering; Jewish and African Americans are striking examples of this 
(Supplementary Data 2). This illustrates that the hierarchical clustering, as opposed to the 
stable subsets, contain individuals who may not neatly "fit" within a single subgroup, and are 
potentially more admixed than the individuals within the stable subsets.  
 
Relationship between spectral analysis of IBD and frequency-based admixture 
 
In addition to FST, comparing distances in the spectral embedding to admixture proportions 
estimated from genotype data demonstrates a relationship between IBD and global population 



structure (Supplementary Fig. 22). Since most samples lie near the origin in any given 
dimension of the spectral embedding, and since Euclidean distance in the embedding is 
proportional to the diffusion distance15, it follows that samples further away from the origin are 
the most disconnected, or "isolated", in the network. Interestingly, this degree of isolation in the 
network is often strongly correlated with the amount of admixture. For example, we observe a 
very strong correlation (r2 = 0.97) between European Jewish admixture proportions and spectral 
embedding distance in the Jewish stable subset; in particular, single-origin European Jewish 
tend to be the most disconnected nodes in the network. Similarly, the Hawaiian cluster 
demonstrates a strong relationship between the degree of network isolation and the amount of 
Polynesian ancestry (r2 = 0.80). Although the correlation is not nearly as strong for Finnish (r2 = 
0.67) and African Americans (r2 = 0.26), it is nonetheless interesting that the most isolated 
cluster members tend to be the least admixed individuals. 
 
Discussion on interpretation of clusters using genealogical data 
  
Although the approach we have described is useful for characterizing most clusters, here we 
discuss some of the limitations we encountered in using the genealogical data to interpret the 
clusters. Perhaps most obviously, groups that do not show a particularly unusual concentration 
of ancestral birth locations in any regions will be difficult to interpret from these data alone. The 
most conspicuous example of this is the Jewish cluster; most areas of the US and Europe 
featuring large past or present Jewish communities are also ancestral locations of other large 
ethnic groups that immigrated to the US. In this case, the estimated admixture proportions allow 
for a clear interpretation of the Jewish cluster, but these data did not allow for an unambiguous 
interpretation of the three Jewish sub-network clusters, labeled "European Jewish A, B and C" 
(Supplementary Data 2). Several other groups do not exhibit a particularly unusual geographic 
concentration in the US, including Irish, Colombians and Caribbeans, because they have 
primarily migrated to areas inhabited by many other groups. For similar reasons, large cities 
such as Chicago, Detroit and New York are important ancestral birth locations for several 
groups (e.g., African Americans), but do not feature prominently in the maps because these 
cities are also attributed to other clusters. 
  
Another consideration is that the extent to which these data reflect US-wide trends hinges on 
the composition of the AncestryDNA database, and the availability of genealogical records. 
Clearly, this database captures much of the genetic diversity of the US, but in Supplementary 
Fig. 17, for example, we might expect a greater density of ancestors from Poland given that it is 
one of the largest ethnic groups in the US. This discrepancy could be partly attributed to lower 
availability of Polish genealogical records, and a predisposition in the AncestryDNA database 
toward individuals with Western European origins. 
 
Additional historical details on selected clusters, including demographic trends 
recapitulated by genealogical data 
 
In this section, we provide additional details about clusters described in the main text, as well as 
clusters mentioned in the results but not discussed in any detail in the main text. Here, we also 



provide descriptions of several additional clusters identified in the third level of the hierarchical 
clustering. We do not comprehensively discuss all of these clusters due to their more 
speculative nature (see main text). Below, we specify the level of hierarchical clustering in which 
the cluster was identified (first, second, or third), and whether the cluster was identified from the 
spectral analysis ("stable subset"). To be consistent with the main text, we divide our discussion 
of these clusters into the same four main categories used in the main text—intact immigrant 
clusters, continental admixed groups, assimilated immigrant groups, and post-migration isolated 
groups—with the caveat that these distinctions are somewhat arbitrary and meant only to aid in 
understanding the clusters identified. 
 
Intact immigrant clusters 
  
African Americans. Our interpretation of this cluster, identified in both the clustering of the sub-
networks (second level of hierarchical clustering) and the spectral analysis, is strongly 
supported by the distribution of global admixture proportions (Supplementary Figs. 10, 11). The 
distribution of ancestral birth locations in this cluster closely traces the westward expansion of 
cotton cultivation and slavery, originating in the rich coastal plains of North and South Carolina, 
then progressing west until it reaches eastern Texas (Supplementary Figs. 19, 20). It also 
closely coincides with regions of high self-reported African ancestry16 and regions that 
historically practiced slavery, suggesting some amount of continued isolation. We note that this 
cluster does not specifically exclude African Americans in the North; the apparent absence of 
northern US cities such as Detroit and Milwaukee from Fig. 3 is attributed to the fact that these 
cities also include significant contributions from other clusters as well (OR < 5 for these cities). 
In the third level of the hierarchical clustering, we find additional substructure in the African 
American cluster corresponding to geography in the southern US; however, we do not detail 
these results here. 
  
European Jewish. One of the largest clusters initially identified in the IBD network (first level of 
hierarchical clustering) is the European Jewish cluster, which was also identified as a cluster in 
the spectral analysis. In the ancestral birth location maps for this cluster (Supplementary Figs. 
19, 20), we do not find a large over-representation of ancestral birth locations at specific 
locations within the US. The strongest over-representation of Jewish birth locations is in or near 
New York and Chicago (OR > 2); these cities received large numbers of Jewish immigrants 
during the late 1800’s and early 1900’s. We note that this cluster is subdivided into 3 clusters in 
the second level of the hierarchical clustering, and the historical significance of these 3 clusters 
is unclear ("European Jewish A, B and C" in Supplementary Data 2). We are unable to clearly 
distinguish between these 3 groups based on the genealogical data, perhaps owing to the fact 
that the ancestral Jewish communities in Europe are co-located with other European ethnic 
groups, and therefore locations with high odds ratios do not consistently pinpoint the locations in 
Europe most relevant to these clusters. 
 
Portuguese. In the second-level of the hierarchical clustering, we identify a cluster 
corresponding to the Portuguese (Table 1, Supplementary Data 2, Supplementary Fig. 19). The 
Portuguese began to immigrate to the US in large numbers in the late 19th century; immigrants 



were primarily men from the Azores and Madeira Islands, recruited to work on whaling ships17. 
These men emigrated to the eastern US, establishing communities in various New England 
coastal cities (major regions include Providence, Bristol, Pawtucket in Rhode Island, and New 
Bedford, Taunton, Fall River in Southeastern Massachusetts); we do not find strong enrichment 
of ancestral birth locations of Portuguese cluster members in these regions, likely due to the 
influx of other groups to these regions. The Portuguese also immigrated to various cities in 
California, including the San Francisco-Oakland Bay Area, Santa Cruz, the Central Valley, and 
San Diego, and this is reflected in Fig. 3. In the mid-to-late 20th century, there was another 
documented surge of Portuguese immigration in America, mainly in the Northeast (New Jersey, 
New York, Connecticut, Rhode Island, Massachusetts). We have no good explanation for the 
inclusion of individuals with Jamaican ancestral birth locations in this cluster. This finding is 
probably a result of having a small number of samples of Jamaican origin that were arbitrarily 
grouped with Portuguese to form a slightly larger cluster, and illustrates the lack of robustness 
of IBD clustering with small sample sizes. 
 
Eastern Europeans. In the second level of the hierarchical clustering, we identify a cluster we 
call “Midwest immigrants” (Supplementary Data 2). Although we do not specifically discuss this 
cluster in the main text, we do discuss two of its stable subsets, Scandinavians and Finnish. 
This cluster is subdivided into additional large clusters in the third level of the hierarchical 
clustering (Supplementary Figs. 25, 26). Some of these clusters clearly relate to geographic 
structure and immigration patterns from Eastern Europe. For example, the ancestral birth 
location patterns of the "Eastern Europeans and Italians in Pennsylvania and Midwest" cluster 
(Supplementary Fig. 26) might correspond to the migration of nearly 24 million southern and 
eastern Europeans to the US between 1880 and 1920, before the restriction of immigration in 
192418. Immigrants predominantly came from Hungary, Poland, Austria, Slovakia, Czech 
Republic and Italy between 1840 and 1870, with New York state and Pennsylvania the primary 
destinations for these immigrants. In 1924, the US Congress passed the Immigration Act, 
effectively cutting off immigration from southern and eastern Europe and giving preference to 
European countries in the north and west18. Additionally, we identify a cluster corresponding to 
“German, Dutch and Eastern Europeans in Upper Midwest” (Supplementary Fig. 26), in which 
European ancestral birth locations are located further north, and found in the US primarily in the 
Midwest. Finally, we identify another cluster corresponding to “Croats, Albanians, Greeks and 
Turkish” (Supplementary Fig. 26). As we discuss in the main text, the identification of these 
clusters likely corresponds to pre-migration population structure; however, localized immigration 
of these ethnic groups to the US, particularly to certain regions of the Midwest, seems to have 
also contributed to the structure we identify in the IBD network. 
  
Northern Europe (Finnish, Swedish, Danish, Norwegians and Scandinavians). Additional third-
level clustering of the "Midwest immigrants" cluster relates to regions in Northern Europe. A 
Finnish cluster was identified in the spectral analysis (Table 1, Supplementary Figs. 11, 19), and 
in the third level of hierarchical clustering (Supplementary Figs. 25, 26). Ancestral birth locations 
in the Finnish cluster and stable subset coincide with their historical record of migration to the 
US, and in particular to the Michigan Upper Peninsula19. We also identify a stable subset in the 
Midwest immigrants cluster which we label as Scandinavians (Table 1, Fig. 3). Ancestral birth 



locations in this cluster closely correspond to the settlement pattern of Norwegians in rural 
Minnesota, North Dakota and Wisconsin, with large numbers moving to Minneapolis and 
Chicago19, 20 (Supplementary Fig. 20). The subdivision of the Midwest immigrants cluster also 
delineates two clusters, one corresponding to Swedish and Danish, and the other to 
Norwegians (Supplementary Fig. 26). 
  
Irish. In the spectral analysis, we identify a cluster which likely corresponds to descendants of 
Irish immigrants. Six million Irish settled in the US in the 19th century, with immigration peaking 
in 1852 during the Irish famine21. Irish migration was historically characterized by a highly 
localized pattern of chain migration, as migrants followed family members and neighbors to the 
same towns and cities in the U.S.21. In fact, almost half (46%) of Irish immigrants migrated to 
just 10 U.S. counties22. Once in the US, the Irish may have tended to marry within their ethnic 
group since their migration was relatively gender-balanced compared to other European groups, 
which were male-dominated. Many young Irish women emigrated to the U.S. in order to find a 
spouse, have families, and achieve economic independence, as the famine reduced and 
delayed opportunities for marriage in Ireland for decades23. Interestingly, in the third level of the 
hierarchical clustering, we identify 3 clusters corresponding to North, South and West 
geography within Ireland (Supplementary Fig. 26). 
 
Other European immigrant groups. In addition to the results already discussed, we identify 
substructure corresponding to other European immigrant groups when we subdivide the 
“Italians, Irish and Scottish” cluster (Supplementary Data 2, Fig. 26). For example, we identify a 
cluster whose ancestral birth locations are disproportionately concentrated in Scotland, Atlantic 
Canada and Ontario (Supplementary Fig. 26), corresponding to migration of large numbers of 
Scottish to Canada. Furthermore, we also find an Italian cluster (Supplementary Fig. 26). The 
ancestral birth locations for the Italian cluster are particularly concentrated in southern Italy, 
reflecting the predominant source of Italian immigration to the US. 
  
Polynesians, East Asians and Hawaiians. In the first level of hierarchical clustering, we identify a 
cluster corresponding to Polynesians and East Asians (Supplementary Data 2) with only a small 
number of individuals, and thus we do not subdivided it further. The Hawaiian stable subset 
identified in this cluster is representative of the Polynesian population with some East Asian 
admixture. Reflecting this finding, Hawaiians have likely remained genetically isolated due to the 
large distance from the continental US, while Hawaii has a complicated history with recent, 
abrupt population changes and rapid growth24. 
 
Continental admixed groups 
  
Mexico clusters. In the main text, we discuss the connection between the Northeast and West 
Mexico clusters and Mexico-US migration patterns. We further note that areas that have not 
traditionally seen a large influx of migrants to the US, such as southern Mexican states, are 
poorly represented in the Mexican clusters (Supplementary Figs. 17, 18), reflecting our US-
biased sample.  
  



New Mexicans. We identify a cluster corresponding to New Mexicans in both the clustering of 
sub-networks as well as in the spectral analysis (Fig. 3, Table 1, Supplementary Data 2). This 
cluster most likely represents descendants of the Nuevomexicanos, some of the earliest 
European colonial settlers that migrated northward from New Spain along the El Camino Real 
de Tierra Adentro trail25. Supporting this hypothesis, ancestral birth locations are 
disproportionately found in parts of Mexico and New Mexico near this trail (Supplementary Fig. 
20). 
  
Puerto Ricans. In our discussion in the main text, although we do not single out Puerto Ricans 
from other Caribbean Islands peoples, Puerto Ricans are by far the predominant Caribbean 
group in our sample. Puerto Ricans typically have a mixture of European and African ancestry, 
with smaller amounts of Native American admixture26, and this is reflected in our data 
(Supplementary Figs. 9–11, Supplementary Data 2). In the second level of the hierarchical 
clustering, we identify fine-scale structure on the island of Puerto Rico in the 3 largest clusters of 
the Caribbean sub-network (Supplementary Data 2). These 3 clusters are clearly correlated with 
geography of the island of Puerto Rico, as they roughly subdivide the island into 3 regions—
northwest, southwest and east (Supplementary Fig. 21). These 3 Puerto Rican clusters show 
small differences in Native American, West African and European admixture proportions 
(Supplementary Fig. 11) that only partially reproduce the findings of genetic variation across the 
island of Puerto Rico26, perhaps due to differences in the composition of our database and their 
sample. Interestingly, the Puerto Rican cluster has an enrichment of ancestral birth locations on 
the island of Hawaii. This likely reflects the arrival of sugar cane plantation laborers to Hawaii in 
the early 1900’s; Puerto Ricans have been documented as a separate ethnic group in Hawaii as 
early as 1910, and they have constituted over 2% of the population up until 195027. 
  
Assimilated immigrant groups 
  
Pennsylvania. In the second-level hierarchical clustering, we identify a cluster with birth 
locations concentrated in Pennsylvania (Table 1, Fig. 3, Supplementary Fig. 19). Roughly 
80,000 Germans immigrated to the colonies in North America between 1717 and 1775, with the 
majority settling in Philadelphia, southeast Pennsylvania, and New Jersey. By 1760, 50,000 
Germans had settled in southeast Pennsylvania alone. At the time, Germans constituted the 
largest ethnic group in the colony with a distinct language, religious culture, and identity28. 
German immigrants tended to marry within their ethnic group and remained geographically 
stable for many generations28. While this demography may not encompass the entire history of 
the Pennsylvania cluster, it provides some background for the genealogical data associated with 
individuals assigned to this cluster. 
  
Southern US: Alabama, and North and South Carolina. Here, we discuss further substructure 
identified in third-level hierarchical clustering of the "Lower South" cluster (Supplementary Figs. 
25, 27). The predominant migration pattern from North and South Carolina to Alabama 
observed in the genealogical data of the “Alabama, and North and South Carolina” cluster 
(Supplementary Fig. 27) may be explained by the westward expansion of the cotton industry 
between 1820 and 1860. “Alabama fever” gripped South Carolinians after the opening of the 



territory to European settlement following the expulsion of the Creek people in 181429. Since soil 
quality had declined in both South Carolina and Georgia by 182030, migrants passed through 
Georgia and moved directly into Alabama, where the nutrient rich soil yielded 3 times more 
cotton per acre31. By 1850, there were an estimated 45,000 migrants from South Carolina in 
Alabama31, accounting for approximately 30% of all incoming migrants30. South Carolina 
migration to Alabama began to decrease in 1860 due to the opening of new migration routes 
further west into Texas, Arkansas, and Florida30. 
  
Southern US: Florida, Georgia, and South Carolina. Another cluster identified from third-level 
hierarchical clustering of the "Lower South" cluster has enriched ancestral birth locations in 
Florida, Georgia, and South Carolina (Supplementary Figs. 25, 27). The southward movement 
of people in Georgia and South Carolina (Supplementary Fig. 27) is also consistent with 
documented historical migration patterns. Settlers moved into the rich coastal plains of Georgia 
and South Carolina—the best agricultural land in the South—between 1780 and 181032. Then, 
between 1825 and 1840, migrants poured into “middle Florida” (near present-day Tallahassee) 
prompted by the acquisition of the Florida territory from Spain in 1821, and the removal of native 
Seminole, Miccosukee and Red Stick Creek people in 182433. The end of the in-migration to 
Florida coincided with the collapse of cotton prices in 184033. 
  
Southern US: additional substructure. In the third-level hierarchical clustering of the Lower 
South and Upland South clusters (Supplementary Figs. 25, 27), we identify further fine-scale 
structure that corresponds in part to geography in the Southern US, and possibly other historical 
migration patterns. Again, we emphasize that the demographic interpretation of many third-level 
clusters is more speculative. 
  
Post-migration isolated groups 
  
Appalachians. In the main text, we discuss the Appalachians stable subset. The Appalachians 
cluster is particularly concentrated in southeastern Kentucky near the Cumberland Mountains, 
which was more geographically and economically isolated relative to other parts of Appalachia. 
Moore34 claims that the problematic stereotype of Appalachia as remote and homogenous is 
based on this particular sub-region. The coal industry developed first in northern and western 
Kentucky, then only gradually moved into the southeastern part of the state. Railroads did not 
reach eastern Kentucky until the 1880s, and only came to Harlan County, where a dense 
number of ancestral birth locations are concentrated (Supplementary Fig. 20), during World War 
I34, 35. This history, as discussed in the main text, provides an explanation for the identification of 
this cluster in the IBD network. 
  
Mennonites. We identify what we hypothesize to be a sub-network cluster corresponding to 
Mennonites, although this label is less clear than the others. Mennonite families homesteaded in 
different parts of the Great Plains; districts with concentrated Mennonite settlement in the 
include Marion, McPherson, Harvey, Butler and Reno counties in Kansas36, and near Korn (later 
Corn), Fairview, North Enid, and in the Meno-Ringwood-Goltry in Oklahoma37. In 



Supplementary Fig. 19, we observe that many enriched ancestral birth locations of this cluster 
occur at or near these settlements. 
  
Utah. Here we include some additional details about the Utah stable subset that we did not have 
room to discuss in the main text. Using genealogical annotations, we are able to trace the 
migration patterns of this cluster with remarkable detail (Supplementary Fig. 24). Large numbers 
of Scandinavians migrated to the Northeast in the 1700’s, descendants of whom later moved to 
Utah; this is well captured by the large concentration of ancestral birth locations for the Utah 
cluster in Scandinavia, especially Denmark. Areas in the west outside Utah (Mexico, Arizona 
and British Columbia) also appear as over-represented ancestral birth locations in this cluster, 
and correspond to known Mormon settlements. Over-represented ancestral birth locations in 
and near Iowa correspond to important settlements along the Mormon trail (Nauvoo, Illinois and 
Omaha, Nebraska). 
 
Discussion of IBD network analysis 
 
We sometimes find that the clusters identified by recursively maximizing the modularity closely 
overlap with the stable subsets (examples include European Jewish and New Mexicans; see 
Supplementary Data 2). In such cases, the spectral analysis provides additional support for the 
clusters, and narrows the range of likely demographic hypotheses underlying the hierarchical 
clustering. Since the spectral analysis only delineates the most disconnected subgraphs, an 
additional benefit is that it filters out "admixed" individuals that might be arbitrarily assigned to 
clusters—e.g., a child of parents from two genetically isolated populations. This explains why 
stable subsets are more representative of the global ancestral populations than their 
corresponding clusters (compare, in Supplementary Data 2 and Supplementary Figs. 9, 10, the 
admixture proportions in the clusters and stable subsets corresponding to African Americans 
and European Jewish). 
 
In other cases, the stable subset contains only a small fraction of the cluster, or no stable subset 
is identified in the cluster (Table 1, Supplementary Data 2). Such clusters are typically much 
less modular than the clusters that closely overlap stable subsets; this can be seen by 
comparing the internal edge density of the cluster (Win) to the density of edges to non-cluster 
members (Wout). Although any population structure underlying this clustering is therefore subtler, 
we find that the clustering in several cases corresponds to unambiguous demographic patterns. 
In this circumstance, the likely interpretation of the hierarchical clustering is that it is the 
discretization of some unknown, continuous feature of IBD variation (e.g., geographic distance). 
That being said, we often find that this network structure is often more difficult to interpret, and 
the exact boundaries of the clusters may be partly influenced by synthetic factors, such as the 
frequent failure of modularity-maximizing methods to partition small modules38–40. 
 
Laplacian eigenmaps and related spectral clustering methods have been previously proposed 
for inferring population structure from genetic data, and there are several published works on 
this topic41–43. The most closely related work is by Lee et al.41,42; they use spectral 
dimensionality reduction methods, as we do here, to uncover population structure in the 



POPRES data set. The key differences are: (1) we define similarity between data points using 
pairwise IBD estimates, whereas they take a dot product of the genotypes; (2) we uncover 
population structure at much finer scale; and (3) we apply spectral methods to data on a much 
larger scale. 
 
Also, we are not the first to combine hierarchical clustering with spectral methods, and it is 
possible that other algorithms could provide a more systematic implementation of our approach 
to identifying modular structure informative of population demography in the IBD network; see, 
for example, the HQcut method developed by Ruan and Zhang44. However, an important 
consideration is the massive scale of our network, which prohibits the application of this method 
and other more computationally complex algorithms developed for community detection. 
Additionally, visualizing the individual dimensions of the spectral embedding generated from the 
IBD network yields additional information about structure in the population (Supplementary Fig. 
22). 
 
An unresolved issue common to both the hierarchical clustering and spectral analysis is that the 
stopping criterion is unclear: in the hierarchical clustering, there is the question of when to stop 
subdividing clusters; in the spectral analysis, there is the question how many dimensions of the 
spectral embedding to use to delineate stable subsets. Although researchers have proposed 
stopping criteria for these methods (e.g., 39, 45), our experience as well as the unique properties 
of the IBD network suggest that these criteria either do not apply or do not work well in our 
setting. In particular, the question of assessing statistical significance in detected modules has 
received considerable attention in the literature; see Berry et al.38 and Fortunato39 for some 
recent reviews of the topic. However, this unresolved question is even further complicated by 
the difficulty of determining an appropriate "null model" for a network reflecting IBD in a modern-
day human populations. As a result, we have not attempted to make any claims about statistical 
significance of clusters detected in the IBD network. For the hierarchical clustering, we have 
used an ad hoc stopping criterion based on the size of the cluster (see above), and this is an 
aspect we hope to address more systematically in future work. 
 
An open question in the spectral analysis is whether the order in which stable subsets are 
discovered in the spectral embedding yields an approximate ranking of how closely the clusters 
resemble disconnected components, and therefore provides a measure of genetic isolation. 
Anecdotally, there is evidence for this interpretation—Jewish and Hispanic/Latino groups cluster 
in the first dimensions of the spectral embedding, whereas the last stable subsets we identify 
correspond to Utah settlers and Irish immigrants which show little genetic differentiation from 
most European-origin individuals in the US. However, except in idealized settings45,46, there is 
no theory supporting the ordering of the eigenvectors of the Laplacian to rank the clusters 
according to the "isolation" in the network. 
 
Finally, we consider a general limitation to the proposed approach: the structure of the IBD 
network hinges on parameter choices and assumptions made. For example, while the edge 
weights are defined from simulations intended to reflect real biological relationships (as 
described), they do not account for factors such as population-specific excess IBD sharing (e.g., 



due to founder events or rapid population growth). As a result, network structure corresponding 
to subpopulations exhibiting sharp deviations from random mating may reflect more distant 
demography compared to subpopulations that are more closely modeled by our simulations. A 
model-based approach that adjusts the demographic model parameters to fit the IBD data could 
potentially address this limitation. Recent work has demonstrated the power of coalescent 
model-based methods to infer population demographic parameters from IBD47–49. The 
distribution of detected IBD in each of the clusters could be used to reconstruct more detailed 
histories of the underlying historical groups. However, for discovering population structure, an 
important yet unresolved question is how to develop a model-based method that can jointly 
learn both the population parameters and population assignments. In our model-free approach, 
we take the pragmatic view that sensitivity of the inferred network structure to assumptions 
could be a feature of our method—that is, in future work, alternative choices could reveal 
population structure arising from different time-scales. 
 
Supplementary Methods 
 
Sample collection 
 
All DNA samples included in this study were collected from AncestryDNA customers (except for 
samples obtained from external sample collections that are included only in the admixture 
reference panel—see below). The typical sample collection process for an AncestryDNA 
customer is as follows: a customer orders an AncestryDNA kit through the AncestryDNA 
website; the customer collects saliva at home, and returns the saliva sample in stabilizing 
solution; DNA from the saliva is extracted; finally, genotypes are called for a dense panel of 
single nucleotide polymorphisms (SNPs) across the genome. 
 
A DNA sample is only processed at the laboratory once the customer has activated the kit 
through the website. As part of the activation step, the customer provides basic personal 
information, including age and/or year of birth, first and last name, and gender. (Some of this 
information, such as gender, is used for subsequent quality control steps.) During or after the 
activation, the customer is able to associate ("link") his or her DNA sample with a node in a 
pedigree. These pedigrees are accessed through the user's online account, and they are 
generated either by the customer or by other users (more details are given below). 
 
During activation, each customer is given the option of consenting to the AncestryDNA Human 
Genetic Diversity research project. Following sample quality control steps described in below, 
we obtain a final panel of 774,516 genotyped samples consented to participate in research. This 
is the number of samples available for our subsequent analyses. 
 
Genealogical data 
 
Many customers have provided detailed information about their family history. Online pedigrees 
are created by individual users or, occasionally, by professional genealogists. An individual can 



associate a DNA sample to a node in any pedigree that is accessible through their Ancestry 
user account. Pedigrees are viewable by other users unless a user has marked a pedigree as 
“private”. This hides the information in the pedigree from public view. For DNA samples linked to 
pedigrees, we use the pedigree data in aggregate to better understand the historical and 
geographical significance of the clusters that are identified from the IBD data. 
 
We take a few basic steps to remove associations between DNA samples and pedigrees that 
are unlikely to be correct. We exclude all pedigrees linked to DNA samples that do not satisfy all 
of the following criteria: (1) recorded death date for the linked pedigree node (when this death 
date is available) occurs after AncestryDNA began; (2) the gender is the same as the gender 
recorded during DNA activation; and (3) the birth date is within 3 years of the birth date 
recorded during DNA activation. (DNA samples that do not satisfy these criteria are still included 
in our analyses, but the associated pedigree data is not used.) We note that while more 
stringent tests for reliability could be used, they are of unclear value given the size and 
complexity of these data. Finally, we exclude all pedigrees that users marked as “private". After 
taking these filtering steps, we obtain a final set of 432,611 DNA samples linked to non-private 
pedigrees. 
 
In all subsequent analyses of the genealogical data, we only include pedigree nodes 
corresponding to ancestors of the tested individuals; that is, we only retain pedigree nodes x 
such that the DNA sample is a descendant of x. (These are the only pedigree members that 
could have passed down genetic material to the associated user.) We exclude all ancestors 
more than 9 generations back in users’ pedigrees since we have found that the reliability of the 
pedigree information diminishes considerably after 9 generations. 
 
We include two types of information in our analyses of associated pedigree data: birth year and 
birth location (map coordinates in longitude and latitude). Other available pedigree information, 
such as place names, surnames, death dates, and evidence in the form of documents attached 
to pedigree nodes, are not used in this study. We only use birth locations that include state or 
province information, and we only use US birth locations that include county or city information. 
 
Based on these pedigree data, the vast majority of the DNA samples are from individuals born 
in the US; out of the DNA samples linked to pedigrees, 322,683 (96% of reported birth 
locations) were born in the US, 13,748 (4% of reported birth locations) were born outside the 
US, and an additional 96,180 (22% of all DNA samples linked to pedigrees) have unreported 
birth locations. Based on these reported birth locations, we have a reasonably good 
representation of DNA from individuals born in all US states, with the largest proportion from 
California (Supplementary Table 1, Supplementary Fig. 1). 
 
The user-generated pedigrees associated with DNA samples exhibit wide variation in size 
(number of pedigree nodes), completeness (proportion of an individual's ancestors added to the 
pedigree), and depth (number of generations represented in pedigree); see Supplementary 
Figs. 12, 13. The average size of the pedigrees also appears to vary somewhat by US state 



(Supplementary Fig. 14, Supplementary Table 1); for example, pedigrees for individuals born in 
Maine and Utah have, on average, the largest pedigrees.  
 
About 76% of all pedigree nodes include birth location, birth year and surname. Reassuringly, 
the proportion of pedigree nodes with these three annotations does not appear to vary by 
generation (Supplementary Fig. 15). In other words, if an ancestral node is present in a 
pedigree, how well that node is annotated does not appear to be strongly affected by the depth 
of that ancestor in the pedigree. Annotation completeness varies only slightly by US state 
(Supplementary Table 1). Variability in tree and annotation completeness could be partly a 
result of access to historical records, either in the US, or for different ethnic groups. 
  
We caution that pedigree information from different users is not always independent. For 
example, multiple DNA samples may be linked to similar or identical pedigrees. This may even 
be the case for individuals that are more distantly related to each other. (With Ancestry’s 
“hinting” system, new relatives can be suggested for an individual’s pedigree based on similarity 
with other online pedigrees. Although this system has been successful for helping users expand 
their family trees, it can also perpetuate errors in pedigrees.) Adoption is another source of 
error, although this is expected to have a limited impact. (Users can mark some lines as 
biological or adoptive, but many users are unaware of this feature.) For the purposes of this 
study, we assume that inaccurate pedigree data has a negligible impact on the accuracy of the 
summary statistics when they are compiled from thousands of pedigrees. 
 
Phasing reference panel 
 
The reference panel is based on 217,722 genotype samples that were available in the 
AncestryDNA database at the time when the panel was constructed. We use a subset of 
633,299 autosomal SNPs for all steps of the phasing analysis. Before phasing these samples, 
we first impute the small proportion of missing genotypes using Beagle. This is accomplished in 
batches of 200–1,000 samples. Each of these batches also includes 558 phased samples that 
were downloaded from the Beagle website50, and originally collected as part of Phase 1 of the 
1,000 Genomes Project13, 51. 
 
Next, we combine these imputed samples into larger batches of approximately 50,000 samples 
each. Each of these batches are phased separately using HAPI-UR version 1.016. Once we 
have phased all the reference samples using HAPI-UR, we learn and store the haplotype 
models using our Beagle-like algorithm. Phasing new genotype samples using this reference 
panel takes only a few seconds to complete for each sample. 
 
Genotype phasing algorithm 
 
Beagle defines a probability distribution over haplotypes across each chromosome region, or 
"window", using a Markov model55. The accuracy of the haplotype models increase with sample 
size6. However, Beagle was not designed to scale to hundreds of thousands of samples. An 
alternative method is HAPI-UR6, which is able to simultaneously phase tens of thousands of 



samples. As of this writing, HAPI-UR can handle larger numbers of samples than Beagle (we 
are using HAPI-UR version 1.01 and Beagle version 3.3.2). Still, it can take several days for 
HAPI-UR to complete its computation for the large samples used in this study. 
 
Our algorithm extends Beagle in two ways to accommodate the size of our data set. First, when 
estimating the transition likelihoods in the haploid models, we add a "pseudocount" (10-4) to 
each haplotype count. This allows for the possibility that a new genotype sample contains a 
haplotype that was never previously encountered. Without this modification, the probability of a 
new haplotype is zero. 
 
Second, we modify the criterion for deciding whether two haplotype clusters (i.e. nodes of the 
haploid Markov model) should be merged during model learning. Since the standard method is 
overly confident for frequencies that are close to 0 or 1, we regularize the estimates using a 
symmetric beta distribution as a prior. Specifically, haplotype clusters x and y are not merged 
unless the following condition is satisfied for some haplotype h: 
 

 
 
where nx and ny are the sizes of clusters x and y. The posterior allele frequency estimates in this 
formula are  
 

       
 
where nx(h) and ny(h) are the numbers of haplotypes that begin with haplotype h. We set the 
parameters of the Beta prior (the prior counts), α and β, to 0.5. Compare this criterion to55, 
which merges two clusters unless the following relation holds for some h: 
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where 𝑝̂𝑥

(ℎ)is the proportion of haplotypes in cluster x with that begin with haplotype h, and 𝑝̂𝑦
(ℎ)is 

the proportion of haplotypes in cluster y that begin with h. We evaluated the phasing accuracy of 
the algorithm using a few different values for constant C and settled on C = 20. 
 
Evaluation of genotype phasing method 
 



Supplementary Table 7 compares the phasing accuracy of BEAGLE applied to datasets of 
different size against our phasing method. We evaluated phasing accuracy on a test set of 
1,188 unrelated individuals from our database that have been trio-phased. This experiment 
shows that our implementation infers the phase of new genotype samples more accurately than 
BEAGLE—and with much lower computational cost—provided we are able to make use of a 
very large panel of phased genotypes.  
 
Constructing the global ancestry reference panel 
 
Predicting the ethnic origins of an individual's ancestors from their DNA is a central feature of 
the AncestryDNA product. We use these admixture estimates here to interpret the clusters in 
relation to worldwide regions (regions in Europe, Africa, and so on). Based on an individual's 
genotypes, we estimate the proportion of their genome that is attributed to different ancestral 
populations. For additional details on these methods, refer to the AncestryDNA Ethnicity 
Estimate White Paper11. 
 
For estimating admixture proportions, we curate a reference panel of 3,000 "labeled" genotype 
samples for which we can reasonably trace their origins to one of the 26 ancestral populations. 
We begin with an initial set of 4,657 labeled samples compiled from multiple sources: 855 
samples from 52 worldwide populations collected as part of the Human Genome Diversity 
Project2,56; over 1,200 samples from a proprietary AncestryDNA reference collection; and over 
1,600 putatively single-origin samples from AncestryDNA customers that consented to 
participate in research. To identify AncestryDNA candidates for inclusion in the reference panel, 
we consult user-generated pedigrees, and we select a customer sample if all lineages trace 
back to the same geographic region. (More precisely, we check the birth locations of all 
available grandparents and great-grandparents in the customer's pedigree.) For samples from 
the proprietary reference collection, we also check birth locations of the most distant ancestors 
that were provided in the pedigree. We take an additional step to confirm single-origin ancestry 
of the candidate reference samples in the admixture analysis, detailed below. 
 
The samples from the proprietary collection are genotyped using the same Illumina 
OmniExpress array (described above). To ensure high-quality genotype data, we follow identical 
quality control steps to the AncestryDNA samples. The HGDP samples are genotyped on the 
Illumina 650K platform2,56. Therefore, for the admixture analysis we use only the ~300,000 
SNPs common to both OmniExpress and 650K arrays. 
 
Population structure analysis can be sensitive to inclusion of genetically related samples. 
Therefore, we take steps to discard samples so that no two individuals in the reference panel 
have an unusually high amount of DNA sharing. To quantify DNA sharing, we estimate the 
probability that 1 and 2 alleles are identical-by-descent (IBD). We use PLINK57 to compute these 
probabilities for each pair of individuals. When assessing outlying IBD proportions, we compare 
against members assigned to the same region only, since different populations can exhibit 
markedly different IBD distributions (for example, due to historical bottlenecks or rapid 



population expansion). This filtering step removes about 100 samples from consideration for the 
reference panel. 
 
Next, we take an iterative process to gradually refine the reference panel, determine the final 
populations for admixture estimation, and eliminate samples in which the genetic estimates 
disagree with the provided labels. This process involves iterating two separate analyses: 
 
(1) We visually inspect the labeled genotype samples projected onto 2 two principal 
components (PCs). We use this projection to suggest groupings and identify outliers; groups 
that do not separate as well as others based on this projection are merged. We also use this 
projection to identify "outliers" that are far from the majority of the samples assigned to the same 
group. Because the top 2 PCs correspond to different axes of variation depending on the 
samples included, we repeat this analysis at different "scales", typically by geography; e.g., 
global samples, then only samples from Europe, then samples from Scandinavia, then samples 
from Norway only. 
 
(2) We run additional analyses using ADMIXTURE to further identify outliers and groups that are 
not well delineated genetically. Specifically, we perform a leave-one-out validation, in which we 
remove the label of one candidate sample from the reference panel, and attempt to estimate the 
admixture proportions of this sample using the remaining (labeled) reference samples. We 
repeat this procedure for each sample. Samples that are assigned high admixture proportions to 
the wrong populations are considered outliers, and removed from the panel. This leave-one-out 
validation step is also useful for informing population boundaries; groups that are commonly 
confounded by ADMIXTURE are combined into one population. 
 
After completing this process, the final reference panel consists of 3,000 samples partitioned 
into K = 26 ancestral populations (Supplementary Fig. 7, Supplementary Table 2). This 
reference panel is used to estimate admixture proportions in all unlabeled (customer) samples.  
 
Estimating ancestral admixture proportions in unlabeled genotype samples using 
ADMIXTURE 
 
We use the program ADMIXTURE58,59 to jointly estimate admixture proportions in the labeled 
reference panel and unlabeled customer samples from their genotypes. One reason to use 
ADMIXTURE over other software (e.g., STRUCTURE60) is that it can easily incorporate 
information from labeled samples. Another important reason is that the computation scales well 
to large data sets, so we can deliver accurate admixture estimates for hundreds or thousands of 
individuals in a reasonable amount of time.  
 
We iteratively run ADMIXTURE jointly on the 3,000 labeled samples and small batches of 
unlabeled samples. The size of the batch, as well as the composition of samples included in the 
batch, can impact the final admixture prediction for a given individual since the population allele 
frequencies are also adjusted to reflect the unlabeled samples. However, in practice we find that 
variation in the predictions for different batches is small so long as the number of unlabeled 



samples included in a single batch is small relative to the size of the reference panel. Also, 
since admixture estimates can be sensitive to closely related individuals, we take steps to 
ensure that no closely related samples (customer samples or reference samples) are included 
in the same batch. 
 
We set K = 26, and run ADMIXTURE in "supervised" mode (more accurately, it is semi-
supervised). We provide population labels (in a .pop file) for the 3,000 reference samples only. 
Since the model assumes independent markers, we use PLINK57 to prune SNPs that are in high 
linkage disequilibrium. Because a few ancestral populations represent a large proportion of our 
reference panel, and therefore dominate the correlation observed in the panel, we calculate the 
correlation coefficient (r2) between the same pair of SNPs in all 26 populations separately, then 
we define a new correlation coefficient by taking the average of the 26 values. We repeat this 
calculation for all pairs of SNPs within each 50-SNP window. We then prune SNPs until no pair 
of SNPs within a window has an "averaged" r2 greater than 0.2. We repeat this process for each 
window, starting at every 5th marker on a chromosome. After this pruning procedure, we arrive 
at a set of 112,909 SNPs—these are the SNPs used to estimate the admixture proportions for 
all unlabeled samples. 
 
Overview of IBD network analysis 
 
Rather than infer population characteristics from IBD patterns in known, or assumed, 
populations, here we aim to discover underlying population structure from IBD. We use a model-
free approach, turning to the well-studied problem in machine learning and statistical physics of 
learning structure in a network. Intuitively, our approach is analogous to the way that principal 
components analysis (PCA) has been widely used to infer structure from genetic polymorphism 
data without specifying a demographic process60. (Although we note that recent work has 
formally related PCA to underlying demographic processes; e.g., 61.) The key idea is to 
transform the problem of inferring population structure from IBD to the well-studied problem of 
learning structure in a network—that is, an undirected graph with weighted edges39,45,62. This is 
similar in some respects to the approach described by Gusev et al.63. Our hypothesis is that 
some of the structural features we identify in the IBD-based network can be related to 
population demography. (Note this approach is unrelated to reconstruction of haplotype 
networks64.) 
 
Our method involves three key steps. First, we estimate the total length of IBD shared between 
each pair of samples in our database (this step is described above). Second, using the 
estimated IBD, we construct an IBD network—a graph in which vertices correspond to 
genotyped individuals, and edges are a function of the estimated IBD between each pair (details 
are given in next section). Third, we build on methods developed in machine learning and 
statistical physics to study the structural properties of the IBD network.  
 
We take a simple approach to inferring structure in the IBD network by identifying subgraphs 
with a relatively high density of internal edges—these are commonly called either modules or 
communities. (In our paper, we have deliberately avoided using the term "community" in this 



way because it can be confused with its usage in population studies, although we do refer to the 
method as "community detection".) This is the most widely used strategy for inferring network 
structure, and many algorithms have been developed that can quickly and accurately 
approximate the modular structure of a network39,62. 
 
In contrast to PCA applied to genetic polymorphism data, here we do not have the benefit of 
previous work supporting the interpretation of modular network structure as an underlying 
demographic process. Another underlying concern is that we cannot guarantee that standard 
theory and practice of inferring modular network structure is applicable because the IBD 
network has an unusual combination of properties that distinguish it from other types of 
networks commonly studied in the literature: 
 
(1) The network is very sparse; for example, if we assign nonzero edges to all pairs with total 
IBD > 12 cM in our sample (see next section), only 0.2% of pairs are connected in the network. 
 
(2) The edge weights are noisy; IBD as a predictor of familial relationships has high variance, 
even when detection of IBD is very accurate.  
 
(3) Most community detection methods assign each vertex to a module, but here we expect that 
many, if not most, individuals do not neatly "fit" within any single module—consider an individual 
with grandparents from different populations. 
 
(4) In addition, some individuals may not belong to any module; for example, individuals from 
groups that are poorly represented in our sample. 
 
With these points in mind, we have developed a network analysis based on two complementary 
methods for inferring modular network structure: (1) a hierarchical clustering method that 
recursively maximizes the modularity of the network; (2) a spectral analysis method that 
generates a low-dimension representation of the network structure, which we use to extract 
"unusually disconnected" subsets of the network. In the remainder of the Supplementary 
Methods, we use "cluster" to refer exclusively to a subgraph identified by recursive modularity 
maximization, and a "stable subset" to mean a subgraph identified via the spectral analysis. 
(Elsewhere in the description of the results, for brevity we also use "cluster" to refer to stable 
subsets when the distinction between cluster and stable subset is not relevant to the result.) We 
use the term "stable subset" to contrast with degenerate network clusterings40 that may underlie 
continuous variation in IBD due to, for example, isolation-by-distance. These stable subsets 
tend to isolate the more discontinuous portion of variation in IBD that putatively reflects IBD 
patterns from distinct subgroups—see Supplementary Fig. 6 for an illustration of this using 
simulated data. Unlike the hierarchical clustering, in the spectral analysis we do not attempt to 
assign every individual to a cluster—we only use it to identify subsets that are unusually 
disconnected from the rest of the network. Since we have found that this type of population 
structure is typically more straightforward to interpret, much of our presentation focuses on 
annotating and interpreting the network structure captured by the spectral analysis. For 



additional discussion of the relationship between the hierarchical clustering and the spectral 
analysis, see "Discussion of network analysis" in the Supplementary Text. 
 
Constructing the IBD network 
 
There are two key considerations that constrain our choice of edge weight function w[e(i, j)]. 
First, only a very small proportion of estimated IBD segment lengths are suggestive of close 
relationships. Therefore, if we place most of the weight on close relationships, the graph will be 
extremely sparse and disconnected, and there will be little population demographic structure 
that can be inferred from the graph. A second consideration is that while GERMLINE can infer 
longer IBD segments with high accuracy, it cannot reliably distinguish between shorter tracts 
that are truly inherited from a common ancestor and false positive IBD65. Therefore, if we place 
substantial weight on shorter shared IBD arising from more distant familial relationships (e.g., 
IBD less than 4 cM in length), there is a good chance that the "noise" in the network structure 
will overwhelm the pattern of genetic connections that we are ultimately interested in 
investigating. 
 
Within these constraints, we still have considerable flexibility for defining edge weights from IBD. 
Our strategy is as follows. First, we choose a target range of ancestral generations. Second, we 
empirically assess the distribution of IBD lengths via simulation. Third, we place most weight on 
IBD lengths arising from familial relationships corresponding to the target generations. The 
defined edge weights necessarily hinge on the assumptions made in the simulations. Therefore, 
we make these assumptions, and their rationale, clear. 
 
We compile estimated IBD from a variety of familial relationships by simulating reproductive 
events from a subset of the sample genotypes. This simulation is intended to capture the 
correspondence between familial relationship (specifically, number of separating meioses) and 
IBD segment length for an "idealized" (random mating) population with a population distribution 
that reflects our customer database. We begin with a subset of 24,362 samples selected so that 
no pair of samples share a 20-cM IBD segment (as detected using the procedures described 
above). We draw samples at random without replacement to simulate familial relationships as 
close as parent-child and as distant as 10th cousins. Supplementary Fig. 29 gives an example 
simulation of two individuals (labeled S3 and S4) with a first-cousin relationship. All other familial 
relationships are simulated in a similar way. Note that we do not simulate relationships, such as 
half-sibs, that do not follow this pedigree pattern. Recombination events during meiosis are 
simulated according to interpolated HapMap genetic distances66. The final product of the 
simulations is 4,412 genomes with known familial relationships.  
 
As discussed above, we note that this simulation does not capture population-specific excess 
IBD sharing due to founder events, non-random mating, rapid population expansion, or both. 
This means that for some subpopulations, most of the edge weights will be more correctly 
concentrated on IBD due to ancestors a specified number of generations back, whereas for 
other subpopulations with sharp deviations from our simulation assumptions (e.g., European 
Jewish), the IBD corresponds in expectation to slightly more distant common ancestors. As a 



result, clustering of the IBD network could reveal population structure that is further back from 
the target generations. 
 
The distribution of total IBD from this simulation experiment is summarized in Supplementary 
Fig. 30. Note that the proportions for a given amount of total IBD depend on the relative number 
of relationships simulated of a given type. We ensured that the number of relationships doubles 
for every increase of 2 to the number of separating meioses (e.g., there are twice as many pairs 
separated by 6 meioses as there are separated by 4 meioses).  
 
Finally, we define the edge weights in the network as the observed proportion of total IBD 
lengths that are due to relationships separated by at most 8 meioses (corresponding to common 
ancestors at most 4 generations back). This empirical distribution is fit to the Beta cumulative 
density function, and this fitted distribution (with scale parameters α = 2, β = 200) defines the 
weights for all edges in the network (refer to Supplementary Fig. 2 for more details). 
Furthermore, we remove all edges corresponding to pairs with total IBD less than 12 cM since 
they signal the target familial relationships less than 6% of the time, and therefore contribute 
little weight to the network. Intuitively, pruning edges representing small amounts of genomic 
sharing allows us to focus on IBD that corresponds to more recent demography, while also 
removing significant amounts of spuriously identified IBD65. This reduces the chance of having 
edges corresponding to false-positive IBD, while allowing for a large number of edges in the 
graph. 
 
Hierarchical clustering of IBD network 
 
In this phase of our analysis, we employ a simple and fast heuristic algorithm, the multi-level or 
Louvain method67, to identify network modules. After running this multi-level community 
detection algorithm, 99.9% of the IBD network (768,758 out of 769,444 vertices) is subdivided 
into 6 clusters (Supplementary Data 2). The rest of the network (0.1% of the vertices) is 
assigned to many extremely small clusters with at most 101 members. Many of these small 
clusters likely correspond to subpopulations that have poor representation in our database, or to 
unusually large, tight-knit families. They are difficult to interpret based on the available 
genealogical data, so we do not examine them further. 
 
To investigate more fine-scale clustering, and potentially fine-scale population structure, we split 
the original network into 5 sub-networks corresponding to the largest 5 clusters, then we 
partition these sub-networks into additional clusters using the same multi-level community 
detection algorithm. Although the smallest clusters are more likely to contain additional modular 
structure than larger clusters68, to safeguard the clustering against over-fitting due to noise in 
the observed edges and the sparse number of pairs with IBD > 12 cM, we only run this second 
round of community detection on the 5 clusters with at least 10,000 members. (Of the 6 initial 
clusters, the smallest contains only 3,845 samples; see Supplementary Data 2.) 
 
Applying the multi-level algorithm to the 5 sub-networks partitions the network into a total of 112 
clusters, the majority of which are very small; 71 out of the 112 have less than 100 members. 



Again, since small clusters are more difficult to reliably interpret with the available genealogical 
data, in the results we restrict in our attention to clusters with at least 2,000 members. A total of 
22 second-level clusters have at least 2,000 members (Supplementary Data 2). These 22 
clusters, and the 6th-largest top-level cluster that was not subdivided further, account for 98.8% 
of the network (759,925 out of 769,444 vertices). We observe wide variation in size among the 
22 largest second-level clusters; the largest has 108,786 members, while others have just over 
2,000 members.  
 
To generate the third level of the cluster hierarchy, we apply the multi-level method to the 12 
second-level (sub-network) clusters with more than 10,000 members. Many of these clusters 
are likely informative of additional, more subtle trends in population structure, but are often 
difficult to interpret unambiguously from our data. In total, we identify 164 clusters within the 12 
second-level clusters. As before, many of these clusters are small; 64 have less than 100 
members. Still, we identify a total of 55 clusters with more than 2,000 members, the largest of 
which includes 65,551 samples (this is a subset of the "Lower Midwest and Appalachians" 
cluster; see Supplementary Data 2).  
 
Subsequent inspection of the genealogical data in the third-level clustering strongly indicates 
that many of these clusters are highly informative of fine-scale population structure—some of 
the more unmistakable examples are clusters corresponding to Italians, Irish, Scottish, Finnish, 
Norwegians and Puerto Ricans (see Supplementary Figs. 25–27 and Supplementary 
Discussion). However, out of concern for reporting network structure attributed to synthetic 
factors (either false positive clusters, or clustering that can be strongly biased by properties of 
the modularity-maximization approach), as well as the difficulty of characterizing the subtle 
population structure underlying many of these clusters, we focus on the first and second levels 
of the hierarchical clustering in the main presentation of the results. Although the third-level 
clustering is not the focus of our main presentation, we do treat these clusters as candidates for 
the spectral analysis (see below). Some of these clusters are indeed supported by the spectral 
analysis; that is, some of the clusters detected in the largest second-level clusters closely 
coincide with “stable subsets” identified in the spectral analysis (Supplementary Data 2). 
 
Spectral analysis of IBD network 
 
We complement the hierarchical clustering using a spectral dimensionality reduction technique 
for network data. Our spectral analysis approach is based on the Laplacian eigenmaps 
method69, which has close connections to spectral clustering45,46. Spectral methods have been 
previously used to infer population structure from genetic data42,43. 
 
The Laplacian eigenmaps method69 is derived from a spectral decomposition of the 
(normalized) Laplacian matrix. The intuition behind this approach is that the eigenvectors 
associated with the largest eigenvalues of the Laplacian matrix (outside the largest eigenvalue, 
which is always 1, or nearly 1) separate disconnected components, or weakly connected 
components, of the graph. 
 



We define the spectral embedding as the first m eigenvectors of the normalized Laplacian. (To 
the best of our knowledge, there are no theoretical results guiding the choice of m in this setting, 
and this is a point we return to below.) We efficiently solve for the largest m eigenvectors of the 
sparse, symmetric n × n Laplacian matrix using the Lanczos iterative algorithm70, implemented 
in ARPACK71, and interfaced to R through the rARPACK library. To justify the interpretation of 
the spectral embedding as the projection of samples onto a Euclidean space, we note that the 
first m eigenvectors and eigenvalues can be used to formally define a projection operator72.  
 
A key feature of the spectral analysis is that provides a continuous representation of network 
structure, potentially overcoming the unnatural assumption that each sample belongs to a single 
cluster, or population. However, it is currently unknown how to generalize interpretation of this 
representation beyond the few examples we have seen where some dimensions of the spectral 
embedding correlate strongly with admixture proportions estimated using ADMIXTURE 
(Supplementary Fig. 22). Therefore, we take a simple approach to infer population structure 
from the spectral embedding by projecting the hierarchical clustering onto this embedding, then 
using this projection to extract clusters. These clusters, which we refer to as "stable subsets," 
represent unusually disconnected portions of the network. 
 
Before describing our procedures for identifying stable subsets more formally, we first give an 
example to illustrate how the spectral embedding can be used to identify these highly 
disconnected subsets. Supplementary Fig. 31 shows the projection of all genotyped individuals 
(i.e., vertices in the IBD network) onto the first two dimensions of the spectral embedding. The 
vast majority of samples are concentrated near the origin. Labeling the samples according to 
their membership to the first-level IBD network clusters, we find that many of the samples 
projecting away from the origin along the first dimension are assigned to the cluster labeled as 
"Caribbeans"; these are drawn as blue circles and crosses in the figure. Many of the samples 
projected away from the origin along the second dimension belong to the cluster labeled as 
"European Jewish"; these are drawn as red circles and crosses in the figure. (Later, we explain 
how we interpret these clusters as European Jewish and Caribbean Islanders.) 
 
To define a stable subset for the Caribbeans cluster, we specify a classification rule of the form 
yi,1 > b1 ∧ yi,2 > b2 ⇒ "i is a member of Caribbeans stable subset". Here, yi,1 and yi,2 are the 

projection of sample i onto dimensions 1 and 2 of the spectral embedding, rotated by r degrees. 
The choice of this rule—that is, the choice of parameters b1, b2 and r—is subject to the following 
condition: most of the samples satisfying this classification rule must also be assigned to the 
Caribbeans cluster (again, as identified by hierarchical clustering). In other words, the rate of 
"false positives" must be low, in which we define "true positives" and "false positives" using 
hierarchical clustering membership as the “ground-truth.” Setting b1 = 0.001, b2 = –0.0005 and r 
= 8 degrees counter-clockwise, 9,315 out of 11,807 Caribbean cluster members are assigned to 
the stable subset (79% recall). These are the blue circles in Supplementary Fig. 31. The 2,492 
cluster members that are not assigned to the stable subset are shown as blue crosses. There 
are an additional 60 samples that satisfy this classification rule, but are not members of the 
Caribbean cluster (and so are not represented in the figure). Therefore, we obtain a false 
positive rate of only 0.6%. The final stable subset we report is the set of 9,315 samples that 



satisfy this classification rule and are assigned to the Caribbeans cluster in the hierarchical 
clustering (see Supplementary Data 2). 
 
Following the same procedure, we define the stable subset for the European Jewish cluster. In 
this case, we specify the classification rule as yi,1 < 0.001 ∧ yi,2 < –0.001 ⇒ "i is a member of 

European Jewish stable subset". Applying this classifier, 26,547 out of 32,708 cluster members 
are included in the stable subset (81% recall). The selected samples are the red circles in the 
figure, and the remaining cluster members are shown as red crosses. In this case, only 13 
individuals that are not members of the European Jewish cluster satisfy this classification rule, 
for a very low false positive rate of 0.05%. The final stable subset we report is the set of 26,547 
samples that satisfy this classification rule and are assigned to the cluster. Below, we describe 
the desired thresholds for recall and false positive rate in the identification of stable subsets, as 
well as our rationale for using the hierarchical clustering as validation. 
 
Note that many of the members of the two clusters that are not included in their respective 
stable subsets—the blue and red crosses—lie somewhere in between the two stable subsets. 
Our conjecture is that this is an example of how the community detection method arbitrarily 
assigns "admixed" individuals to a single cluster—these are putatively individuals of both Jewish 
and Caribbean descent—whereas the mapping onto the spectral embedding allows us to 
distinguish such individuals. 
 
Once the eigenvectors corresponding to the largest m eigenvalues have been computed, a 
common strategy is to use a simple algorithm such as k-means to estimate clusters in the 
spectral embedding (e.g., 46). Although this approach has been successful in many domains, the 
"local scaling problem" in spectral clustering, which has been studied in other types of data73, 
and here reflects the relative density of the IBD connections, complicates this enormously. This 
is readily appreciated—in two dimensions, at least—by observing the wide variation in dispersal 
of the clusters identified in the spectral embedding (Supplementary Figs. 4, 5). To circumvent 
the local scaling problem, we use the projection of the hierarchical clustering onto the spectral 
embedding to generate a set of "candidate clusters" for the spectral analysis.  
 
Our formal procedure for identifying stable subsets is as follows. The first step is to identify a 
cluster that projects away from the origin in the spectral embedding. This is accomplished 
simply by visually inspecting the projection of the candidate clusters in the spectral embedding, 
in which we label the clusters with different colors and symbol shapes (see Supplementary Figs. 
4, 5 for examples of this). Obviously, this can be only realistically done in two dimensions at a 
time. Further, to make this process more tractable, we only inspect pairs of consecutive 
eigenvectors; that is, j = i + 1. It is conceivable that some clusters are better delineated by non-
consecutive pairs of eigenvectors, or even more than two eigenvectors74, but we did not 
investigate this. Thus, this procedure does not guarantee identification of all stable subsets in 
the spectral embedding. 
 
Once we have selected a cluster that projects away from the origin, we attempt to identify a 
subset satisfying the following definition: a subset of a hierarchical cluster is defined as a stable 



subset if it is possible to specify a simple linear classification rule (detailed above) using 
eigenvectors i and j to classify some of the individuals to the same cluster with a low rate of 
false positives (again, a "false positive" is a sample that is incorrectly classified according to the 
cluster assignment from the hierarchical clustering). This definition does not uniquely determine 
the stable sets, as there is still considerable flexibility in how these stable subsets can be 
chosen from the spectral embedding. Our approach is to specify the linear decision rule that 
recovers the largest number of cluster members (that is, high recall), while keeping the false 
positive rate acceptably low (as a guideline, we use 10%). All stable subsets we detect in the 
spectral embedding have low false positive rates; the largest false positive rate, in the Central 
American cluster, is 12% (Supplementary Data 2). Finally, to verify that the selected cluster is 
the most appropriate one for defining the stable subset, we check that the correlation between 
the linear classifier and cluster assignment is highest for the selected hierarchical cluster. Linear 
decision rules, false positive rates and other details for all identified stable subsets are given in 
Supplementary Data 2. 
 
Beyond the local scaling problem, another challenge with identifying clusters in the spectral 
embedding is that in most dimensions of the spectral embedding, only a small number of 
samples project away from the origin—typically far less than 100. These correspond to very 
small subgraphs of the IBD network that are the least connected with the rest of the network. 
(Note that these highly disconnected subgraphs do not necessarily correspond to the very small 
clusters identified in the first, second and third rounds of the hierarchical clustering.) 
Furthermore, many of the same clusters appear in multiple dimensions of the spectral 
embedding. In short, the spectral embedding captures the clusters and small numbers of 
samples that exhibit the most dominant modular structure in the network, possibly obscuring 
other, more subtly disconnected subsets. (In some respects, this is the opposite of the 
"resolution limit" problem in modularity-maximizing methods68, in which strong modular structure 
in small subgraphs can be obscured by more subtle modular structure in large portions of the 
network.) 
 
We address this issue by isolating the subgraph for which we have not identified any 
substructure, analogous to the approach of recursively subdividing clusters in the hierarchical 
clustering. Initially, we compute the spectral embedding from the completely connected graph 
with 769,444 vertices. Once we have completed the spectral analysis of this graph, we compute 
the spectral embedding from a subgraph with 586,147 vertices that is obtained by first removing 
the small sets of individuals and the clusters that project away from the origin in the initial 
spectral embedding (i.e., the clusters for which we are able to identify stable subsets in the first 
phase). Therefore, we use two sets of eigenvectors in the spectral analysis: eigenvectors of the 
Laplacian defined by the completely connected graph with 769,444 vertices; and eigenvectors 
of the Laplacian defined by the subgraph on 586,147 vertices. 
 
Finally, an important aspect to this procedure that remains unresolved is the number of 
eigenvectors that are used to define the spectral embedding. One commonly proposed criterion 
is the "eigengap" heuristic42, which is based on theory showing that a relatively large difference 
in consecutive eigenvalues of the Laplacian matrix is suggestive of the number of disconnected 



components of the graph. However, this heuristic only works well if the network contains very 
well-pronounced modules45, which is not the case here. Here, we limit the spectral embedding 
to the top m = 40 eigenvectors, primarily for manageability of the analysis procedure. It is 
possible that inspecting more eigenvectors (with smaller eigenvalues) could provide support for 
additional substructure in the IBD network. 
 
Projecting 1000 Genomes samples onto the spectral embedding 
 
Since the spectral embedding defines a projection operator63, we can map new genotype 
samples onto the manifold defined by this embedding. This allows us to validate against data 
not used to construct the embedding. Here, we use the 1000 Genomes data31. The SNPs 
genotyped in the AncestryDNA samples (using the OmniExpress chip) were also genotyped in 
1,816 unrelated 1000 Genomes samples (using the Illumina OMNI 2.5M chip), so we can follow 
the steps above to estimate IBD between all pairs (i, j), in which i is a 1000 Genomes sample 
and j is an AncestryDNA sample. (Note that we do not need to estimate IBD shared by 1000 
Genomes samples as it is not needed to compute the projection, below.) These IBD detection 
results are summarized in Supplementary Table 3. Since only 1,219 out of 1,816 samples share 
greater than 12 cM IBD with at least one AncestryDNA sample (and therefore has at least one 
network edge with a positive weight), only these 1,219 samples are retained for the validation. 
These IBD data form an n* × n matrix W* with entries w[e(i, j)], where n* = 1,219 and n = 
774,516. Next, representing the spectral decomposition of the Laplacian as an n × m matrix of 
eigenvectors, R, and m × m diagonal matrix of eigenvalues, A, the projection is defined as R* = 
(D*)-1/2W*D-1/2RA-1, where D* is an n* × n* diagonal matrix with diagonal entries D*(i, i) each 
equal to the sum of the edge weights w[e(i, j)].)]. The rows of R* define how the samples are 
projected onto the spectral embedding, and can be used to create visualizations of the 1000 
Genomes data (e.g., Fig. 6). 
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Supplementary figures 
 

 
Supplementary Figure 1 | Number of DNA samples with reported birth locations in US 
states. These numbers are obtained from pedigree nodes linked to DNA samples. Note that the 
counts by US state don't add up to the total number of US born samples because "US born" 
also includes Puerto Rico, Guam and other US territories. 

number of DNA samples
0 10,000 20,000 30,000 40,000

California
New York

Texas
Illinois

Pennsylvania
Ohio

Michigan
New Jersey

Massachusetts
Missouri

Florida
Washington

Indiana
Oklahoma

Georgia
Virginia

North Carolina
Tennessee
Minnesota
Wisconsin
Kentucky
Alabama
Maryland
Louisiana

Oregon
Iowa

Colorado
Kansas

Arkansas
Connecticut

Utah
South Carolina

Arizona
West Virginia

Mississippi
D.C.

Nebraska
New Mexico

Idaho
Maine

Montana
Rhode Island
South Dakota

New Hampshire
Hawaii

Puerto Rico
Nevada

North Dakota
Wyoming

Alaska
Delaware
Vermont



 

 
Supplementary Figure 2 | Mapping from total IBD length (in cM) to edge weight. Blue curve 
gives the mapping from IBD segment length to edge weight. The mapping is defined by the beta 
distribution Pr(X ≤ x), where x is the estimated proportion of the genome that is IBD (or, 
equivalently, the kinship coefficient), fit to the empirical distribution of a/(a + b), in which a is 
proportion of relationships that are within 8 meioses or closer, and b is the proportion of 
relationships that are separated by 9 meioses or more. In other words, the mapping is defined 
by simple beta approximation to the conditional probability distribution Pr(number of separating 
meioses | total detected IBD). The proportions a and b are calculated from 4,412 genomes with 
known (simulated) familial relationships; see Supplementary Fig. 30 and Supplementary 
Methods for more details. The fitted beta distribution (the blue curve) has scale parameters α = 
2, β = 200. 
 

 
Supplementary Figure 3 | Top 40 eigenvalues of Laplacian matrices. Panel a: eigenvalues 
of the Laplacian matrix computed from the completely connected network (with 769,444 
vertices). Panel b: eigenvalues of the subgraph Laplacian (with 586,147 vertices) after 
discarding samples assigned to clusters containing stable subsets identified from the initial 
Laplacian matrix. The first eigenvalue of 1, or near 1, is omitted from each plot. 
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Supplementary Figure 4 | Clusters projected onto spectral embedding. Plots a, c, e, g, i, k 
show all 769,444 vertices in the completely connected network projected onto different 
dimensions of the spectral embedding. Samples are colored by membership to selected 
clusters, and by their assignment to a stable subset (Supplementary Data 2). Samples assigned 
to the same cluster and stable subset are shown as darker colored circles; samples assigned to 
the same cluster but not assigned to the stable subset are shown as lighter colored crosses; all 
other samples are shown as light gray circles. Some dimensions appear to suggest additional 
stable subsets, but are not highlighted in the plots for one of the following three reasons: (1) the 
samples are not assigned consistently to a single cluster in the hierarchical clustering; (2) the 
stable subset includes only a very small number of samples, so it is difficult to interpret; or (3) 
the samples are assigned to a stable subset based on the projection onto other dimensions. 
Note that the separation of the Appalachians cluster is less visually apparent because the 
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samples are projected onto a small region. For validation, plots b, d, f h, j, m show the projection 
of 1000 Genomes62 samples onto the same dimensions of spectral embedding. The projection 
is computed from IBD estimated between all pairs of AncestryDNA and 1000 Genomes 
samples. These samples in are colored according to the provided population label. See 
Supplementary Data 3 for an explanation of the abbreviations used for the population labels. 
  



 

 
Supplementary Figure 5 | Clusters projected onto subgraph spectral embedding. The 
subgraph is obtained by discarding vertices assigned to clusters containing stable subsets 
identified in the initial spectral embedding. Plots a, c, e, g, i show all 586,147 vertices in the 
subgraph projected onto different dimensions of the spectral embedding. Samples are colored 
by membership to selected clusters, and by their assignment to a stable subset (Supplementary 
Data 2). For validation of the spectral analysis, plots b, d, f, h, j, m show the projection of 1000 
Genomes62 samples onto the same dimensions of spectral embedding. See description of 
Supplementary Figure 4 for additional details. 
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Supplementary Figure 6 | Illustration of community detection and spectral analysis in a 
simulated data set. Panels a–d summarize the results of running the community detection 
(multi-level) algorithm—the algorithm used to generate the hierarchical clustering—and spectral 
analysis (Laplacian eigenmaps method) on a small, simulated data set. The data set is 
generated by first drawing co-ordinates (xi, yi) uniformly at random from 3 geographic regions, 
representing 3 discrete populations with low connectivity (e.g., genetic relatedness) between 
them: the unit circle centered at (–2, –1.5); the unit circle centered at (2, –1.5); and a box [-4, 4] 
× [0.5, 2.5] with rounded corners. In total, n = 3,000 points are drawn, in which 500 are from 
population 1, 500 are from population 2, and 2,000 are from population 3. These 3,000 points 
are depicted in Panel a. The network, or undirected graph, is defined from these data in the 
following way: (i, j) is an edge in the graph if and only if i is among the 25 nearest neighbors of j, 
or if j is among the 25 nearest neighbors of i, in which "nearest neighbor" is determined by 
Euclidean distance. All edges are assumed to have a weight of 1. In this way, points nearest to 
each other in Panel a are connected to each other in the network. Additionally, 0.1% of pairs are 
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connected uniformly at random if they aren't already connected by an edge. Panel b shows the 
(symmetric) adjacency matrix of the undirected graph for 500 randomly chosen vertices of this 
graph. (Note that the diagonal of this adjacency matrix is set to 1 for the Laplacian eigenmaps 
method.) After generating these data, we apply the community detection (Panel d) and spectral 
analysis methods (Panel c) to these data. The community detection algorithm subdivides the 
network into 15 communities, or clusters; the assignment of samples to these 15 clusters is 
depicted by different colors and shapes in Panel a, c and d. These 15 clusters accurately 
capture the 3 populations because there are few connections between these populations, but it 
also subdivides each of the 3 populations in such a way that samples nearby each other are 
usually included in the same cluster. Panel d shows the sample adjacency matrix, again for a 
random subset of 500 vertices, in which the vertices are arranged by assignment to the 15 
clusters. Despite the apparent arbitrariness of this clustering, it is consistent with the aim of 
maximizing the modularity of the network, as the density of connections between the detected 
clusters is relatively small. In Panel c, the dominant structure captured by the spectral 
analysis—specifically, the first 2 eigenvectors of the Laplacian—is the separation of the points 
into the 3 populations. Although the spectral embedding also captures structure within 
population 3, specifically the location in population 3 along the horizontal (x) axis, this is a less 
dominant feature in the embedding. In summary, this example illustrates that the community 
detection method identifies clusters that capture both discrete and continuous population 
structure (e.g., isolation-by-distance), whereas the spectral analysis can be used to isolate 
discrete population structure. 
  



 
Supplementary Figure 7 | Geographic regions corresponding to ancestral populations in 
global ancestry reference panel. See Supplementary Table 2 for composition the panel. 
*Admixture proportions for these regions are collapsed into a single admixture proportion 
representing West Africa. Map and figure designed by AncestryDNA. 
 
  



 
Supplementary Figure 8 | Global summary of estimated admixture proportions. 
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Supplementary Figure 9 | Admixture proportions in top-level IBD network clusters. Filled 
circles correspond to mean admixture proportions, and error bars give [0.05,0.95] credible 
intervals. 
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Supplementary Figure 10 | Admixture proportions in IBD sub-network clusters. Filled 
circles correspond to mean admixture proportions, and error bars give [0.05,0.95] credible 
intervals.  
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Supplementary Figure 11 | Admixture proportions in stable subsets identified from 
spectral analysis. Filled circles correspond to mean admixture proportions, and error bars give 
[0.05,0.95] credible intervals. 
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Supplementary Figure 12 | Distribution of pedigree sizes. Plot shows empirical distribution 
of the number of nodes in a pedigree linked to a DNA sample. Note that the histogram bins are 
wider for pedigrees with more than 200 nodes. 
 
 

 
Supplementary Figure 13 | Pedigree size versus pedigree depth. Plot shows empirical 
distribution of pedigree size (number of nodes in pedigree) stratified by pedigree depth 
(maximum generation represented in pedigree) for pedigrees linked to DNA samples. Only one 
node in a pedigree is generation 0—this is the node corresponding to the DNA sample. Each 
dot at the center corresponds to the mean, and the endpoints of the vertical bars represent the 
5% and 95% empirical quantiles. 
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Supplementary Figure 14 | Average pedigree size by US state. These numbers are based 
on counts of pedigree nodes linked to DNA samples with a US birth location. 
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Supplementary Figure 15 | Completeness of pedigrees and pedigree annotations. Left-
hand panel: The number of pedigree nodes per generation as a proportion of the maximum 
number of possible pedigree nodes in that generation. Right-hand panel: For each generation of 
the pedigree, proportion of nodes annotated with birth location, birth year and surname. 
  



 
Supplementary Figure 16 | Distribution of birth locations in continental US, by 
generation. Generation 0 corresponds to the DNA sample, so should reflect the birth location 
distribution of (present-day) US-born AncestryDNA customers. Generation 1 corresponds to 
parents, generation 2 corresponds to grandparents, and so on. Ancestral birth locations in each 
pedigree generation are divided into a grid, with grid points every 0.5 degrees of latitude and 
longitude. Only locations with at least 20 pedigree nodes are shown on the map. The size of 
each point is scaled by the number of annotated pedigree nodes at that location, separately for 
each generation. All maps in our figures were generated with the maps R package using data 
from the Natural Earth Project (1:50m world map, version 2.0). These data are made available 
in the public domain (Creative Commons CC0). 
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Supplementary Figure 17 | Distribution of birth locations in Europe, by generation. See 
description of Supplementary Fig. 16 for details. All maps in our figures were generated with the 
maps R package using data from the Natural Earth Project (1:50m world map, version 2.0). 
These data are made available in the public domain (Creative Commons CC0). 
  

generation 0

1 generation ago

2 generations ago

3 generations ago

4 generations ago

5 generations ago

8 generations ago

9 generations ago

6 generations ago

7 generations ago















Supplementary Figure 18 | Distribution of ancestral birth locations worldwide, in North 
America, and in Europe, for each cluster detected in IBD network. Pedigree nodes (0–9 
generations ago) annotated with birth locations are each converted to the nearest co-ordinate 
on a grid, with grid points every 0.5 degrees of latitude and longitude. Points are colored by 
odds ratio (OR)—the proportion of ancestral birth locations linked to cluster members at that 
map location over the proportion of ancestral birth locations linked to non-cluster members at 
the same location. A map location is plotted if at least 10 ancestors linked to cluster samples are 
born at that location, and if OR > 0.1. Points are scaled by the number of birth location 
annotations, separately in each map. Note that not all current political borders are shown in 
these maps. All maps in our figures were generated with the maps R package using data from 
the Natural Earth Project (1:50m world map, version 2.0). These data are made available in the 
public domain (Creative Commons CC0). 
 
  















































Supplementary Figure 19 | Distribution of ancestral birth locations worldwide, in North 
America, and in Europe, for each cluster detected in an IBD sub-network. See description 
of Supplementary Fig. 18 for details about this figure. See Supplementary Fig. 21 for a higher 
resolution view of the ancestral birth locations in the three Puerto Rico clusters. All maps in our 
figures were generated with the maps R package using data from the Natural Earth Project 
(1:50m world map, version 2.0). These data are made available in the public domain (Creative 
Commons CC0). 
 
  







































Supplementary Figure 20 | Distribution of ancestral birth locations worldwide, in North 
America, and in Europe, for each stable subset identified in spectral embedding. See 
description of Supplementary Fig. 18 for details about this figure. All maps in our figures were 
generated with the maps R package using data from the Natural Earth Project (1:50m world 
map, version 2.0). These data are made available in the public domain (Creative Commons 
CC0). 
 
  



 
Supplementary Figure 21 | Distribution of ancestral birth locations for the 3 clusters with 
a high concentration of birth locations on the Island of Puerto Rico. East Puerto Rico 
cluster (orange), Northwest Puerto Rico cluster (blue) and Southwest Puerto Rico cluster 
(green) are shown. Maps are plotted as in Supplementary Figs. 16–18, except that only 
locations with OR > 2 are shown, and grid points are placed every 0.1 degrees of latitude and 
longitude. All maps in our figures were generated with the maps R package using data from the 
Natural Earth Project (1:50m world map, version 2.0). These data are made available in the 
public domain (Creative Commons CC0). 
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Supplementary Figure 22 | Scatterplots of distance from origin in spectral embedding 
versus admixture proportions demonstrate relationship between IBD and global 
population structure. Each panel shows admixture proportions estimated using ADMIXTURE 
for all genotyped individuals assigned to the stable subset against the Euclidean distance from 
the origin in the spectral embedding. The distance is calculated only using the dimensions 
(eigenvectors) given in Supplementary Data 2.  
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Supplementary Figure 23 | Genealogical data capture immigration patterns from 
Northeast Mexico to the US. In particular, birth locations in recent generations show a 
particularly large concentration in South Texas. The size of each point is scaled by number of 
pedigree birth location annotations, separately for each of the 4 maps. Date ranges are obtained 
from the 5th and 9th percentile of the birth year annotations. For more details, see description of 
Fig. 2. All maps in our figures were generated with the maps R package using data from the 
Natural Earth Project (1:50m world map, version 2.0). These data are made available in the 
public domain (Creative Commons CC0). 
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Supplementary Figure 24 | Genealogical data by generation trace US migration and 
European origins of Utah cluster. The size of each point is scaled by number of pedigree birth 
location annotations, separately for each of the 6 maps. Date ranges are the 5th and 95th 
percentiles of the birth year annotations. For more details, see description of Fig. 2. Note that 
not all current political borders are shown. All maps in our figures were generated with the maps 
R package using data from the Natural Earth Project (1:50m world map, version 2.0). These 
data are made available in the public domain (Creative Commons CC0). 
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Supplementary Figure 25 | Admixture proportions in selected third-level clusters. Results 
are shown for the largest clusters detected in the sub-networks defined by the following second-
level clusters (see Supplementary Data 2): Midwest immigrants (shown in purple); Italian, Irish, 
Scottish and Atlantic Canada (green); and Lower South (light blue). Filled circles correspond to 
mean admixture proportions, and error bars give [0.05,0.95] credible intervals. Admixture 
statistics are only shown for ancestral populations in which the mean admixture proportion is 
>1% in at least one cluster. 
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Supplementary Figure 26 | Distribution of ancestral birth locations in North America and 
in Europe for selected third-level clusters. Results are shown for the largest clusters 
detected in the sub-networks defined by these two second-level clusters: Midwest immigrants; 
Italian, Irish, Scottish and Atlantic Canada (see Supplementary Data 2). See description of 
Supplementary Fig. 18 for more details. Note that there is sometimes uncertainty about the 
most appropriate cluster label based on the genealogical data. When we are uncertain, we 
typically choose a simpler label that fits most of the genealogical data, but we point out that this 
label may not accurately characterize some portion of the cluster. All maps in our figures were 
generated with the maps R package using data from the Natural Earth Project (1:50m world 
map, version 2.0). These data are made available in the public domain (Creative Commons 
CC0). 
 
 









Supplementary Figure 27 | Distribution of ancestral birth locations in North America for 
more selected third-level clusters. Results are shown for the largest clusters detected in the 
sub-network defined by the "Lower South" second-level cluster. Genealogical data are plotted 
separately for 0–6 generations ago and 7–9 generations ago to better highlight geographic 
concentration of ancestral birth locations. See description of Supplementary Fig. 18 for more 
details. Note that there is sometimes uncertainty about the most appropriate cluster label based 
on the genealogical data. When we are uncertain, we typically choose a simpler label that fits 
most of the genealogical data, but we point out that this label may not accurately characterize 
some portion of the cluster. All maps in our figures were generated with the maps R package 
using data from the Natural Earth Project (1:50m world map, version 2.0). These data are made 
available in the public domain (Creative Commons CC0). 
  



 
Supplementary Figure 28 | Global distribution of estimated IBD. Plot shows empirical 
distribution of total IBD (in cM) detected among 774,516 genotype samples, for all pairs with 
IBD > 5 cM. Note both axes are shown on the log-scale. 
 

 
Supplementary Figure 29 | Example of pedigree used to simulate first cousins. All 
pedigree nodes labeled Fn correspond to genotyped individuals drawn at random from the set 
of customer genotype samples. Pedigree nodes labeled Sn correspond to simulated genotypes. 
To simulate a pair of first cousins, S3 and S4, for example, we simulate a reproductive event 
between F1 and F2, resulting in S1's genotype, then we repeat the process to generate S2's 
genotype. We continue this process to simulate the genotypes of S3 and S4 from the genotypes 
of F3, F4, S1 and S2. 
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Supplementary Figure 30 | Distribution of total detected IBD (in cM) for different 
simulated familial relationships, grouped by number of separating meioses. One meiosis 
(abbreviated M1) corresponds to parent-child relationships, two meioses (abbreviated M2) 
corresponds to grandparent-child or (full) siblings, and so on. Each bar chart represents the 
conditional probability distribution Pr(number of separating meioses | total detected IBD). IBD 
detected in unrelated pairs, or pairs separated by more than 10 meioses, are used to calculate 
the conditional probability distributions, but are not shown in the figure. Note that total IBD 
lengths (the vertical axis) are shown on the logarithmic scale. 
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Supplementary Figure 31 | Illustration of how spectral embedding is used to delineate 
stable subsets. The plot shows the projection of all DNA samples onto the first two dimensions 
of the spectral embedding. Samples are colored by membership to clusters and corresponding 
stable subsets. See the text for more details about this figure. Observe that many of the lighter 
red and lighter blue crosses in this plot lie between the Jewish and Caribbean clusters. These 
are putatively "admixed" individuals that have ancestors of both Jewish and Caribbean descent. 
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Supplementary tables 
 

 number of 
samples 

avg. number of 
pedigree nodes 

nodes w ith all 
data f ields f illed 

in    
number of 

samples 
avg. number of 
pedigree nodes 

nodes w ith all 
data f ields f illed in  

  Not Reported 96,180 46.03 69.87% 
 

Vermont 685 121.24 79.23% 

Foreign Born 13,748 57.31 70.26% 

 

New  
Hampshire 1,021 129.36 79.25% 

US Born 322,683 86.25 77.67% 
 

Maine 1,502 134.55 80.42% 
Total 432,611 77.78 76.59% 

         
 

South 37,200 91.43 79.90% 
Mid Atlantic 56,570 60.29 72.45% 

 
Florida 8,116 82.77 78.92% 

New  York 23,632 53.34 72.12% 
 

Mississippi 2,825 87.55 81.35% 
New  Jersey 9,308 56.54 70.82% 

 
South Carolina 3,168 88.52 79.35% 

Pennsylvania 15,974 67.4 72.64% 
 

Georgia 6,640 92.32 80.67% 
Maryland 4,981 77.6 75.19% 

 
Louisiana 4,874 93.93 78.56% 

    
 

Alabama 5,151 97.46 81.39% 
West 54,326 86.6 78.27% 

 
North Carolina 6,426 97.86 79.64% 

Haw aii 1,012 62.74 75.58% 
 

    
California 40,333 83.53 78.26% 

 
Southwest 10,133 92.15 78.84% 

Alaska 748 87.7 78.54% 
 

Nevada 940 85.39 79.64% 
Washington 7,678 94.45 77.68% 

 
Arizona 2,864 91.6 78.94% 

Oregon 4,555 105.53 79.55% 
 

Colorado 4,322 92.77 78.68% 
    

 
New  Mexico 2,007 94.66 78.72% 

Midwest 82,353 87.96 76.42% 
 

    
Illinois 16,597 73.98 74.84% 

 
South Central 55,885 98.98 80.24% 

Wisconsin 5,226 75.16 69.93% 
 

Virginia 6,579 93.4 78.31% 
Minnesota 5,717 81 69.92% 

 
Texas 23,017 94.52 80.26% 

North Dakota 920 81.08 66.01% 
 

Arkansas 3,817 97.3 82.05% 
Michigan 12,186 83.83 76.34% 

 
Missouri 8,184 98.13 79.35% 

Ohio 14,713 89.35 77.25% 
 

Tennessee 6,243 104.44 81.35% 
South Dakota 1,051 91.88 73.20% 

 
West Virginia 2,835 112.37 80.81% 

Nebraska 2,487 93.58 76.21% 
 

Kentucky 5,210 113.98 80.75% 
Iow a 4,539 99.51 76.81% 

 
    

Oklahoma 7,137 102.96 81.83% 
 

Intermountain 7,678 116.19 79.93% 
Indiana 7,566 103.58 79.18% 

 
Montana 1,423 93.73 77.14% 

Kansas 4,214 105.72 79.17% 
 

Wyoming 788 106.66 80.19% 
    

 
Idaho 1,802 113.41 80.46% 

Northeast 17,480 90.18 76.77% 
 

Utah 3,665 128.45 80.44% 
Delaw are 735 72.19 75.03% 

     Connecticut 3,788 74.6 75.61% 
     Massachusetts 8,448 83.72 75.79% 
     Rhode Island 1,301 88.48 75.33% 
      

 



Supplementary Table 1 | Summary of genealogical data by US state, and outside the US. Each individual pedigree is assigned 
only a single location based on the self-reported birth location of the genetic test-taker, and contributes exclusively to statistics for 
this location. Columns represent the number of samples, average number of nodes per pedigree, and proportion of nodes with 
complete data (name, birth date, and birth location) for US states and outside the US. For clarity, US states are broken down into 
regional designations (e.g., "Northeast"). 
  



region samples 
Great Britain 111 
Ireland (Celtic) 138 
Europe East 432 
Iberian Peninsula 81 
European Jewish 189 
Scandinavia 232 
Europe South (incl. Italy, Greece) 171 
Europe West (incl. France, Germany) 166 
Finland and Northwest Russia 59 
Africa Southeastern Bantu 18 
Africa North 26 
Africa South-Central Hunter-Gatherers* 35 
Benin/Togo* 60 
Cameroon/Congo* 115 
Ivory Coast/Ghana* 99 
Mali* 16 
Nigeria* 67 
Senegal* 28 
Native American 131 
Asia Central 26 
Asia East 394 
Asia South 161 
Melanesia 28 
Polynesia 18 
Caucasus 58 
Near East 141 
total 3,000 

 
Supplementary Table 2 | Composition of the global ancestry reference panel. For more details on how the ancestral populations 
are defined, see description of Supplementary Fig. 5, and the AncestryDNA Ethnicity Estimate White Paper1. *Admixture proportions 
for these regions are collapsed into a single admixture proportion representing West Africa. 
 



label 
number of 
samples mean 

IBD (cM) 
min. max. 

ACB 
ASW 

79 
66 

1261 
11,034 

558 
3,370 

2,988 
36,697 

CDX 98 0 0 59 
CEU 122 22,167 987 58,161 
CHB 108 0 0 629 
CHD 1 0 0 0 
CHS 101 0 0 53 
CLM 70 7,134 202 16,062 
FIN 100 9,402 1,540 44,410 
GBR 101 5,339 2,325 17,975 
GIH 110 103 0 2,355 
IBS 100 404 47 3,595 
JPT 105 0 0 89 
KHV 100 29 0 149 
LWK 110 17 0 249 
MXL 68 11,027 553 110,296 
PEL 70 844 165 3,523 
PUR 70 132,038 24,336 216,855 
TSI 112 228 0 2,616 
YRI 125 43 0 317 

 
Supplementary Table 3 | Summary of IBD shared between 774,516 AncestryDNA samples and 1,816 samples from 1000 
Genomes Project. Columns from left to right are: provided population label; number of 1000 Genomes samples assigned that label; 
average total IBD; smallest total IBD; and largest total IBD. Here, "total IBD" is defined as the sum of estimated IBD segment lengths 
(in cM) between a given 1000 Genomes sample and all 774,516 AncestryDNA genotype samples. Estimated segment lengths less 
than 12 cM are treated as having a length of 0 cM. 
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0.084 0.072 0.072 0.072 0.074 0.049 0.072 0.071 0.077 0.069 0.081 0.080 0.078 0.080 0.080 0.080 African Americans 

 
0.043 0.028 0.028 0.027 0.031 0.027 0.027 0.044 0.039 0.038 0.043 0.047 0.039 0.044 0.041 Haw aiians 

  
0.013 0.017 0.015 0.010 0.016 0.027 0.003 0.004 0.007 0.005 0.005 0.004 0.004 0.004 European Jew ish 

   
0.002 0.001 0.007 0.003 0.005 0.012 0.010 0.012 0.012 0.014 0.011 0.012 0.012 New  Mexicans 

    
0.001 0.008 0.002 0.003 0.016 0.013 0.015 0.016 0.018 0.015 0.016 0.015 Northeast Mexico 

     
0.007 0.002 0.003 0.015 0.012 0.014 0.015 0.017 0.013 0.015 0.014 West Mexico 

      
0.007 0.011 0.009 0.006 0.011 0.011 0.012 0.009 0.010 0.009 Caribbeans 

       
0.003 0.016 0.013 0.015 0.017 0.019 0.014 0.017 0.015 Colombians 

        
0.026 0.022 0.023 0.026 0.030 0.023 0.026 0.024 Central Americans 

         
0.001 0.003 0.001 0.001 0.001 0.000 0.001 French Canadians 

          
0.004 0.002 0.002 0.001 0.002 0.001 Acadians 

           
0.002 0.003 0.003 0.002 0.003 Finnish 

            
0.001 0.001 0.000 0.001 Scandinavians 

             
0.001 0.000 0.001 Irish 

              
0.001 0.001 Amish 

               
0.000 Utah 

 
Supplementary Table 4 | Pairwise FST values between stable subsets. Note that Dominicans cluster is not included in these 
results since it is contained within the Caribbean cluster. 
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0.084 0.074 0.073 0.050 0.049 0.052 0.048 0.045 0.067 0.071 0.070 0.072 0.081 0.082 0.082 0.075 0.081 0.079 0.081 0.082 Af rican Americans 

 
0.053 0.053 0.045 0.040 0.040 0.044 0.041 0.033 0.036 0.035 0.033 0.056 0.057 0.057 0.054 0.056 0.056 0.057 0.057 Poly nesians and East Asians 

  
0.000 0.005 0.008 0.007 0.006 0.008 0.020 0.011 0.015 0.020 0.004 0.004 0.004 0.003 0.004 0.003 0.003 0.004 European Jewish A 

   
0.004 0.007 0.006 0.005 0.008 0.019 0.010 0.014 0.019 0.003 0.003 0.003 0.002 0.003 0.002 0.002 0.003 European Jewish B 

    
0.002 0.002 0.000 0.002 0.015 0.009 0.011 0.016 0.005 0.005 0.005 0.004 0.006 0.005 0.005 0.005 Portuguese 

     
0.001 0.002 0.001 0.009 0.006 0.007 0.010 0.009 0.010 0.009 0.007 0.010 0.009 0.009 0.009 Cubans and Dominicans 

      
0.001 0.001 0.009 0.005 0.007 0.010 0.008 0.008 0.008 0.006 0.008 0.007 0.008 0.008 Puerto Rico, East 

       
0.001 0.012 0.008 0.010 0.013 0.007 0.007 0.007 0.005 0.007 0.006 0.007 0.007 Puerto Rico, Northwest 

        
0.010 0.007 0.008 0.011 0.010 0.010 0.010 0.007 0.010 0.009 0.010 0.010 Puerto Rico, Southwest 

         
0.004 0.002 0.001 0.021 0.021 0.021 0.019 0.021 0.020 0.021 0.021 Central Americans and Colombians 

          
0.001 0.002 0.010 0.011 0.011 0.009 0.010 0.010 0.011 0.011 New Mexicans 

           
0.001 0.015 0.015 0.015 0.013 0.015 0.014 0.015 0.015 Northeast Mexico 

            
0.020 0.020 0.020 0.018 0.020 0.019 0.020 0.020 West, Northwest and Central Mexico 

             
0.000 0.000 0.000 0.001 0.000 0.000 0.000 Lower South 

              
0.000 0.000 0.000 0.000 0.000 0.000 Upland South 

               
0.000 0.000 0.000 0.000 0.000 Lower Midwest and Appalachians 

                
0.001 0.000 0.000 0.000 French Canadians and Acadians 

                 
0.001 0.000 0.000 Midwest immigrants 

                  
0.000 0.000 Italians, Irish and Scottish 

                   
0.000 Pennsy lv ania 

 
Supplementary Table 5 | Pairwise FST values between clusters identified in IBD sub-networks. 
  



 
chr SNP A a disease/trait locus OR cluster f0(A)  f1(A)  n0(AA)  n0(Aa)  n0(aa)  n1(AA)  n1(Aa) n1(aa)  source 

6 rs10484554 A G psoriasis HLA-C 4.66 European Jew ish 13.0% 25.1% 12,640 164,245 552,397 1,713 9,873 14,905 Strange et al. (2010) 

6 rs2070600 T C pulmonary 
function 

AGER – Appalachians 4.5% 7.4% 1,724 64,699 687,777 16 269 1,761 Repapi et al. (2010) 

11 rs2237897 T C type 2 diabetes KCNQ1 0.74 New  Mexicans, 
Northeast and 

Western Mexico 

5.2% 18.8% 2,724 71,126 657,090 451 3,891 8,373 Williams et al. (2013) 

17 rs7210100 A G prostate cancer ZNF652 1.51 African Americans 0.1% 5.6% 27 2,066 709,570 122 4,815 39,987 Haiman et al. (2011) 

19 rs737337 C T high-density 
lipoprotein  DOCK6  – African Americans 9.5% 41.8% 8,221 119,171 583,044 7,940 21,578 15,306 Willer et al. (2013) 

20 rs1800961 T C high-density 
lipoprotein  HNF4A  – Scandinavians 2.9% 5.0% 696 41,621 710,066 7 405 3,770 Willer et al. (2013) 

22 rs17879961 G A squamous cell 
lung carcinoma 

CHEK2 0.38 Finnish 0.2% 1.9% 15 3189 749781 1 62 1,619 Wang et al. (2014) 

 
Supplementary Table 6 | Examples of disease-risk alleles at higher frequencies in specific clusters. The columns of this table 
from left to right are: chromosome (chr); base-pair position on the chromosome from NCBI release 37 of the human genome 
assembly (pos); variant entry in dbSNP database, release 142; alternative allele (A); reference allele (a); associated disease or trait; 
genetic locus, or top candidate gene based on prior studies; odds ratio, the multiplicative increase in odds of disease for each copy of 
the A allele, as reported by the cited publication; cluster in which we find the A allele at a higher frequency; f0(A), the frequency of the 
A allele in all genotyped individuals not assigned to the cluster; f1(A), the frequency of the A allele in genotyped individuals assigned 
to the cluster; n0(AA), n0(Aa), n0(aa) are the genotype frequencies in samples not assigned to the cluster; n1(AA), n1(Aa), n1(aa) are 
the genotype frequencies in samples assigned to the cluster; citation providing evidence for trait-SNP association (source). SNPs 
were identified by selecting SNPs with cluster minor allele frequency at least 1.5 times the frequency outside the cluster, and cross-
referencing these SNPs against all entries from the NHGRI/EBI GWAS Catalog with p-value < 10-12. Additional references cited in the 
table are listed in the supplementary text. 
 
 
  



 

method batch size model size CPU runtime 
switch- 

error rate 
BEAGLE 1,188 2,970,907 254 min 2.60% 
BEAGLE 2,188 6,353,295 429 min 2.09% 
BEAGLE 3,188 9,347,111 616 min 1.90% 
BEAGLE 6,188 17,869,941 1361 min 1.63% 
Our method 1,188 102,692,825 251 min 0.93% 

 
Supplementary Table 7 | Empirical comparison of haplotype phasing methods. This experiment compares phasing accuracy 
using BEAGLE version 3.3.2 and different batch sizes against the phasing accuracy using our algorithm with a reference panel 
learned from 189,503 samples phased in large batches using HAPI-UR. We run BEAGLE using default parameters, except we set 
nsamples = 20 (this is the number of haplotype pairs that are sampled for each individual). Phasing error is evaluated in a test set 
with 1,188 trio-phased samples. Phasing error, or "switch-error rate," is calculated as the rate of disagreement between the estimated 
phase and the trio-phased haplotype, only for loci in which phase can be determined unambiguously; i.e., sites with at least one 
homozygous individual in the trio5, 6. "Model size" refers to the total number of haplotype Markov model states across all chromosome 
windows. 
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0.053 0.040 0.034 0.049 0.056 Polynesians and East Asians 

 
0.007 0.016 0.004 0.003 European Jewish 

  
0.008 0.003 0.008 Caribbeans 

   
0.014 0.016 Mexico, Central and South America 

    
0.002 Southern US 

 
Supplementary Table 8 | Pairwise FST estimates between the 6 largest clusters identified in IBD network. 
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