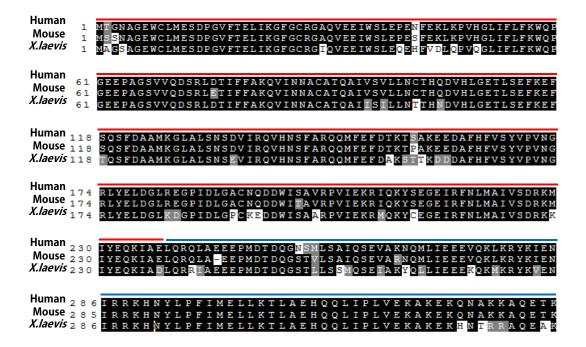
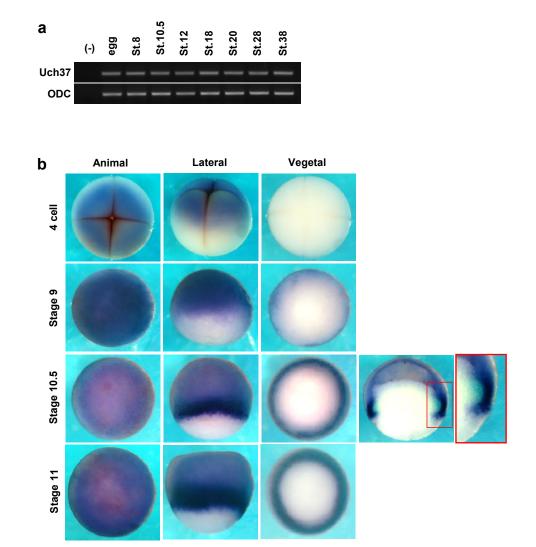
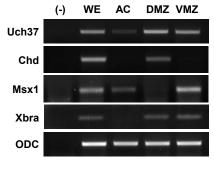
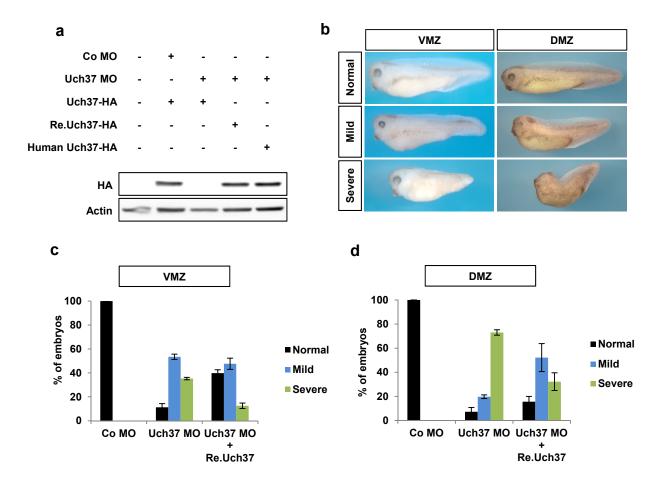
Supplementary Information

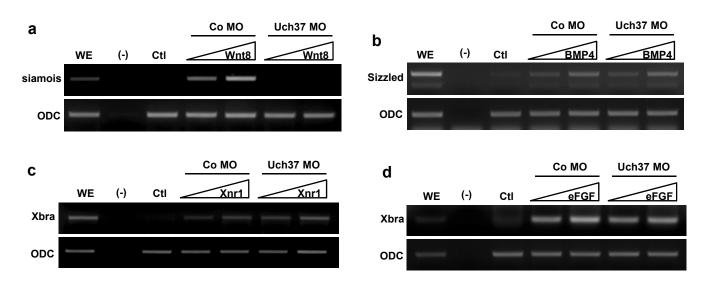

12 Supplementary figures with legends and 5 Supplementary tables

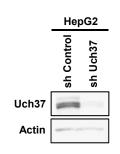

Ubiquitin C-terminal hydrolase37 regulates Tcf7 DNA binding for the activation of Wnt signalling

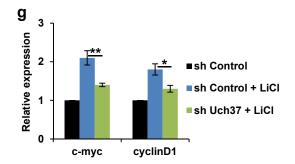
Wonhee Han¹, Hyeyoon Lee¹ and Jin-Kwan Han^{1*}

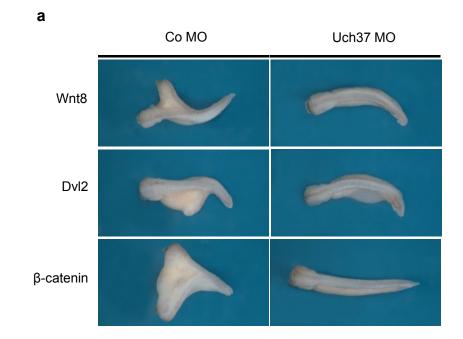

¹Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea

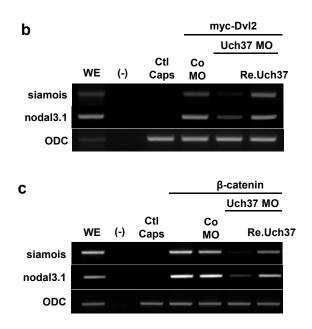

*Author for correspondence (<u>ikh@postech.ac.kr</u>)

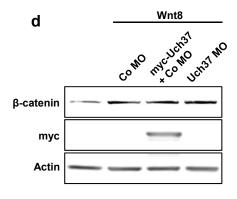


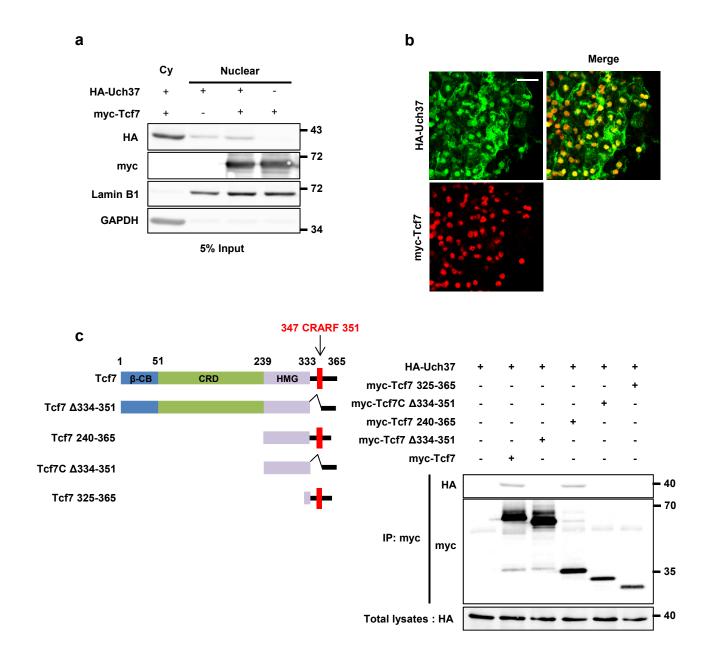




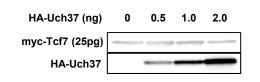

е

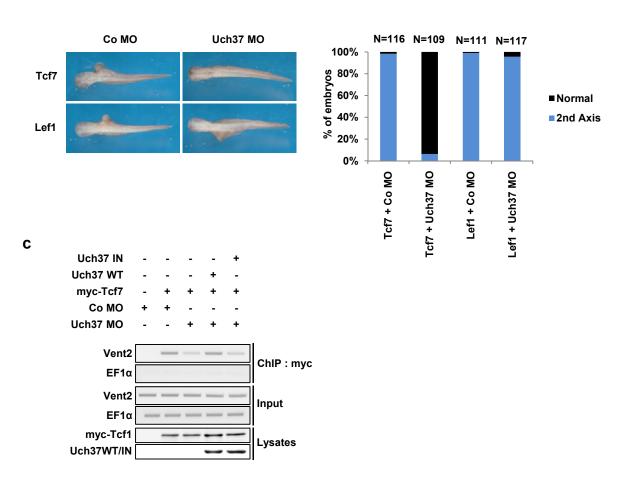



f









b

а

b

Figure 2a

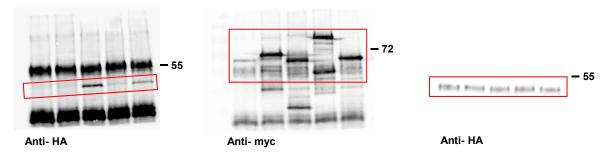
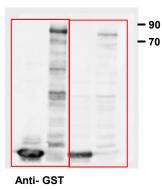
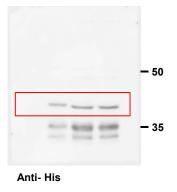
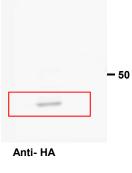




Figure 2b



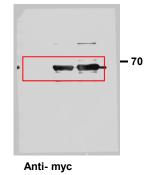
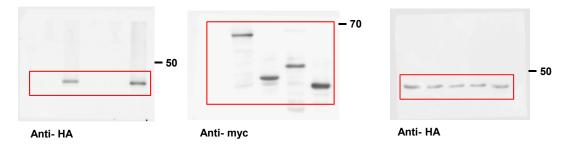


Figure 2c



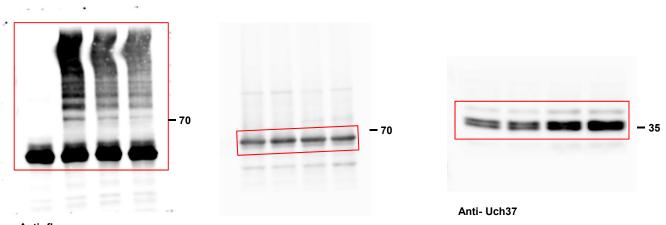
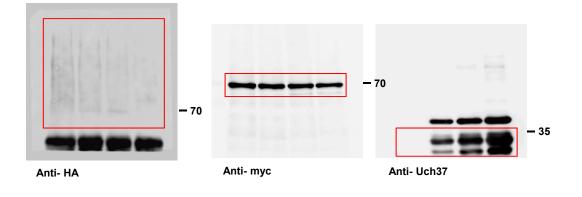
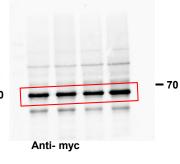


Figure 2d


Figure 3a

Anti- flag


Anti- myc

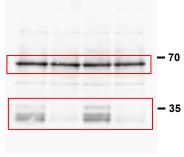
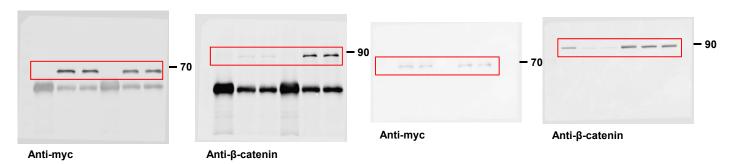
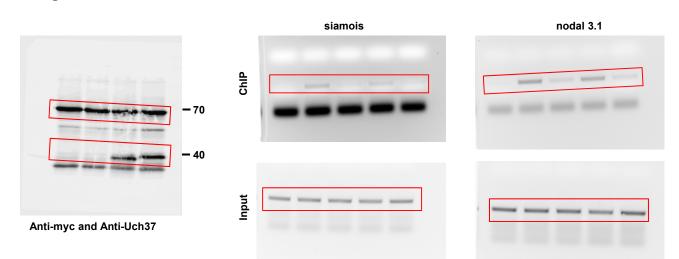
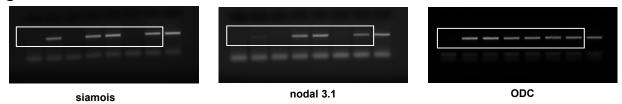

Figure 3b

Figure 3c



Anti- myc and Anti-Uch37


Figure 3e


Figure 4d

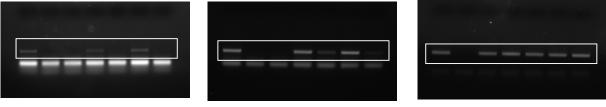

Figure 4e

Figure 1b

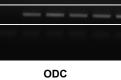
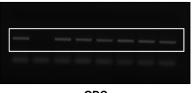


Figure 4a



siamois

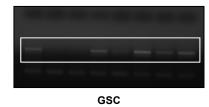


Figure 6c

ODC

Хро

vent1

vent2

Table S1. Knockdown analysis (Supplementary Fig. S3b-d)

		_			
	Uch37 MO + Re.Uch37	41	18	16	4
3 rd	Uch37 MO	33	2	19	12
	Co MO	35	35	0	0
	Uch37 MO + Re.Uch37	29	10	16	3
2 nd	Uch37 MO	36	4	19	13
	Co MO	42	42	0	0
	Uch37 MO + Re.Uch37	39	16	19	4
1st	Uch37 MO	42	7	21	14
	Co MO	37	37	0	0
	ZMV	z	Normal	Mild	Severe

		1st			2 nd			3rd	
DMZ	Co MO	Uch37 MO	Uch37 MO + Re.Uch37	Co MO	Uch37 MO	Uch37 MO + Re.Uch37	Co MO	Uch37 MO	Uch37 MO + Re.Uch37
N	45	35	32	50	40	33	40	41	30
Normal	45	5	4	50	1	8	40	2	3
Mild	0	6	18	0	6	10	0	8	21
Severe	0	24	10	0	30	15	0	18	9

		1st			2 nd			3rd	
	Normal	Partial	Complete	Normal	Partial	Complete	Normal	Partial	Complete
Uninjected	40	0	0	36	0	0	60	0	0
Wnt8	2	32	0	3	37	0	10	30	0
Wnt8 + Uch37	2	2	34	0	5	27	1	0	48
Wnt8 + Uch37MO	40	0	0	38	0	0	54	0	0

Table S2. Axis duplication assay (Fig. 1c, d)

Table S3. Axis duplication assay (Fig. 1g)

		~	4 st	2 nd	p	3rd	p
		2 nd Axis	Normal	2 nd Axis	Normal	2 nd Axis	Normal
07-101	Co MO	35	4	30	0	40	0
VV118	Uch37 MO	0	33	1	34	0	37
	Co MO	29	0	37	2	40	0
	Uch37 MO	3	34	9	29	4	36
ainctes 0	Co MO	28	0	35	0	40	0
13-Cate1111	Uch37 MO	5	32	7	82	б	31

					1						I					
	Uch37 MO + Lef1	32	15	17			Uch37 MO + Lef1	35	21	14			Uch37 MO + Lef1	38	24	14
П	Uch37 MO + Re.Uch37	36	13	22		g	Uch37 MO + Re.Uch37	38	18	20		ъ	Uch37 MO + Re.Uch37	39	20	19
3rd	Uch37 MO	39	7	32		3rd	Uch37 MO	37	3	34	1	3rd	Uch37 MO	37	8	29
	Co MO	37	37	0		2nd	Co MO	35	35	0			Co MO	40	40	0
	Uch37 MO + Lef1	39	23	16			Uch37 MO + Lef1	34	19	15			Uch37 MO + Lef1	38	22	16
2nd	Uch37 MO + Re.Uch37	34	18	16			Uch37 MO + Re.Uch37	36	22	14		2 nd	Uch37 MO + Re.Uch37	39	20	19
	Uch37 MO	96	2	34			Uch37 MO	38	9	32		Ñ	Uch37 MO	42	4	38
	Co MO	40	40	0		1st	Co MO	41	41	0			Co MO	36	36	0
	Uch37 MO + Lef1	37	25	12			Uch37 MO + Lef1	39	25	14			Uch37 MO + Lef1	37	61	18
st	Uch37 MO + Re.Uch37	35	53	12			Uch37 MO + Re.Uch37	42	24	18		1st	Uch37 MO + Re.Uch37	33	21	16
1st	Uch37 MO	30	9	24			Uch37 MO	41	9	36			Uch37 MO	32	9	26
	Co MO	40	40	0			Co MO	37	37	0			Co MO	38	38	0
	MyoD	N	Normal	Reduced			хро	Z	Normal	Reduced			Vent1	N	Normal	Reduced

Table S4. Reduced ventrolateral mesoderm genes following depletion of Uch37 (Fig.5a).

						1						
	Uch37 MO + pCSKA Wnt8	31	0	11	20			Uch37 MO + pCSKA Wnt8	29	-	0	28
3 rd	Co MO + pCSKA Wnt8	33	13	20	0		3rd	Co MO + pCSKA Wnt8	34	16	18	0
	Co MO	30	30	0	0			Co MO	30	30	0	0
	Uch37 MO + pCSKA Wnt8	34	5	6	20			Uch37 MO + pCSKA Wnt8	37	0	12	25
2 nd	Co MO + pCSKA Wnt8	37	10	27	0		5 nd	Co MO + pCSKA Wnt8	30	10	20	0
	Co MO	29	29	0	0			Co MO	26	26	0	0
	Uch37 MO + pCSKA Wnt8	51	4	9	41			Uch37 MO + pCSKA Wnt8	42	10	2	30
1st	Co MO + pCSKA Wnt8	42	7	36	0		1st	Co MO + pCSKA Wnt8	34	9	28	0
	Co MO	30	30	0	0			Co MO	30	30	0	0
	Vent1	Z	Normal	Promoted	Reduced			odX	z	Normal	Promoted	Reduced

Table S5. Uch37 MO inhibited promotion of the ventrolateral mesoderm genes by Wnt8 (Fig. 5b).

Figure S1 Uch37 is highly conserved in vertebrate species including human, mouse and Xenopus. Comparison of Uch37 peptides across vertebrate species. The most conserved residues are indicated by the shaded background. Distinct domains are indicated with colored lines (red, catalytic domain; blue, C-terminal extension).

Figure S2 Embryonic expression of Uch37. (a) Expression of Uch37 in *Xenopus* embryo was analyzed by RT-PCR. ODC, ornithine decarboxylase loading control; (-), -RT; egg, unfertilized; St, Nieuwkoop and Faber (NF) developmental stage. (b) Spatial expression of Uch37 from cleavage to gastrula stage. Red box indicates the magnified mesoderm region. (c) Expression of Uch37 in various dissected tissues at stage 10.5. WE, whole embryo; AC, animal cap; DMZ, dorsal marginal zone; VMZ, ventral marginal zone; Chordin, dorsal marker; Msx1, ventral marker; Xbra, pan-mesodermal marker.

Figure S3 Phenotype of Uch37 morphant. (a) Uch37 MO specifically inhibits the translation of C-terminally HA-tagged Uch37 mRNA (1ng), but not MO-resistant Uch37 (Re.Uch37) mRNA (1ng) and human Uch37 mRNA (1ng). Four-cell stage embryos were injected in animal blastomeres with indicated reagents. Embryos were cultured to stage 10.5 and then subjected to western blotting. (b) Phenotypes of Uch37-depleted embryos. Embryos were injected at the four-cell stage with the indicated reagents (40 ng Co MO; 40 ng Uch37 MO; 2ng Re.Uch37) ventrally (b, left) or dorsally (b, right) and cultured to tadpole stage. (c, d) Morphant phenotypes were tabulated.

Figure S4 Uch37 specifically regulates Wnt signaling. (a-d) RT-PCR analysis using animal cap explants. Co MO (20ng) or Uch37 MO (20ng) were respectably or co-

injected with indicated mRNAs encoding Wnt8 (10pg and 20pg), BMP4 (50pg and 100pg), Xnr1 (50pg and 100pg), or eFGF (100pg and 200pg) in animal blastomeres of four-cell stage embryo. Animal cap explants were dissected at stage 9 and cultured until stage 11. siamois, Wnt-target gene (a); Sizzled, Bmp4-target gene (b); Xbra, target gene of Xnr1 (c) and eFGF (d). (e) Short hairpin RNA (shRNA) of Uch37 efficiently reduced levels of Uch37 protein in HepG2 cells. (f) TOPflash assay in HepG2 cells. Reporter constructs were transfected alone or co-transfected with constitutively active LRP6 (LRP6ΔN) into stable cells (sh Control and sh Uch37). 48h after transfection, luciferase activity was measured. (g) qPCR analysis for the expression of Wnt-target genes (c-myc and cyclinD1) in stable HepG2 cells (sh Control or sh Uch37) treated with or without LiCl (25mM). The quantities of indicated mRNA were normalized by β-actin. Data represent average values from three independent experiments performed. Error bars indicate standard deviations of triplicate. *, p < 0.005; **, p < 0.001 (two-tailed Student's ttest).

Figure S5 Uch37 promotes Wnt signaling downstream of ß-catenin destruction complex. (a) Result of axis duplication assay in Fig 1g. (b, c) RT-PCR analysis using animal cap explants. Embryos were animally injected at four-cell stage. Animal cap explants were isolated at stage 9 and cultured until stage 11. Injected reagents are as follows, Co MO (20ng), Uch37 MO (20ng), myc-Dvl2 mRNA (200pg), ß-catenin mRNA (25pg), Re.Uch37 (1ng). (d) Western blot analysis using animal cap explants. Embryos were animally injected at two-cell stage. Animal cap explants were dissected at stage 9 and cultured until stage 11. Injected reagents are as follows, Co MO (40ng), Uch37 MO (40ng), Wnt8 mRNA (20pg), myc-Uch37 mRNA (1ng).

Figure S6 Uch37 interacts with Tcf7 in nucleus of Xenopus gastrula embryo.

(a) Fractionated lysates from *Xenopus* gastrula embryos were used as expression input for Co-IP analysis in Fig 1A. (b) Uch37 is co-localized with Tcf7 in nucleus. Fourcell stage embryos were animally co-injected with HA-Uch37 (1 ng) and myc-Tcf7 (50pg). Animal cap explants were isolated at stage 10 and fixed with 4% paraformaldehyde for 2h. HA-Uch37 and myc-Tcf7 were immunostained with anti-HA (mouse, santacruz; 2nd antibody, Alexa-488, invitrogen) and anti-myc antibodies (rabbit santacruz; 2nd antibody, Alexa-594, invitrogen). Scale bar (white line) indicates 50μm. (c) Co-IP assay using HEK293FT cells, HA-Uch37 and indicated myc-tagged truncated mutants of Tcf7 were transfected. Cell lysates were immunoprecipitated with anti-myc antibody. Truncated mutants of Tcf7 are depicted on the left.

Figure S7 Uch37 is not involved in stabilization of Tcf7 protein. (a) *In vivo* ubiquitination assay using HEK293FT cells. Ectopically expressed HA-Uch37 reduced both K48-and K63-mediated polyubiquitin chains from Tcf7. (b) Western blot analysis. Embryos were animally injected at two-cell stage with indicated amount of mRNAs. Animal cap explants were isolated at stage 9 and cultured until stage 11, and then subjected to immunoblotting.

Figure S8 Uch37 MO specifically blocks Tcf7-mediated Wnt activity and Uch37 is required for Tcf7 binding to promoter of Vent2. (a) Axis duplication assay. Fourcell stage embryos were injected in one ventrovegetal blastomere with indicated reagents (400pg Tcf7 mRNA; 400pg Lef1; 40ng Co MO; 40ng Uch37 MO). (b) Quantified result of a. (c) ChIP assay using *Xenopus* embryos (stage 11). 70 embryos were injected at two-cell stage as indicated (25pg myc-Tcf7 mRNA; 1ng wild type of Uch37 (WT); 1ng catalytically inactive Uch37 (IN); 40ng Co MO; 40ng Uch37 MO). Lysates were precipitated with anti-myc antibody. Precipitated Wnt target DNAs were analyzed by PCR. EF1α was used as a control for specificity.

Figure S9-S12 Full-length images of gels and blots from the main figures.