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Supplementary Figure 1: Temperature dependence of the shift. (A) Temperature dependence of the

frequency shift of triplets I and II and the first moment of the entire spectrum (B), at various applied fields.

The frequency scale is defined by subtracting ω0, the zero NMR shift frequency. (C) The absolute value

of the NMR shift, K, of the first moment the entire spectrum (reflecting uniform spin susceptibility (χs
u)

as function of reduce temperature for various H‖[001]. The shift is corrected for a small field dependent

orbital contribution as determined in the paramagnetic state. Lines are guide to the eyes.
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Supplementary Figure 2: Temperature dependence of the uniform and staggered fields. The uniform

field data is denoted by filled symbols while open symbols represent staggered fields. Arrows mark

transition temperature (Tc) from PM to low temperature magnetic state, determined by the crossing

points of the plotted solid lines. These Tc values are displayed in Supplementary Table I. Solid lines are

linear fits to the data, while dashed lines are guide to the eyes.
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Supplementary Figure 3: 23Na Clogston-Jaccarino plots at 7 T applied field applied along three different

directions as denoted. Solid lines are linear fits to the data for temperature ranging from 80 K to 200 K.
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Supplementary Figure 4: Integrated intensity of the entire spectrum, plotted in Fig. 2A of the main

manuscript, as a function of the angle between the applied magnetic field and [001] crystalline axis at

8 K and 15 T. Error bars reflect the scattering of deduced intensity values.
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Supplementary Figure 5: Illustration of the rotation of the applied field making angle θ with the respect

to the principal axis of the EFG, for: (a) Vzz along c-axis of the crystal, (b) Vzz along a-axis.
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Supplementary Figure 6: Schematic of the proposed lattice distortions that generate one structurally

distinct Na site in non-cubic environment by elongation (A) or compression (B) of one O2− octahedron

along [001] direction and its concurrent compression (A), or elongation (B), in [110] plane.
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SUPPLEMENTARY TABLES

H ‖[001] Tc

0 T 6.3 K [3]

7 T 10.2 K

9 T 11.1 K

15 T 13.3 K

Supplementary Table I: Transition temperature from PM to low temperature magnetic state at various

applied fields.

H ‖ Korbit
α gαAαα(T/µB)

[001] -0.0216 % -0.460

[111] -0.0253 % -0.458

[110] -0.0211 % -0.437

Supplementary Table II: Hyperfine coupling constants and orbital shifts for different orientations of the

applied magnetic field of 7 T for 23Na in Ba2NaOsO6.
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SUPPLEMENTARY NOTES

Supplementary Note 1: NMR Shift

In Supplementary Figure 1A we plot the temperature dependence of the frequency shift of

the first moment of triplets I and II for various strengths of the applied field while that of the

first moment of the entire spectra is shown in Supplementary Figure 1B. In addition, we plot

temperature variation of the NMR shift (K ≡ ω−ω0
ω0

), quantity proportional to the hyperfine

coupling constant (A) and spin susceptibility (χs), in Supplementary Figure 1C. Because the A

for Na is negative, we plot the absolute value of the shift to reflect the spin susceptibility. We

observe that below the transition temperature (Tc) into the ordered state, χs decrease with the

increasing applied field strength (H).

Supplementary Note 2: Transition Temperature

Transition temperature (Tc) from paramagnetic (PM) to low temperature ferromagnetic (FM)

state was determined by the crossing points of the plotted solid lines in Supplementary Figure 3.

The local uniform (Hu ≡ 1
2 [〈HI〉+ 〈HII〉]) and staggered (Hstag ≡ 1

2 [〈HI〉 − 〈HII〉]) fields, where

the average is taken over the triplet I and II, were deduced from the shift data shown in

Supplementary Figure 1. Evidently, transition temperature increases with increasing applied field.

The increase of Tc is significant and approximately scales as magnetic energy associated with the

applied field. This indeed confirms magnetic nature of the transition.

Supplementary Note 3: Hyperfine coupling tensor for Ba2NaOsO6

High Temperature - Paramagnetic Phase:

In our experiment, hyperfine shift at a given temperature is given by,

Khf
α (T ) = Korbit

α + gαAααχ(T ) (1)

where Korbit
α denotes temperature independent orbital contribution to the shift, α the principal

axis of the shift tensor, gi the electronic g-factor, Aαi the transfer hyperfine tensor, and χ elec-

tronic susceptibility, i.e. 〈Si〉/H the net average electronic spin projected along the field direction

divided by H. Thus, we determine hyperfine coupling constants and orbital shifts by exploiting the

Clogston-Jaccarino type plots [4] of the NMR shift vs. bulk susceptibility at a given temperature,
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as illustrated in Supplementary Figure 3. More precisely, the slope of the graph is related to the

strength of the hyperfine coupling, while the zero intercept gives the orbital shift for a particular

orientation of the applied magnetic field. Temperature dependence of the bulk χ can be fitted to the

Curie-Weiss behavior with a constant offset, ascribed to Van Vleck paramagnetism, as described in

Ref. [3]. In NMR data linear behavior, of the form Khf
α = Korb

α +mαχ(T ), is found for T > 25 K.

Assuming that Khf
α equals to gαAααχ, we infer the hyperfine coupling constant (gαAαα = mα) in

the units of [T/µB] as shown in Supplementary Table II. Because the lattice structure is cubic in

the paramagnetic state, transfer hyperfine tensor, defined in crystalline axes coordinate system, is

diagonal with all diagonal elements being equal, i.e. gαAαα = −0.460 T/µB.

Contribution to the shift from dipole-dipole interaction between Os electronic spin (SN) and Na

nuclear spin (I) is vanishing due to the cubic symmetry. Breaking of the cubic symmetry that we

described in the manuscript is associated with motion of the O ions and does not involve motion

of Os ions/spins. Consequently, for the dipole-dipole interaction of this type, cubic symmetry is

preserved even in the low temperature magnetic phase. Hence, the contribution of this interaction

to the shift is negligible at low temperatures, as well.

Low Temperature - Magnetic Phase:

Assuming that low temperature ordered phase is characterized by distortions of the oxygen

octahedra, dominated for example by some small displacement of oxygen ions along ĉ axis, a local

symmetry at Na site is transformed from cubic, present at high temperatures, to either tetragonal

or orthorhombic. The symmetry operation, for example, for tetragonal structure requires the in-

variance of hyperfine tensor under the fourfold rotation around axis parallel to ĉ axis. Requirement

that the hyperfine tensor must be invariant under this fourfold rotation, implies the shift tensor K̃

must posses the following structure

K̃ =


K11 K12 0

−K12 K11 0

0 0 K33

 . (2)

This example illustrates that regardless of the exact nature of the low temperature distortions,

their dominant effect on A is to induce finite off-diagonal terms, while changes of diagonal terms

are expected to be minor.
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Supplementary Note 4: Microscopic Nature of the Magnetic Phase

In order to determine the microscopic nature of the magnetic phase, we calculate the internal

hyperfine field generated at the Na site by electronic spins at Os ions. The average internal

hyperfine field at the Na site is calculated for different spin configurations and orientation of the

applied magnetic field. These results are then compared to the measurements of both internal

fields and spectra plotted in Fig. 4A and Fig. 1 of the main paper, respectively. This comparison

allowed us to identify possible spin configurations that best describe our observations. We point

out that even if moment is not exclusively localized on Os site but the spin density is distributed to

O [5], our modeling of H i
int is valid. This is because the complexity of the spin density is accounted

for in A. For simplicity, we treat moment as S = 1/2 localized on Os as was done in [6].

At each Na site i, the internal field is given by,

H i
int = ĥ ·

∑
〈j〉

Aj · µj (3)

where ĥ is a unit vector in the applied field direction, Aj the symmetric 3 × 3 hyperfine coupling

tensor with the jth nearest-neighbor Os atom and µj its magnetic moment. We calculate the

average local Hu and Hstag at the Na site as well as Na NMR spectra, which is a histogram of

the local field component projected along the applied field, by performing a full lattice sum for

different orientations of the applied magnetic field. We fit the data (plotted in Fig. 4 of the

main paper) to simulated local fields with magnitude and direction of the local Os moments,

and a relative strength of the off-diagonal terms of A (Aij/Aii) as fitting parameters. We find

that simple canted antiferromagnetic and ferrimagnetic-like orders, that would naturally explain

low moments observed in [3, 8], cannot account for our data. Only models that produce spin

component perpendicular to the direction of the applied field are consistent with our observations.

Among these, canted FM model, recently proposed as an allowed spin model on the fcc lattice with

tetragonal distortions in [6, 7] and depicted in Fig. 4B, fully accounts for our data as illustrated

by the solid lines in Fig. 4A.

This canted FM model consists of two inequivalent sub-lattices with moments in each layer in

the XY plane parallel to each other, forming ferromagnetic order, while moments in the neighboring

layers point to a different direction. Furthermore, moments in two adjacent layers are symmetric

about [110] axis, as shown in Fig. 4B of the paper. That is, the moments are rotated by angle φ

away from [110] (or applied field direction if moments follow the field) in one layer and by angle

−φ away from [110] in the neighboring layers. Moments arranged in this fashion induce an uniform
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magnetic moment in [110] direction, providing an overall shift to the NMR spectrum, and form

a staggered pattern in the direction perpendicular to the uniform moment, i.e. [110]. By setting

this angle as a fitting parameter, we have control over the amplitude ratio between uniform and

staggered local fields induced at the Na sites. First, we fix the orientation of the magnetic moments

in XY plane and vary angle φ, moment amplitude, and hyperfine tensor to fit our data. We find

that data (Hu and Hstag as the applied field is rotated in the (11̄0) plane), is best accounted

for by the following parameters: the angle φ ≈ 67◦, moment µ ≈ 0.6µB (which is the value of

the moment deduced from the fit to a Curie-Weiss behavior in the PM state in [3]), and transfer

hyperfine coupling tensor in the units of (T/µB),

A ≈


0.45 −0.13 −0.14

0.13 0.45 0.16

−0.14 0.16 0.48

 (T/µB). (4)

The moment value of 0.6µB is specified for H‖[001] and as direction of H is rotated in the

(11̄0) plane, we adjust the value of the moment to scale as bulk magnetization at a given direction

of H. In this case, angle φ remains independent of the direction of H and spin remain in-plane

that follows the rotation of H. In addition, for our initial guess for diagonal values of A, we

used the same values as those determined in the PM state, for reasons described in the previous

section. Thus, we constrained the values of diagonal elements of A to be close to those found

in the paramagnetic state. As lattice distortions emerge at low temperature, there is no a priori

reason to believe that diagonal terms in FM phase should be equal to those found in the PM state.

However, we have no independent way of knowing the exact strength of the elements of A, as our

data only senses the product of A and µB. Nevertheless, we can consider two different scenarios.

In the first scenario, we assume that the diagonal elements of A are close to those found in the

PM state, as described above, and find that the effective FM moment of 0.6µB, for H‖[001]. This

assumption seems reasonable, as the main effect of lattice distortions, which do not exceed 0.8% of

the lattice constant, is to induce non-zero off-diagonal terms and not to drastically change values

of the diagonal terms of A. The value of so deduced moment corresponds to that found from the

bulk magnetization data in the PM state, and is three times larger than that found in the FM

state in [3]. Thus, small moment found in the FM state from bulk measurements can be explained

by large canting angle φ that we determined. That is, small moment is due to partial cancelation

of nonparallel magnetic moments.
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Alternatively, if moment is assumed to be 0.2µB, which is the value of the moment in the

FM state as determined from bulk magnetization [3], we find that all the elements of A displayed

in Supplementary Equation 4 are multiplied by a factor of three. Evidently, in either case, we

find finite off diagonal terms, induced by the O octahedra charge distribution distortions around

Na atoms. We emphasize that symmetry of the inferred A tensor does not reflect neither local

tetragonal nor orthorhombic symmetry of the distorted O octahedra. This implies that spin-spin

interactions are mediated by complex multipolar interactions, as theoretically predicted in [6].

As magnetic field is rotated and spin-plane follows H, it is also possible that the moment value

remains constant at 0.6µB and it is variation of the angle φ that accounts for the observed angular

dependence of Hu and Hstag (and bulk magnetization as well). In this case, we find that the angle

φ varies from 65◦ to 71◦ as H is rotated from [001] to [110] direction. Moreover, the inferred value

of φ, allows us to estimate the ratio of in-plane (J
′
) to intra-plane (J) coupling constant [6]. In

Ref. [6] the authors deduced that in the canted-FM state spins lie in the (xy) plane with angles

given by,

tanφA = − J
′

4|J |
−

√
1 +

J ′

4|J |
, tanφB =

π

2
− φA, for J

′
< 0 . (5)

Even though this result was derived for zero magnetic field, we showed that angle φ does not vary

significantly on the strength of the applied field, justifying the use of the above expression. Thus,

we find that J
′
/J ≈ 4.

Furthermore, we see no evidence of domain formation and significant lag of the magnetic

moment behind the field. Indeed, in Supplementary Figure 4, we plot integrated spectral intensity,

reflecting total number of nuclei, as a function of the angle θ. The facts that variation in the

intensity does not exceed 25 % and that the intensity at [001] and [110] is the same, demonstrate

that there are no significant domains in which moments are oriented away from the applied field,

i.e. local magnetization follows the field direction.

Supplementary Note 5: Quadrupolar effects and charge density distortions

Axially Symmetric Case:

In the simplest case of a field with axial symmetry, interaction between eq, the electric field

gradient (EFG), and the nucleus, with spin I and the quadrupole moment Q, is described by the



11

Quadrupole Hamiltonian,

HQ =
(eQ)(eq)

4I(2I − 1)
[3I2

z − I(I + 1)]. (6)

For nuclear spin I = 3/2, as is the case of 23Na, the energy eigenstates of HQ are given by,

E =
(eQ)(eq)

4I(2I − 1)
[3m2 − I(I + 1)] (7)

Than, the frequencies between different quadrupole satellite transitions is given by,

ωm→m−1 =
(eQ)(eq)

h 4I(2I − 1)
[3(2m− 1)] =

1
2

(eQ)(eq)
h

, for |+ 3/2〉 → |+ 1/2〉

0
(eQ)(eq)

h
, for |+ 1/2〉 → | − 1/2〉

−1
2

(eQ)(eq)
h

, for | − 1/2〉 → | − 3/2〉 .

(8)

Furthermore, the splitting δq between adjacent quadrupole satellites, in a field along the principal

axis of the EFG, equals

δq =
1

2h
(eQ)(eq) =

1
2h

(Quadrupole moment)× (EFG). (9)

Evidently, in this case equal splitting is observed between quadrupole satellites lines, as observed in

our experiment. Further, we can estimate the value of the EFG using experimentally determined

value of the splitting, that is δq ≈ 190 KHz for H‖[001],

(EFG) =
2hδq
eQ

=
2× 4.136× 10−15 eV · s× 190× 103 s−1

0.12× e× 10−28 m2
= 1.31× 1020 V/m2. (10)

Next, this value can be used to estimate particular lattice distortions in our material. In oxygen

octahedra surrounding Na nuclei the EFG takes on the following form,

EFG =
2q

4πε0


2
a3 − 1

b3
− 1

c3
0 0

0 − 1
a3 + 2

b3
− 1

c3
0

0 0 − 1
a3 − 1

b3
+ 2

c3

 (11)

Clearly, in materials with cubic symmetry, such as Ba2NaOsO6 in the paramagnetic state, a = b = c

so that the EFG equals zero, which leads to vanishing splitting, δq.

The observed δq is the largest for field applied in the [001] direction, as shown in Fig. 2 of the

manuscript. In this case the simplest model, accounting for the splitting of the Na line into three

equally spaced quadrupole satellite lines, involves distortions of the O octahedra surrounding Na
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nuclei solely along the [001] direction. In this case, q = 2e, a = b 6= c, and we obtain

EFG =
2q

4πε0


1
a3 − 1

c3
0 0

0 1
a3 − 1

c3
0

0 0 −2( 1
a3 − 1

c3
)

 . (12)

Therefore, the principal axis of the EFG (Vzz ≡ eq) is given by,

Vzz = ± 8e
4πε0

(
1
a3
− 1
c3

)
(13)

(
1
a3
− 1
c3

)
= ±4πε0

8e
× 1.31× 1020 V/m2 = ± 0.01137× 1030 m−3. (14)

In Ba2NaOsO6 with a = 2.274 Å, distortions along the c crystalline axis of the order of 4 % can

account for the observed δq, that is

1
c3

=
1
a3
± 0.01137

c = 2.181Å (−4.1%), for compression

c = 2.385Å (4.9%), for elongation.

(15)

Including Anisotropy:

Quadrupole Hamiltonian expressed in the coordinate system define by the principal axes of the

EFG, is given by

HQ(x, y) =
eQVzz

4I(2I − 1)

[
(3Î2

z − Î2) + η(Î2
x − Î2

y )
]
, (16)

where η ≡ |Vxx − Vyy| /Vzz is asymmetry parameter and Vxx, Vyy, and Vzz are diagonal components

of EFG. Here, Vzz is defined as the principle component of the EFG and |Vxx| < |Vyy| < |Vzz|, by

convention. In this case, the splitting is given by,

δq =
(eQ)(Vzz)

2h

(
1 +

η2

3

)1/2

. (17)

Thus, the value of δq is dictated by both Vzz and anisotropy parameter. To find the full set

of possible distortions that can account for our observations, that δq ≈ 190 KHz for all satellite

transitions, we used the point charge model to calculate Vzz and η. In this model the electron

density at the Na site is calculated by taking all the surrounding charges, which are treated as the

point charges of zero radius that carry the appropriate ionic charge, into an account.
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In addition to the absolute value of the splitting δq, we also measure the angular dependence

of the splitting as the applied magnetic field is rotated by angle (θ) with respect to the crystalline

axis. In the high field limit, when Quadrupolar Hamiltonian is a perturbation to the dominant

Zeeman term, the angular dependence of the splitting is given by

δq =
∆q

2
(3 cos2 θ − 1 + η sin2 θ cos 2φ), (18)

where θ is the angle between the applied field H and Vzz (see Supplementary Figure 5), and η =

|Vxx−Vyy|/Vzz the asymmetric factor. Our measurements of the angular dependence of δq, plotted

in Fig. 2B, as H is rotated from [001] to [110], can be accounted for by two models for the reasons

we describe next.

As shown in Fig. 2B, we observe no more than 3 lines per set (I or II) regardless of the angle

θ. This indicates that the principal axes of the EFG coincide with those of the crystal. In a

material with cubic symmetry, it is thus possible to stabilize three different domains, each with the

principle axis of the EFG, Vzz, pointing along any of the 3 equivalent crystal axes. Further, local

magnetic field has to be parallel to Vzz in each domain. The facts that the splitting is the largest for

H‖[001] (Fig. 2B), and that only 3 peaks per set are observed for H‖[110] imply that two domains

are plausible in the crystal. One domain is characterized by pure uniaxial 3z2 − r2 distortions

where Vzz is in [001] direction, while the other is distinguished by x2 − y2 distortions where Vzz is

then in the (110) plane. In the simplest model Vzz is aligned along [001] direction, as illustrated in

Supplementary Figure 5(a), η = 0, and φ = 45◦, in which case, δq = ∆q

2 (3 cos2 θ−1). In the second

model Vzz is aligned along [100] direction, as illustrated in Supplementary Figure 5(b) and η is of

the order of 1. Thus, distortions that generate both tetragonal and orthorhombic local symmetry

at the Na site can account for the data. In fact, we find that distortions for which Vzz is in [001]

direction are tetragonal, while for orthorhombic distortions Vzz may be in the (110) plane, in which

case x2− y2 type distortions are dominant rather than pure uniaxial 3z2− r2 ones. Combining the

above facts with the point charge calculations, we find one class of possible distortion that satisfy

all the constraints imposed by our data. This class comprises of orthorhombic distortions for which

η ≈ 0.95.
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SUPPLEMENTARY DISCUSSIONS

Supplementary Discussion 1: Microscopic model of lattice and/or charge density distortions

We found that our observation, revealing equal δq on two magnetically inequivalent Na sites,

can be explained by one possible scenarios involving distortions of the O2− octahedra surrounding

Na+ ions as depicted in Supplementary Figure 6. In this model, we allow the oxygen to move by

different amounts along each of the three axes and so constrain it to the cubic axes of the perovskite

reference unit cell, as suggested in [7]. Only, one structurally distinct Na site is induced by the

distortion. Moreover, we point out that we cannot distinguish between displacement of the actual

O atoms and distortions of the O charge density.

In this model, only one structurally distinct Na sites is generated, as depicted in

Supplementary Figure 6. As described above, such distortions of the oxygen tetrahedra comprise

of either dominant tetragonal distortions along [001] direction, for which η = 0, or orthorhombic

distortions for which η ≈ 0.95. However, we emphasize that only the orthorhombic distortions for

which η ≈ 0.95 can account for both the amplitude of the observed splitting and its dependence on

the field orientation in the low temperature FM phase. Our calculations indicate that no distortion

along any particular direction that exceeds 0.8% of the respective lattice constant, can induce de-

tected splitting of ≈ 190 kHz. Furthermore, we find several possible distortions which can induce

the observed splitting. That is, different combinations of compression and/or elongation, and their

respective amplitudes, along any particular axis can induce the observed splitting. However, the

evolution of the splitting as a function of the direction of applied field in the different planes of

the crystal, restricts possible distortions to those with an orthorhombic point symmetry. At higher

temperatures, outside the LRO phase, the analysis of the width of the NMR spectra allows us

to place an upper limit on the magnitude of the distortions. Because we do not observe the well

defined splitting, its exact dependence on the field orientation is unknown. Therefore, in principle

dominant tetragonal distortions can account for the line broadening. Lastly, we point out that

this model, leads to only one magnetically distinct Na sites. Therefore, the observed magnetically

distinct Na sites, i.e. sites sensing two different local fields, do not arise from lattice distortion as

an artifact of NMR performed on the nuclei that does not carry electronic spin.
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Supplementary Discussion 2: Mechanisms of lattice distortions in perovskite oxides

It is well known that perovskite oxides are prone to lattice distortions [9, 10]. In this section we

describe why common lattice instabilities often present in perovskite transition metal oxides are

not compatible with our observations. These lattice distortions involve changes in symmetry and

global detectable change of lattice parameters. Moreover, a typical distortion mechanism involves

a tilting of essentially rigid oxygen polyhedra, as is the case in GdFeO3. These distortions would

induce EFG with the principal axes that do not align with those of the crystal. In this case, the

NMR spectra will not show three peaks (per magnetic site, I and/or II) for every orientation of the

applied magnetic field, as was the case in our experiment. Evolution of both NMR spectral shapes

and the magnitude of the splitting (δq) as the direction of the applied field is rotated with respect

to crystal axes is compatible with the EFG, whose principal axes align with those of the crystal.

Such EFG at the Na site can only be induced by allowing the oxygen to move by different amounts

along each of the three crystal axes, i.e. the cubic axes of the perovskite reference unit cell, as was

suggested to be the case for lattice distortions induced by the quadrupolar mechanism in [7]. We

have performed detailed point charge calculations of the EFG and δq considering possible tilting

of the oxygen octahedra. We found that tilting of the rigid (undistorted) oxygen octahedra is

not compatible with our NMR observations. Furthermore, typical values of the bent in the bond

involving oxygen in GdFeO3 are roughly between 145-170◦. Our NMR data cannot be accounted

for by such large bond bending.

However, if we consider the possible tilt angle of the distorted oxygen octahedra, as depicted

in Fig.2c of the manuscript, our data places un upper bound on the tilt angle. We find that the

tilt angle cannot exceed 4◦. Such tilting will induce displacement of oxygen ions that is much

smaller than the dominant displacement along the cubic axes of the perovskite reference unit

cell. We emphasize, that our observations can only be accounted for by considering the dominant

displacement along the cubic axes of the perovskite reference unit cell with possible tilt of the

oxygen octahedra that cannot exceed 4◦.

Furthermore, the structural change that we infer and report induces only one structurally

inequivalent Na site, while the GdFeO3 type distortions of the double perovskite structure produce

two inequivalent Na sites. Such structural distortions leading to one inequivalent Na site, do not

lead to two magnetically inequivalent Na sites in a trivial way. Two magnetic sub-lattices with FM

moments pointing in different directions are required to account for our data.
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Supplementary Discussion 3: Entropy considerations

Including SOC effects, the anticipated ground state of Ba2NaOsO6 for a perfectly cubic point

symmetry is predicted to be Jeff = 3
2 . However, the magnetic entropy removed across FM transition

is only R ln 2 [3]. The quantum model approach predicts that the additional entropy of R ln 2 must

be removed by quadrupole or orbital ordering. Thus, one can naively expect that the large entropy

change of R ln 4 should be observed around Tc, since the onset temperature for the broken local

point symmetry (BLPS) phase (that is, quadrupolar ordering) is very close to the magnetic one, in

disagreement with the entropy removal of R ln 2 reported in Ref. [3]. Resolution of this apparent

disagreement is unveiled by determination of the true onset temperature for quadrupolar order,

which is much higher than the onset temperature for breaking of local cubic symmetry reported

by NMR.

Onset temperature for breaking of local cubic symmetry, shown in Fig. 1b of the main

manuscript, was identified as temperature below which the second moment of the NMR spec-

tral line, measuring the spectral width, increases notably as compared to that in high temperature

PM phase. We point out that this temperature does not necessarily correspond to the true onset

temperature for orbital ordering, but to temperature below which lattice distortions do not exceed

resolution of our experiment, that equals to 0.02% of the respective lattice constant. As a matter of

fact, guided by our NMR findings of breaking of local cubic symmetry, high resolution x-ray scat-

tering experiments have detected tetragonal distortions at much higher temperatures [11]. That is

transition from a cubic to tetragonal local symmetry has been observed at 320 K [11]. The tetrago-

nal distortions do not exceed 0.01% of the respective lattice constant at temperatures in the vicinity

of 100 K, which is beyond resolution of 0.02% in our 23Na NMR measurements. Therefore, the

true onset temperature for the quadrupolar ordering, i.e. breaking of the local cubic symmetry, is

much higher than Tc associated with magnetic LRO, as predicted in Ref. [6, 7, 12]. Consequently,

the missing entropy is distributed over a wide temperature range of the order of 300 K.

We deduced that in the LRO phase, breaking of the local cubic symmetry is caused by or-

thorhombic distortions. In the PM phase, we found that it is possible that pure uniaxial tetrago-

nal lattice distortions, along [001] direction, could be present above the magnetic transition. This

is in agreement with observed tetragonal distortions at higher T by x-ray scattering [11]. The

associated tetragonal-to-orthorhombic phase transition could then be related to a nematic phase

transition that was recently proposed in Ref. [6], based on the same quantum model approach.

As a matter of fact, nematic phase transition that was recently proposed in Ref. [6] refers to or-
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thorhombic (in the PM phase)-to-tetragonal phase transition. However, the same physics may lead

to tetragonal (in the PM phase)-to-orthorhombic phase transition. This is because the authors in

Ref. [6] assumed that the low temperature distorted phase has tetragonal symmetry and studied

magnetism as a spin S = 1/2 model with general exotic directional magnetic interaction on an

fcc lattice. In Ba2NaOsO6 an effective S = 3/2 spin resides on an fcc lattice. This large spin

may still be quantum, that is, may be reduced to an effective S = 1/2, by unusual multipolar

interactions, that are basis of quantum models of magnetism in Mott insulators with strong SOC,

and/or a structural transition or quadrupolar ordering [7]. By assuming that tetragonal distor-

tions are responsible for reducing the effective spin to S = 1/2, the authors in Ref. [6] investigated

magnetism in double perovskites with strong SOC (implying complex directional interactions),

such as Ba2NaOsO6. The key point is that this model correctly predicts essential features of LRO

magnetism in Ba2NaOsO6, which is that there is a site-differentiated magnetic structure. In ad-

dition, the authors found that spin-lattice coupling can give rise to an intermediate temperature

paramagnetic nematic/orthorombic phase. The details of the the transition to/from this phase

is predominantly controlled by the strength of the spin-lattice coupling. If one assumes that or-

thorhombic distortions are present in the magnetic state it is possible that spin-lattice coupling

can give rise to an intermediate temperature paramagnetic nematic/tetragonal phase.
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