Supplementary information

Title: Identification of a novel type III secretion-associated outer membrane-bound protein from *Xanthomonas campestris* pv. *campestris*

Authors: Lei Li, Rui-Fang Li, Zhen-Hua Min, Guang-Tao Lu & Ji-Liang Tang

Supplementary Figure 1. Genetic and physical map of hpaM (*XC*_2847) gene in the genome of the *Xcc* strain 8004. The positions and orientations of the genes *XC*_2846-2848 are shown: arrows indicate length, location and orientation of the genes; lines between arrows indicate intergenic sequences. The lower element shows 120 bp DNA senquence downstream of the previously annotated translational start codon (GTG) of *XC*_2847. The transcriptional start site determined in this study and the corresponding translational start codon (ATG) are indicated by square and rectangular frame, respectively. The putative -10 and -35 sequences and the Shine-Dalgarno sequence are shown underlined.

Supplementary Figure 2. Growth of *hpaM* mutant. A, Bacterial population of *Xcc* strains in the host plant Chinese radish leaves. Inoculated leaves for each strain were taken daily and homogenized in SPB (sodium phosphate buffer). The homogenates were diluted and plated on NYG plates. Bacterial CFUs were counted after incubation for 3 days. Data are the means and standard deviations from three replicates. B, Growth of *Xcc* strains in minimal medium MMX. Strains were inoculated into 100 ml MMX liquid medium. Samples were taken in triplicate at intervals of 12 h, diluted, and plated on NYG plates. Bacterial CFU were counted after incubation for 3 days.

Supplementary Figure 3. No regulation between *hpaM* and *hrp* genes. **A**, GUS activity of *hrpG*, *hrpX* and six *hrp* operons (*hrpA-F*) promoter-*gusA* reporters in *hpaM* mutation and wild-type backgrounds. Strains were cultured in MMX medium for 48 h, and GUS activity was then determined by measurement of OD_{415} using ρ -nitrophenyl- β -D-glucuronide as substrate. Data are means \pm standard deviations of triplicate measurements. The experiment was repeated twice, and similar results were obtained. **B**, GUS activity of *hpaM* promoter-*gusA* reporter in *hrpG*, *hrpX* mutation and wild-type backgrounds. Strains were cultured in MMX medium for 24, 36 and 48 h, and GUS activity in the cell lysate was determined. Data are means \pm standard deviations of triplicate measurements. The experiment was repeated twice, and similar results were obtained of the cell lysate was determined. Data are means \pm standard deviations of triplicate measurements. The experiment was repeated twice, and similar results were between the cell lysate was determined.

А

Supplementary Figure 4. HpaM mutation plays no impacts on the activity of extracellular proteases, EPS production and cell motility in *Xcc*. **A**, Plate assays (Tang et al. 1991) were used to test the activity of exoproteases, EPS production. An overnight culture (2 μ l, OD₆₀₀ = 1.0) of each *Xcc* strain was spotted onto a tested plate. For estimation of the activity of exoproteases, strains on NYG plates 0.5% (wt/vol) skim milk (Sangon, Shanghai, China) were incubated at 28 °C for 48 h. Zones of

clearance around the spot, which due to the degradation of the substrate, from each tested *Xcc* strain were similar, indicating the activity of exoproteases of *hpaM* mutant strain was similar to that of the wild type. For EPS production, bacteria on NY plates containing 2.0% (wt/vol) glucose were incubated at 28 °C for 5 days. The mutant displayed similar colonies to the wild-type strain, indicating the EPS yield of *hpaM* mutant strain was similar to that of the wild type strain. Similar results were obtained in two other independent experiments. **B**, Example photographs of *Xcc* wild type strain 8004, *hpaM* mutant strain Δ hpaM and *hrcV* mutant strain Δ hrcV on motility assay plates (Su et al., 2016). To detect swimming motility, an overnight culture (OD₆₀₀ of 1.0) of each Xcc strain was stabbed into 0.28% agar plates composed of 0.03% Bacto peptone and 0.03% yeast extract followed by incubation at 28 °C for 3 days.

References

Su, H.Z., Wu, L., Qi, Y.H., Liu, G.F., Lu, G.T., Tang, J.L. (2016) Characterization of the GntR family regulator HpaR1 of the crucifer black rot pathogen *Xanthomonas campestris* pathovar *campestris*. *Sci Rep* **6**:19862.

Tang, J.L., Liu, Y.N., Barber, C.E., Dow, J.M., Wootton, J.C., Daniels, M.J. (1991) Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in *Xanthomonas campestris* pathovar *campestris*. *Mol Gen Genet* **226**: 409–417.

Supplementary Figure 5. His₆-tagged fusion proteins were overexpressed and purified. BL21/pET30a; Lanes: 1, crude extract 2, crude extract BL21/pET30a-HpaM_{LN22} induced with IPTG; 3, crude extract BL21/pET30a-HrcC₃₄₋₃₇₀ induced with IPTG; 4, crude extract BL21/pET30a-HrcJ₂₂₋₂₀₆ induced with IPTG; 5, affinity-purified His₆-HpaM_{LN22} protein; 6, affinity-purified His₆-HrcC₃₄₋₃₇₀ protein; 7, affinity-purified His₆-HrcJ₂₂₋₂₀₆ protein; 8, crude extract BL21/pET30a; 9, crude extract BL21/pET30a-HpaM_{LN180-225} induced with IPTG; 10, crude extract BL21/pET30a-HpaMLN₁₈₀₋₃₂₀ induced with IPTG; 11, affinity-purified affinity-purified His₆-HpaM_{LN180-225}; 12, His₆-HpaM_{LN180-320}; M, molecular mass marker.

Supplementary Figure 6. *Xcc* mutant strain with HpaM deletion in $180^{\text{th}}-202^{\text{th}}$ aa (Δ hpaM₁₈₀₋₂₀₂) or $288^{\text{th}}-311^{\text{th}}$ aa (Δ hpaM₂₈₈₋₃₁₁) lose virulence in hose plant and the ability of HR induction in no-host plant. **A**, Mean lesion lengths caused by different strains in the host plant Chinese radish (*Raphanus sativus*). *Xcc* wild-type strain 8004 and its derivatives from overnight culture were washed and resuspended in SPB to an OD₆₀₀ of 0.1. Leaves were cut with scissors dipped in the bacterial suspensions. The lesion lengths were measured at 10 days post-inoculation. Values given are the means and standard deviations from 15 measurements in one experiment. The experiment

was repeated three times with similar results. **B**, HR symptoms induced by *Xcc* strains in pepper leaves (*Capsicum annuum* cv. ECW-10R). Bacterial cells from overnight culture were washed with 10 mM SPB and resuspended in the same buffer to an OD_{600} of 0.1). Approximately 5 µl bacterial resuspension was infiltrated into the leaf mesophyll tissue with a blunt-end plastic syringe. Pictures of the inoculated pepper leaves were taken at 24 h after infiltration. The mutants Δ hpaM₁₈₀₋₂₀₂ and Δ hpaM₂₈₈₋₃₁₁ could not induce HR symptoms in pepper leaves. Three replications were done in each experiment, and each experiment was repeated three times. The results presented are from a representative experiment, and similar results were obtained in all other independent experiments.

Supplementary Figure 7. HrcC and HrcJ are essential for pathogenicity of *Xcc*. **A**, the lesion length caused by *Xcc* wild-type strain 8004, *hrcC* deletion mutant Δ hrcC and its complemented strain C Δ hrcJ. *Acc* strains were inoculated into its host plant Chinese radish (*Raphanus sativus*) leaves and lesion lengths were scored 10 days postinoculation. Values represent means and standard deviation from twenty inoculated leaves in one experiment. The experiment was repeated three times with similar results. **B**, HR symptoms induced in pepper (*Capsicum annuum* cv. ECW-10R) leaves by *Xcc* strains. Bacterial cells from overnight culture were washed, resuspended in SPB (sodium phosphate buffer) to a concentration of OD₆₀₀=0.1 and infiltrated into the leaf mesophyll tissue. Pictures of the inoculated pepper leaves were taken at 8, 16 and 24 h after infiltration. Three replications were done in each experiment, and the experiment, and similar results were obtained in all other independent experiments.

Supplementary Figure 8. Restoration of HR induction of *hpaM* mutant by *hpaM* homologues from *Xoo* (A) and *Xoc* (B). *Xcc* strains were cultured in NYG medium and resuspended in SPB to an $OD_{600}=0.1 (1 \times 10^8 \text{ CFU ml}^{-1})$. Approximately 5 µl bacterial resuspension was infiltrated into the leaf mesophyll of pepper plant. The leaves were photographed at 8 and 24 h after infiltration. Three replications were done in each experiment, and the experiment was repeated three times. The results presented are from a representative experiment, and similar results were obtained in all other independent experiments. 8004, *Xcc* wild type strain; Δ hpaM, *Xcc hpaM* deletion mutant; Δ hpaM/pLC*hpaM*_{Xoo}, Δ hpaM harboring the recombinant plasmid that contains the *hpaM* homologue from *Xoo*; Δ hpaM/pLC*hpaM*_{Xoc}, Δ hpaM harboring the recombinant plasmid that contains the *hpaM* homologue from *Xoo*; Δ hpaM homologue from *Xoc*.

Table S1. S	Strains	and	plasmids	used	in	this	study
-------------	---------	-----	----------	------	----	------	-------

Strains or plasmids	Relevant characteristics	Reference or	
544112 F		source	
E. coli strains			
IM109	RecA1, endA1, gyrA96, thi, supE44, relA1	Yanisch-Perron et	
JAIO	Δ (<i>lac-proAB</i>)/F' [<i>traD36</i> , <i>lacI</i> ^q , <i>lacZ</i> Δ M15]	al., 1985	
DH5a	Φ 80 $\wedge lac$ 7 M 15 rec A L end A L deo R	Gibco BRL, Life	
DIISu		Technologies	
DI 21(DE2)	\mathbf{E}^{-} and \mathbf{f}^{-} and \mathbf{f}^{-} by \mathbf{f}^{-} and \mathbf{f}^{-} by \mathbf{f}^{-} and \mathbf{f}^{-}	Novagen,	
BL21(DE3)	F $Omp1$ gai acm ion $nsas_B(i_B m_B) \land (D \cup s)$	Germany	
	Reporter strain, $\Delta(mcrA)183$		
VI 1 Dhua MDE'	$\Delta(mcrCB-hsdSMR-mrr)173 endA1 hisB$	Stratagong	
XL1-Blue MKF	supE44 thi-1 recA1 gyrA96relA1 lac [F´lacIq	Stratagene	
	HIS3 aadA Kan ^{r]}		
Xanthomonas oryzae pv. oryzae strains			
PYO00 ^A	Wild-type strain, Philippine race 6,	Hopkins et al.,	
17097	Azacytidine resistant clone of PXO99, Rif ^r	1992	
AL	$hpaM_{Xoo}$ gene (PXO_01147) deletion mutant	This work	
ΔnpaM _{Xoo}	derived from PXO99 ^A , Rif ^r	This work	
$C\Delta hpa M_{Xoo}$	Δ hpa M_{Xoo} harboring pLChpa M_{Xoo} , Rif ^r Tet ^r	This work	
	<i>hrcC</i> gene deletion mutant derived from	Author's lab	
Δ hrc C_{Xoo}	PXO99 ^A , Rif ^r	collection	
	Δ hpa M_{Xoo} harboring recombinant plasmid	775:	
ΔhpaM _{Xoo} /pK <i>npaM</i> _{Xoo} Ho	$pRhpaM_{Xoo}H6$, $Rif^{r}Tet^{r}$	This work	
	Wild-type strain PXO99 ^A harboring		
PXO99 [~] /pGUS <i>avrAC</i>	recombinant plasmid pGUSavrAC, Rif ^r Tet ^r	1 IIIS WOFK	
	Δ hpa M_{Xoo} harboring recombinant plasmid		
ΔhpaM _{Xoo} /pGUS <i>avrAC</i>	pGUS <i>avrAC</i> , Rif ^r Tet ^r	This work	
	Δ hrcC _{Xoo} harboring recombinant plasmid		
Δ hrcC _{Xoo} /pGUS <i>avrAC</i>	pGUS <i>avrAC</i> , Rif ^r Tet ^r	This work	
Xanthomonas oryzae pv. oryzicola strains			
-	Wild-type strain, isolated from Guangxi,	Author's lab	
GX01	China, Rif ^r	collection	
	$hpaM_{Xac}$ gene deletion mutant derived from		
Δ hpa M_{Xoc}	GX01, Rif ^r	This study	
	Λ hpaM _{voc} harboring the plasmid		
$C\Delta hpaM_{Xoc}$	$DLChpaM_{xox}$. Rif ^r Tet ^r	This study	
	hrcC sene deletion mutant derived from	Author's lab	
Δ hrc C_{Xoc}	GX01 Rif ^r	collection	
	AhnaM-, harboring the recombinant plasmid		
$\Delta hpaM_{Xoc}/pRhpaM_{Xoc}H6$	$pRhpaM_{x_{oc}}$ Hd. Bif ^r Tet ^r This work		
CV01/pCUS run AC	CV01 hashering the magnificant plasmid	This work	
GX01/pGUSavrAC	GAUI narboring the recombinant plasmid	This work	

	pGUS <i>avrAC</i> , Rif ^r Tet ^r		
	Δ hpa M_{Xoc} harboring the recombinant plasmid	This work	
ΔhpaM _{Xoc} /pGUS <i>avrAC</i>	pGUS <i>avrAC</i> , Rif ^r Tet ^r		
	Δ hrcC _{Xoc} harboring the recombinant plasmid		
ΔhrcC _{Xoc} /pGUS <i>avrAC</i>	pGUS <i>avrAC</i> , Rif ^r Tet ^r	This work	
Xanthomonas campestris pv. campestris			
strains			
8004	Wild-type strain, Rif ^r	Daniels <i>et al.</i> , 1984	
002E12	As 8004, but XC_2847::Tn5gusA5,	Author's lab	
083E12	virulence-deficient mutant, Rif ^r Kan ^r	collection	
AL	As 8004, but <i>hpaM</i> gene (XC_2847) deleted,	This work	
Δηραίνι	non-polar effect. Rif ^r	This work	
CALM	ΔhpaM harboring the recombinant plasmid	This mode	
СДирам	pLChpaM, Rif ^r Tet ^r	This work	
	ΔhpaM harboring the recombinant plasmid	771 · 1_	
ΔhpaM/pLChpaM _{Xoo}	$pLChpaM_{Xoo}$, $Rif^{r}Tet^{r}$	This work	
	ΔhpaM harboring the recombinant plasmid	This work	
ΔhpaM/pLChpaM _{Xoc}	pLChpaM _{Xoc} , Rif ^r Tet ^r		
	As 8004, but HpaM is deleted in 180 th -202 th	This work	
ΔhpaM ₁₈₀₋₂₀₂	aa, non-polar effect. Rif ^r		
~	Δ hpa $M_{180-202}$ harboring the recombinant		
СДраМ ₁₈₀₋₂₀₂	plasmid pLChpaM , Rif ^r Tet ^r	This work	
	As 8004, but HpaM is deleted in 288 th -311 th		
ΔhpaM ₂₈₈₋₃₁₁	aa, non-polar effect. Rif ^{r r}	This work	
	Δ hpa $M_{288-311}$ harboring the recombinant		
СДраМ ₂₈₈₋₃₁₁	plasmid pLChpaM , Rif ^r Tet ^r	I IIIS WORK	
	ΔhpaM harboring the recombinant plasmid	This work	
ΔhpaM/pGUS <i>hpaM</i>	pGUShpaM, Rif ^r Tet ^r		
	As 8004, but the avirulence gene $avrBsI_{Xcc}$		
$\Delta avrBs1_{Xcc}$	(<i>XC_2081</i>) deleted, non-polar effect. Rif ^r	Xu et al., 2008	
	Δ hpaM harboring the recombinant plasmid		
ΔhpaM/pR <i>hpaM</i> H6	pR <i>hpaM</i> H6, Rif ^r Tet ^r	This work	
	8004 harboring the reporter plasmid		
8004/pGUS <i>avrAC</i>	pGUS <i>avrAC</i> , Rif ^r Tet ^r	This work	
	8004 harboring the reporter plasmid		
8004/pGUS <i>xopN</i>	pGUS <i>xopN</i> , Rif ^r Tet ^r	This work	
	8004 harboring the recombinant plasmid		
8004/pL6 <i>gus</i>	pL6gus, Rif ^t Tet ^r	This work	
	8004 harboring the reporter plasmid		
8004/pLavrAC ₁₀₂ ::CyaA	$pLavrAC_{102}$::CyaA, Rif ^r Tet ^r	This work	
	Δ hpaM harboring the reporter plasmid		
ΔhpaM/pGUS <i>avrAC</i>	pGUSavrAC, Rif ^r Tet ^r	This work	

ΔhpaM/pGUS <i>xopN</i>	Δ hpaM harboring the reporter plasmid pGUS <i>xopN</i> , Rif ^r Tet ^r	This work
ΔhpaM/pLavrAC ₁₀₂ ::CyaA	Δ hpaM harboring the reporter plasmid pLavrAC ₁₀₂ ::CyaA, Rif ^r Tet ^r	This work
Δ8004G	As 8004, but <i>hrpG</i> deleted, Rif ^r Kan ^r	Author's lab collection
Δ8004X	As 8004, but <i>hrpX</i> deleted, Rif ^r Kan ^r	Author's lab collection
ΔhrcV	As 8004, but <i>hrcV</i> deleted, Rif ^e	Author's lab collection
ΔhrcV/pGUSavrAC	Δ hrcV harboring the reporter plasmid pGUS <i>avrAC</i> , Rif ^r Tet ^r	This work
ΔhrcV/pGUS <i>xopN</i>	Δ hrcV harboring the reporter plasmid pGUS <i>xopN</i> , Rif ^t Tet ^r	This work
ΔhrcV/pLavrAC ₁₀₂ ::CyaA	Δ hrcV harboring the reporter plasmid pL <i>avrAC</i> ₁₀₂ ::CyaA, Rif ^r Tet ^r	This work
ΔhrcC	As 8004, but <i>hrcC</i> deleted, Rif ^r	Author's lab collection
ΔhrcC/pR <i>hrcC</i> H6	ΔhrcC harboring the recombinant plasmid pR <i>hrcC</i> H6, Rif ^r Tet ^r	This work
ΔhrcJ	As 8004, but <i>hrcJ</i> deleted, Rif ^r	Author's lab collection
ΔhrcJ/pR <i>hrcJ</i> H6	ΔhrcJ harboring the recombinant plasmid pR <i>hrcJ</i> H6, Rif ^r Tet ^r	This work
∆hpaR1/pR <i>hpaR1</i> H6	Δ hpaR1 harboring the recombinant plasmid pR <i>hpaR1</i> H6, Rif ^r Tet ^r	Author's lab collection
ΔhpaS/pR <i>hpaS</i> H6	Δ hpaS harboring the recombinant plasmid pR <i>hpaS</i> H6, Rif ^r Tet ^r	Author's lab collection
ΔhpaM-hrcC	As 8004, but both <i>hpaM</i> and <i>hrcC</i> deleted, Rif ^r	This work
ΔhpaM-hrcC/pR <i>hpaM</i> H6	Δ hpaM-HrcC harboring the recombinant plasmid pR <i>hpaM</i> H6, Rif ^t Tet ^r	This work
ΔavrAC	As 8004, but <i>avrAC</i> gene (<i>XC_1553</i>) deleted, Rif ^r	This work
ΔavrAC-hpaM	As 8004, but both <i>avrAC</i> and <i>hpaM</i> deleted, Rif ^r	This work
ΔavrAC-hrcV	As 8004, but both <i>avrAC</i> and <i>hrcV</i> deleted, Rif ^r	This work
∆avrAC/pRavrACH6	ΔavrAC harboring the recombinant plasmid pR <i>avrAC</i> H6, Rif ^r Tet ^r	This work
ΔavrAC-hpaM/pRavrACH6	ΔavrAC-hpaM harboring the recombinant plasmid pR <i>avrAC</i> H6, Rif ^r Tet ^r	This work
ΔavrAC-hrcV/pRavrACH6	ΔavrAC-hrcV harboring the recombinant	

	plasmid pRavrACH6, Rif ^r Tet ^r		
8004/pGUSkpaM	8004 harbouring the recombinant plasmid	This work	
8004/p003 <i>npam</i>	pGUS <i>hpaM</i> , Rif ^r Tet ^r	THIS WORK	
2004/aCT18/ama 4	8004 harbouring the recombinant plasmid	This work	
8004/pGUS <i>nrpA</i>	pGUShrpA, Rif ^r Tet ^r	This work	
9004/ CUSL D	8004 harbouring the recombinant plasmid		
8004/pGUS <i>nrpB</i>	pGUS <i>hrpB</i> , Rif ^r Tet ^r	This work	
	8004 harbouring the recombinant plasmid		
8004/pGUS <i>hrpC</i>	pGUS <i>hrpC</i> , Rif ^t Tet ^r	This work	
9004/ CUSL D	8004 harbouring the recombinant plasmid		
8004/pGUS <i>hrpD</i>	pGUS <i>hrpD</i> , Rif ^r Tet ^r	This work	
2004/ CUSL E	8004 harbouring the recombinant plasmid		
8004/pGUS <i>hrpE</i>	pGUS <i>hrpE</i> , Rif ^r Tet ^r	This work	
	8004 harbouring the recombinant plasmid		
8004/pGUS <i>hrpF</i>	pGUS <i>hrpF</i> , Rif ^r Tet ^r	This work	
	8004 harbouring the recombinant plasmid		
8004/pGUS <i>hrpG</i>	pGUS <i>hrpG</i> , Rif ^r Tet ^r	This work	
	8004 harbouring the recombinant plasmid		
8004/pGUS <i>hrpX</i>	pGUS <i>hrpX</i> , Rif ^r Tet ^r	This work	
	Δ 8004G harbouring the recombinant plasmid		
Δ8004G/pGUS <i>hpaM</i>	pGUS <i>hpaM</i> , Rif ^r Kan ^r Tet ^r	This work	
	Δ 8004X harbouring the recombinant plasmid		
Δ8004X/pGUS <i>hpaM</i>	pGUS <i>hpaM</i> , Rif ^r Kan ^r Tet ^r	This work	
	8004 harbouring the plasmid pLAFR3, Rif ^r		
8004 /pLAFR3	Tet ^r	THIS WOLK	
	Δ hpaM harbouring the recombinant plasmid		
ΔhpaM/pGUS <i>hpaM</i>	pGUS <i>hpaM</i> , Rif ^r Tet ^r	I his work	
	ΔhpaM harbouring the recombinant plasmid		
ΔhpaM/pGUS <i>hrpA</i>	pGUS <i>hrpA</i> , Rif ^r Tet ^r	This work	
	ΔhpaM harbouring the recombinant plasmid		
ΔhpaM/pGUS <i>hrpB</i>	pGUS <i>hrpB</i> , Rif ^r Tet ^r	This work	
	ΔhpaM harbouring the recombinant plasmid		
ΔhpaM/pGUS <i>hrpC</i>	pGUS <i>hrpC</i> , Rif ^r Tet ^r	This work	
	ΔhpaM harbouring the recombinant plasmid		
ΔhpaM/pGUS <i>hrpD</i>	pGUS <i>hrpD</i> , Rif ^r Tet ^r	This work	
	Δ hpaM harbouring the recombinant plasmid		
ΔhpaM/pGUS <i>hrpE</i>	pGUS <i>hrpE</i> , Rif ^r Kan ^r Tet ^r	This work	
	Δ hpaM harbouring the recombinant plasmid		
ΔhpaM/pGUS <i>hrpF</i>	pGUS <i>hrpF</i> , Rif ^r Tet ^r	This work	
	Δ hpaM harbouring the recombinant plasmid		
ΔhpaM/pGUS <i>hrpG</i>	pGUS <i>hrpG</i> , Rif ^r Tet ^r	This work	
	Δ hpaM harbouring the recombinant plasmid		
AhpaM/pGUS <i>hrpX</i>		This work	

ΔhpaM/pLAFR3	Δ hpaM harbouring the plasmid pLAFR3, Rif ^r Tet ^r	This work
Plasmids		
pLAFR3	Broad host range cloning vector, Tet ^r	Staskawicz <i>et al.</i> , 1987
pLAFR6	A promoterless derivative of pLAFR3, Tet ^r	Huynh et al., 1989
pRK2073	Helper plasmid, Tra ⁺ , Mob ⁺ , ColE1, Spc ^r .	Leong et al., 1982
pK18mobsacB	pUC18 derivative, <i>lacZa</i> , <i>sacB</i> , Kan ^r , <i>mob</i> site. Allelic exchange vector (Suicidal vector carrying <i>sacB</i> gene for mutagenesis)	Sch äfer <i>et al.</i> , 1994
pET-30a	Expression vector, allow the production of fusion proteins containing amino terminal 6 ×His-tagged sequences. Kan ^r	Novagen
pET-30a-HpaM _{LN22}	pET-30a containing a 981-bp fragment of truncated <i>hpaM</i> gene encoding the 23 th –349 th amino acids.	This work
pET-30a-HpaM _{LN180-225}	pET-30a containing a 138-bp fragment of truncated <i>hpaM</i> gene encoding the 180 th -225 th amino acids.	This work
pET-30a-HpaM _{LN180-320}	pET-30a containing a 423-bp fragment of truncated <i>hpaM</i> gene encoding the 180 th -320 th amino acids.	This work
pET-30a-HrpC ₃₄₋₃₇₀	pET-30a containing a 1011-bp fragment of partial <i>hrcC</i> gene sequence encoding the 34 th -370 th amino acids.	This work
pET-30a-HrcJ ₂₂₋₂₀₆	pET-30a containing a 555-bp fragment of partial <i>hrcJ</i> gene sequence encoding the 22 th -206 th amino acids.	This work
pLChpaM	1432-bp DNA fragment containing the full <i>hpaM</i> gene (<i>XC</i> _2847) of <i>Xcc</i> strain cloned into the plasmid pLAFR6. Tet ^r	This work
pLChpaM _{Xoo}	1053-bp DNA fragment of the $hpaM_{Xoo}$ gene ORF (<i>PXO_01147</i>) of <i>Xoo</i> strain cloned into the plasmid pLAFR3. Tet ^r	This work
pLChpaM _{Xoc}	1053-bp DNA fragment of the $hpaM_{Xoc}$ gene ORF (<i>XOC3053</i>) of <i>Xoc</i> strain cloned into the plasmid pLAFR3. Tet ^r	This work
pBT	Two-hybrid system bait plasmid containing the <i>cat</i> gene, p15A origin of replication and λ cI ORF	Stratagene
pBhpaM _{LN22}	pBT derivative carrying the 981-bp of <i>hpaM</i> gene lacking the nt 1 to 66, Cat ^r	This work

	pBT derivative carrying a 1011-bp fragment	
pB <i>hrcC</i> ₃₄₋₃₇₀	of partial <i>hrcC</i> gene sequence encoding the	This work
	34 th –370 th amino acids, Cat ^r	
pBThpaS _{LN54}	pBT derivative carrying <i>hpaS</i> gene	Li et al., 2014
	Two-hybrid system target plasmid containing	
pTRG	the <i>tet</i> gene, ColE1 origin of replication, and	Stratagene
	RNA polymerase α subunit ORF	
	pTRG derivative carrying the 1716-bp of	
$pThrcC_{IN33}$	truncated $hrcC$ gene lacking the nt 1 to 99,	This work
1 105	Tet ^r	
	pTRG derivative carrying 1011-bp fragment	
$pThrcC_{24,270}$	of partial <i>hrcC</i> gene sequence encoding the	This work
P 1 0 0 34-3/0	34^{th} = 370 th amino acids. Tet ^r	1
	nTRG derivative carrying 699-bn of truncated	
$pThrcJ_{LN21}$	hrcI gene lacking the nt 1 to 63. Tet ^r	This work
	pTRG derivative carrying 555-bn truncated	
pThral	<i>brel</i> gape sequence encoding the 22 th 206 th	This work
p1///CJ ₂₂₋₂₀₆	amino acida Tat^{I}	THIS WOLK
	amino acids, let	
pTRGhrpG	pTRG derivative carrying the full length of	Li et al., 2014
	the coding region of <i>hrpG</i> gene (789-bp), Tet	
pTRGhpaS _{LN54}	pTRG derivative carrying truncated <i>hpaS</i>	Author's lab
	gene lacking the nt 1–162, Tet ¹	collection
	pBT derivative carrying a 540-bp fragment	
pBM ₂₃₋₂₀₂	encoding the 23 th –202 th amino acids of	This work
	HpaM, Cat ^r	
	pBT derivative carrying a 609-bp fragment	
pBM ₂₃₋₂₂₅	encoding the 23 th –225 th amino acids of	This work
	HpaM, Cat ^r	
	pBT derivative carrying a 678-bp fragment	
pBM ₂₃₋₂₄₈	encoding the 23th-248th amino acids of	This work
	HpaM, Cat ^r	
	pBT derivative carrying a 372-bp fragment	
pBM ₂₂₆₋₃₄₉	encoding the 226 th -349 th amino acids of	This work
	HpaM, Cat ^r	
	pBT derivative carrying a 441-bp fragment	
pBM ₂₀₃₋₃₄₉	encoding the 203 th -349 th amino acids of	This work
	HpaM, Cat ^r	
	pBT derivatives carrying the 510-bp	
pBM ₁₈₀₋₃₄₉	fragment encoding 180 th -349 th amino acids of	This work
	HpaM, Cat ^r	
	pBT derivative carrying a 276-bp fragment	
pBM ₁₈₀₋₂₇₁	encoding the 180 th –271 th amino acids of	This work
	HpaM, Cat ^r	
	r,	

	pBT derivative carrying a 138-bp fragment	
pBM ₁₈₀₋₂₂₅	encoding the 180 th -225 th amino acids of	This work
	HpaM, Cat ^r	
	pBT derivative carrying a 363-bp fragment	
pBM ₁₈₀₋₃₀₀	encoding the 180 th -300 th amino acids of	This work
	HpaM, Cat ^r	
	pBT derivative carrying a 423-bp fragment	
pBM ₁₈₀₋₃₂₀	encoding the 180 th -320 th amino acids of	This work
	HpaM, Cat ^r	
	pBT derivative carrying a 483-bp fragment	
pBM ₁₈₀₋₃₄₀	encoding the 180 th -340 th amino acids of	This work
	HpaM, Cat ^r	
	pLAFR6 containing a 1,832-bp gusA ORF	
pL6gus	(excluding the translational start codon ATG),	Jiang <i>et al.</i> , 2008
	Tet ^r	
	pLAFR6 containing 404-bp promoter region	
pGUS <i>hpaM</i>	of the gene <i>hpaM</i> fused to the coding region	This work
	for <i>gusA</i> , Tet ^r	
- CUShine C	pLAFR6 containing an <i>hrpG</i> promoter-gusA	Author's lab
pGUSnrpG	fusion fragment, Tet ^r	collection
- CUShun V	pLAFR6 containing an <i>hrpX</i> promoter-gusA	Author's lab
pousnrpx	fusion fragment, Tet ^r	collection
-CUShin A	pLAFR6 containing an <i>hrpA</i> operon	Author's lab
pousnrpA	promoter-gusA fusion fragment, Tet ^r	collection
- CUShan D	pLAFR6 containing an <i>hrpB</i> operon	Author's lab
poosinpb	promoter-gusA fusion fragment, Tet ^r	collection
pGUShrnC	pLAFR6 containing an <i>hrpC</i> operon	Author's lab
peessipe	promoter-gusA fusion fragment, Tet ^r	collection
pGUShrpD	pLAFR6 containing an <i>hrpD</i> operon	Author's lab
	promoter-gusA fusion fragment, Tet ^r	collection
pGUShrnF	pLAFR6 containing an <i>hrpE</i> operon	Author's lab
poosmpl	promoter-gusA fusion fragment, Tet ^r	collection
pGUShrnE	pLAFR6 containing an <i>hrpF</i> operon	Author's lab
poosinpr	promoter-gusA fusion fragment, Tet ^r	collection
	pLAFR6 containing the type III secretion	
	signal of $xopN$ (from the 488 th bp upstream to	Author's lab
pGUS <i>xopN</i>	the 159 th bp downstream of the start codon of	Author S lab
	XC_{0241} encoding sequence fused with	
	promoterless gus gene, Tet ^r	
	pLAFR6 containing the type III secretion	
	signal of AvrAC (from the 400 th bp upstream	Author's lab
pGUS <i>avrAC</i>	to the 600^{th} bp downstream of the start codon	collection
	of XC_{1553}) encoding sequence fused with	
	promoterless gus gene, Tet ^r	

	pLAFR6 containing the type III secretion	
	signal coding sequence of AvrAC (from the	Granted by Prof.
pLavrAC ₁₀₂ ::CyaA	588 th bp upstream to the 306 th bp downstream	
	of the start codon) fused with cyaA gene	Jiang
	(excluding start codon ATG), Tet ^r	
pR <i>hpaM</i> H6	pLAFR3 containing the encoding sequence of	This work
propulatio	HpaM with 6×His tag in its C-terminus, Tet ^r	THIS WORK
	pLAFR3 containing the encoding sequence of	
$pRhpaM_{Xoo}H6$	Hpa M_{Xoo} with 6×His tag in its C-terminus,	This work
	Tet ^r	
	pLAFR3 containing the encoding sequence of	
$pRhpaM_{Xoc}H6$	Hpa M_{Xoc} with 6×His tag in its C-terminus,	This work
	Tet ^r	
	pLAFR6 containing the encoding	
pRavrACH6	sequence of AvrAC with 6xHis tag in its	This work
	C-terminus , Tet ^r	
nD has D III 6	pLAFR3 containing the encoding sequence of	Author's lab
ркирактно	HpaR1 with 6×His tag in its C-terminus, Tet ^r	collection
nD <i>h</i> n <i>a</i> CH6	pLAFR3 containing the encoding sequence of	Author's lab
рклразно	HpaS with 6×His tag in its C-terminus, Tet ^r	collection
nP <i>hrcC</i> H6	pLAFR3 containing the encoding sequence of	This work
philiceno	HrcC with 6×His tag in its C-terminus, Tet ^r	THIS WORK
nR <i>hrcI</i> H6	pLAFR3 containing the encoding sequence of	This work
protectio	HrcJ with 6×His tag in its C-terminus, Tet ^r	THIS WOLK

References

- Daniels, M.J., Barber, C.E., Turner, P.C., Sawczyc, M.K., Byrde, R.J.W., and Fielding, A.H. (1984) Cloning of genes involved in pathogenicity of *Xanthomonas campestris* pv. *campestris* using the broad host range cosmid pLAFR1. *EMBO J* **3**: 3323–3328.
- Hopkins, C.M., White, F.F., Choi, S.H., Guo, A., and Leach, J.E. (1992) Identification of a family of avirulence genes from *Xanthomonas oryzae* pv. *oryzae*. *Mol Plant Microbe Interact* **5**: 451–459.
- Huynh, T.V., Dahlbeck, D., and Staskawicz, B.J. (1989) Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. *Science* **245**: 1374–1377.
- Jiang, B.L., He, Y.Q., Cen, W.J., Wei, H.Y., Jiang, G.F., Jiang, W., et al. (2008) The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res Microbiol 159: 216–220.

- Leong, S.A., Ditta, G.S., and Helinski, D.R. (1982) Heme biosynthesis in *Rhizobium*. Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from *Rhizobium meliloti*. J Biol Chem 257: 8724–8730.
- Li, R.F., Lu, G.T., Li, L., Su, H.Z., Feng, G.F., Chen, Y., *et al.* (2014) Identification of a putative cognate sensor kinase for the two-component response regulator HrpG, a key regulator controlling the expression of the *hrp* genes in *Xanthomonas campestris* pv. *campestris. Environ Microbiol* **16**: 2053–2071.
- Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., and Pühler, A. (1994) Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. *Gene* **145**: 69–73.
- Staskawicz, B., Dahlbeck, D., Keen, N., and Napoli, C. (1987) Molecular characterization of cloned avirulence genes fromrace 0 and race 1 of *Pseudomonas syringae* pv. glycinea. J Bacteriol 169: 5789–5794.
- Xu, R.Q., Blanvillain, S., Feng, J.X., Jiang, B.L., Li, X.Z., Wei, H.Y., *et al.* (2008) AvrAC_(Xcc8004), a type III effector with a leucine-rich repeat domain from *Xanthomonas campestris* pathovar *campestris* confers avirulence in vascular tissues of Arabidopsis thaliana ecotype Col-0. J Bacteriol 190: 343–55.
- Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. *Gene* **33**: 103–119.

 Table S2. Primers used in this study[§]

Primer	Nucleotide sequence $(5' \rightarrow 3')$	The amplified fragment or the utilization
LhpaM-F	GAC <u>GAATTC</u> GATGGCGTCAACCAGCTCTC	747-bp DNA sequence upstream of hpaM,
LhpaM-R	GCG <u>TCTAGA</u> TCTAGTGTGTCGCACCAGGC	used for construction of hpaM deletion
		mutant.
RhpaM-F	GAC <u>TCTAGA</u> GATGTGGCCGGCGTGGATATC	726-bp DNA sequence downstream of
RhpaM-R	GAC <u>AAGCTT</u> ATTCCTGGACGTGGCGATGC	hpaM, used for construction of hpaM
		deletion mutant.
LhpaM-F ₁₈₀	ACAGTTGGATCC CTACCTGATCATCAATCG	767-bp fragment spans 230 th nt upstream
LhpaM-R ₁₈₀	ACAGTT <u>TCTAGA</u> GTCGTATTCGCTGAGCAG	to 537 th nt downstream of the start codon
		ATG of <i>hpaM</i> ORF, used for construction
		of HpaM derivative which deleted in
		180 th -202 th aa.
LhpaM-F ₁₈₀	ACAGTT <u>TCTAGA</u> ACCGCCAAGGTGACGATG	560-bp fragment spans 607 th nt to 1166 th nt
LhpaM-R ₁₈₀	ACAGTT <u>AAGCTT</u> CAGCAACCACCAGGTAGG	downstream of the start codon ATG of
		hpaM ORF, used for construction of
		HpaM derivative which deleted in
		180 th -202 th aa a.
LhpaM-F ₃₁₁	ACAGTT <u>GGATCC</u> AAAAGCCATCGACAAGCT	715-bp DNA fragment spans 147 th nt to
LhpaM-R ₃₁₁	ACAGTT <u>TCTAGA</u> CATGCTGTTGTCCCAGCACA	861 th nt downstream of the start codon
		ATG of <i>hpaM</i> ORF, used for construction
		of HpaM derivative which deleted in
		288 th -311 th aa.
LhpaM-F ₃₁₁	ACAGTT <u>TCTAGA</u> GCGGCCAACTGCAGCGCGGCC	588-bp DNA fragment spans 934 th nt to
LhpaM-R ₃₁₁	ACAGTT <u>AAGCTT</u> TGCCGCCGCGCACGTGAG	1521 th nt downstream of the start codon
		ATG of <i>hpaM</i> ORF , used for construction
		of HpaM derivative which deleted in
		288 th -311 th aa.
ChpaM-F	ACAGTT <u>GGATCC</u> GCCTACAGCTTCTGAGCCTG	1432-bp DNA fragment spans 352
ChpaM-R	ACAGTT <u>AAGCTT</u> GTGGCTGCGTAGCGGTTTTG	upstream to 30 bp downstream of the
		<i>hpaM</i> ORF sequence.
hpaM-F	ACAGTT <u>GGATCC</u> ATGCCTCTGCTTGCCCGCTC	DNA fragment of 1047-bp hpaM coding
hpaM-R	ACAGTT <u>AAGCTT</u> TTAGTGGTGGTGGTGGTGGTGGTGGTGGC	sequence fusing with 6×His tag encoding
	GCACGCA	sequences. Used for Western blot analysis.
hpaM-1F	GAT <u>GGATCC</u> GCACCGCCAGCGCCTGCC	981-bp DNA fragment spans nucleotides
hpaM-1R	GGG <u>CTCGAG</u> TTACTCGTGGCGCACGCA	67 to 1047 bp of the <i>hpaM</i> coding
		sequence, encoding the 23 th -349 th amino
		acids. Used for bacterial two-hybrid assay.
hpaM-2F	GATG <u>GGATCC</u> GCACCGCCAGCGCCTGCC	540-bp DNA fragment spans nucleotides
hpaM-2R	GCGG <u>CTCGAG</u> GCGATTGAACGACACGCC	67 to 606 bp of the <i>hpaM</i> ORF sequence,
		encoding the $23^{\text{th}}-202^{\text{th}}$ amino acids.
		Used for bacterial two-hybrid assay.
hpaM-3F	GATG <u>GGATCC</u> GCACCGCCAGCGCCTGCC	609-bp DNA fragment spans nucleotides
hpaM-3R	GCGG <u>CTCGAG</u> ATGCTCGGTGGTGAGGCC	67 to 675 bp of the <i>hpaM</i> ORF sequence,

		encoding the 23 th -225 th amino acids. Used
		for bacterial two-hybrid assay.
hpaM-4F	GATG <u>GGATCC</u> GCACCGCCAGCGCCTGCC	678-bp DNA fragment spans nucleotides
hpaM-4R	GGGG <u>CTCGAG</u> ATCCGACAGATAGATGCC	67 to 744 bp of the <i>hpaM</i> ORF sequence,
		encoding the 23 th -248 th amino acids. Used
		for bacterial two-hybrid assay.
hpaM-5F	GAG <u>GGATCC</u> CTGGAAGACAGCGAGATTCG	372-bp DNA fragment spans nucleotides
hpaM-5R	GGG <u>CTCGAG</u> TTACTCGTGGCGCACGCA	676 to 1047 bp of the hpaM ORF
		sequence, encoding the 226 th -349 th amino
		acids. Used for bacterial two-hybrid assay.
hpaM-6F	GGG <u>GGATCC</u> ACCGCCAAGGTGACGATGATG	441-bp DNA fragment spans nucleotides
hpaM-6R	GGG <u>CTCGAG</u> TTACTCGTGGCGCACGCA	607 to 1047 bp of the hpaM ORF
		sequence, encoding the 203 th -349 th amino
		acids. Used for bacterial two-hybrid assay.
hpaM-7F	GGG <u>GGATCC</u> ACGCGCGAGATCACCATC	510-bp DNA fragment spans nucleotides
hpaM-7R	GGG <u>CTCGAG</u> TTACTCGTGGCGCACGCA	538 to 1047 bp of the hpaM ORF
		sequence, encoding the 180 th -349 th amino
		acids. Used for bacterial two-hybrid assay.
hpaM-8F	GGG <u>GGATCC</u> ACGCGCGAGATCACCATC	276-bp DNA fragment spans nucleotides
hpaM-8R	GGG <u>CTCGAG</u> GCATGCCAGGAAGATGCC	538 to 813 bp of the <i>hpaM</i> ORF sequence,
		encoding the 180 th -271 th amino acids.
		Used for bacterial two-hybrid assay.
hpaM-9F	GGG <u>GGATCC</u> ACGCGCGAGATCACCATC	138-bp DNA fragment spans nucleotides
hpaM-9R	GGG <u>CTCGAG</u> ATGCTCGGTGGTGAGGCC	538 to 675 bp of the <i>hpaM</i> ORF sequence,
		encoding the 180 th -225 th amino acids.
		Used for bacterial two-hybrid assay.
hpaMO-9F	ACAGTT <u>GGATCC</u> ACGCGCGAGATCACCATCG	138-bp DNA fragment spans nucleotides
hpaMO-9R	ACAGTT <u>AAGCTT</u> ATGCTCGGTGGTGAGGCC	538 to 675 bp of the <i>hpaM</i> ORF sequence,
		encoding 180 th -225 th amino acids. Used
		for overexpression and pull-down assay.
hpaM-10F	GGG <u>GGATCC</u> ACGCGCGAGATCACCATC	363-bp DNA fragment spans nucleotides
hpaM-10R	GGG <u>CTCGAG</u> GCTGGCGAAACGGTTGTT 300	538 to 900 bp of the <i>hpaM</i> ORF sequence,
		encoding the 180 th -300 th amino acids.
		Used for bacterial two-hybrid assay.
hpaM-11F	GGGGGATCCACGCGCGAGATCACCATC	423-bp DNA fragment spans nucleotides
hpaM-11R	GGG <u>CTCGAG</u> GAAGTCGGCCGCGCTGCA 320	538 to 960 bp of the <i>hpaM</i> ORF sequence,
		encoding the 180 th -320 th amino acids.
		Used for bacterial two-hybrid assay.
hpaMO-11F	ACAGTT <u>GGATCC</u> ACGCGCGAGATCACCATCG	423-bp DNA fragment spans nucleotides
hpaMO-11R	ACAGTT <u>AAGCTT</u> GAAGTCGGCCGCGCTGCA	538 to 960 bp of the <i>hpaM</i> ORF sequence,
		encoding the 180 th -320 th amino acids.
		Used for overexpression and pull-down
		assay.
hpaM-12F	GGG <u>GGATCC</u> ACGCGCGAGATCACCATC	483-bp DNA fragment spans nucleotides

hpaM-12R	GGG <u>CTCGAG</u> CTGCGGCTCGATATCCAC 340	538 to 1020 bp of the hpaM ORF
		sequence, encoding the 180 th -340 th amino
		acids. Used for bacterial two-hybrid assay.
hpaM-OF	GG <u>GGATCC</u> GCACCGCCAGCGCCTGCC	981-bp DNA fragment spans nucleotides
hpaM-OR	GGG <u>AAGCTT</u> TTACTCGTGGCGCACGCA	67 to 1047 bp of the <i>hpaM</i> gene sequence,
		encoding the 23 th -349 th amino acids. Used
		for overexpression and pull-down assay.
hrcC-F	GATT <u>GGATCC</u> GCCGCGTCGGTGCCGTGG	1716-bp DNA fragment spans nucleotides
hrcC-R	GGG <u>CTCGAG</u> TCAGGGCGAGACGATATG	100 to 1815 bp of <i>hrcC</i> ORF, encoding the
		34 th -605 th amino acids. Used for bacterial
		two-hybrid assay.
hrcC-N1F	GATT <u>GGATCC</u> GCCGCGTCGGTGCCGTGG	1011-bp DNA fragment spans nucleotides
hrcC-N1R	GGG <u>CTCGAG</u> ATCGATCTGCAGCAGCTT	100 to 1110 bp of the <i>hrcC</i> ORF sequence,
		encoding the 34 th -370 th amino acids. Used
		for bacterial two-hybrid assay.
hrcC-N2F	GG <u>GGATCC</u> GCCGCGTCGGTGCCGTGG	1011-bp DNA fragment spans nucleotides
hrcC-N2R	GGG <u>AAGCTT</u> ATCGATCTGCAGCAGCTT	100 to 1110 bp of the <i>hrcC</i> ORF sequence,
		encoding the 34 th -370 th amino acids. Used
		for overexpression and pull-down assay.
hrcJ-F	GGG <u>GGATCC</u> CAGCTGTATTCCGGGCTGAC	699-bp DNA fragment spans nucleotides
hrcJ-R	GGG <u>CTCGAG</u> TCACCCCGCATGTTTTCT	64 to 762 bp of <i>hrcJ</i> gene sequence,
		encoding the 22 th -254 th amino acids. Used
		for bacterial two-hybrid assay.
hrcJ-N1F	GGG <u>GGATCC</u> CAGCTGTATTCCGGGCTGAC	555-bp DNA fragment spans nucleotides
hrcJ-N1R	GATT <u>CTCGAG</u> GGCACGCGGCGGCGCCGA	64 to 618 bp of the hrcJ ORF sequence,
		encoding the 22 th -206 th amino acids. Used
		for bacterial two-hybrid assay.
hrcJ-N2F	ACAGTT <u>GGATCC</u> CAGCTGTATTCCGGGCTGAC	555-bp DNA fragment spans nucleotides
hrcJ-N2R	ACAGTT <u>AAGCTT</u> GGCACGCGGCGGCGCCGA	64 to 618 bp of the hrcJ ORF sequence,
		encoding the 22 th -206 th amino acids.
		Used for overexpression and pull-down
		assay.
hpaM-RTP1	AGATAGATGCCCTGGCTGCC	located within the ORF hapM, used for
hpaM-RTP2	CGGTGCGATTGAACGACACG	5'-RACE
hpaM-RTP3	CGGTGCTGGCCACGATCTGCAT	
hpaM-RTP4	ATCGGCCATGCGCAGCACGG	
RP-hpaMF	ACAGTT <u>GAATTC</u> ACGCACCGGCCACTTCCCC	404-bp DNA sequence upstream of the
RP-hpaMR	ACAGTT <u>GGATCC</u> CATGCGGATTCCGGTCAGT	translational start codon of <i>hpaM</i>
		(including ATG). Used for construction of
		reporter plasmid.
LavrAC-F	AAA <u>GGATCC</u> GTTTTTCGATTTCGTGGA	577-bp DNA sequence upstream of <i>avrAC</i> ,
LavrAC-R	AAA <u>TCTAGA</u> GGTGCTCATATCCCACAAATTAAGA	used for construction of <i>avrAC</i> deletion
		mutant.
RavrAC-F	AAA <u>TCTAGA</u> TTTGCCGCCTGCCCGCCGTTGGTGAA	461-bp DNA sequence downstream of

RavrAC-R	CCG <u>AAGCTT</u> ATCTCCTGAATCACCACC	avrAC, used for construction of avrAC
		deletion mutant.
HavrAC-F	AAA <u>GGATCC</u> CCTGGGCAAGGCCAATTATAGCGGCGT	DNA fragment of 2196-bp avrAC
HavrAC-R	AAA <u>CTGCAG</u> CTAGTGGTGGTGGTGGTGGTGGTGGTGAACC	promoter sequence and coding sequence
	TGGTT	fusing with 6×His tag encoded sequence.
		Used for western blot analysis.
GusF	ACAGTT <u>GGATCC</u> TTACGTCCTGTAGAAACCCC	1,832-bp DNA fragment spans nucleotides
GusR	ACAGTT <u>CTGCAG</u> GGCTTTCCCCCCCCCCCGCAG	4 to 1,835 of the gusA ORF.
L3053F	ACAGTT <u>GGATCC</u> GCAGCGAGGGCCTGGAAG	879-bp DNA sequence upstream of
L3053R	ACAGTT <u>TCTAGA</u> GCGGAAACGGAGCGGGCA	$hpaM_{Xoc}$, used for construction of $hpaM_{Xoc}$
		deletion mutant.
R3053F	ACAGTT <u>TCTAGA</u> TATCGACCCGCAGCGCTA	591-bp DNA sequence downstream of
R3053R	ACAGTT <u>AAGCTT</u> ATTCTGTGGCGTCAGAAG	$hpaM_{Xoc}$, used for construction of $hpaM_{Xoc}$
		deletion mutant.
C3053F	ACAGTT <u>GGATCC</u> ATGCCTTTGCTTGCCCGCTC	1053-bp DNA fragment of the $hpaM_{Xoc}$
C3053R	ACAG <u>AAGCTT</u> TTATTGCTCGTGGCGCAC	ORF sequence
L01147F	ACAGTT <u>GGATCC</u> GCAGCGAGGGCATGGAAG	879-bp DNA sequence upstream of
L01147R	ACAGTT <u>TCTAGA</u> GCGGAAACGGAGCGGGCA	$hpaM_{Xoo}$, used for construction of $hpaM_{Xoo}$
		deletion mutant.
R01147F	ACAGTT <u>TCTAGA</u> TATCGACCCGCAACGCTA	591-bp DNA sequence downstream of
R01147R	ACAGTT <u>AAGCTT</u> ATTCTGTGGCGTCAGAAG	$hpaM_{Xoo}$, used for construction of $hpaM_{Xoo}$
		deletion mutant.
C01147F	ACAGTT <u>GGATCC</u> ATGCCTTTGCTTGCCCGCTC	1053-bp DNA fragment of the $hpaM_{Xoo}$
C01147R	ACAG <u>AAGCTT</u> TTATTGCTCCTGGCGCAC	ORF sequence
01147F	ACAGTT <u>GGATCC</u> ATGCCTTTGCTTGCCCGCTC	DNA fragment of 1050-bp hpaM _{Xoo} gene
01147R	ACAGTT <u>AAGCTT</u> TTAGTGGTGGTGGTGGTGGTGTTGCTCCT	coding sequence of Xoo strain fusing with
	GGCGCAC	6×His tag encoding sequence.
3053F	ACAGTT <u>GGATCC</u> ATGCCTTTGCTTGCCCGCTC	DNA fragment of 1050-bp hpaM _{Xoc} gene
3053R	ACAGTT <u>AAGCTT</u> TTAGTGGTGGTGGTGGTGGTGTTGCTCGT	coding sequence of <i>Xoc</i> strain fusing with
	GGCGCAC	6×His tag encoding sequence.

[§] The underlined sequences indicate the restriction sites for BamHI, EcoRI, HindIII,

PstI, XbaI and XhoI, respectively.

Table S3. HpaM homologues in Xanthomonas spp. and other plant bacterial pathogens

species	gene	Length	Function	Identity	Signal peptide	Transmembrane r	reference
		(aa)	predicted	/similarity		domain	
Xanthomonas campestris pv. raphani	XCR_1659	349	putative lipoprotein	98.9/99.7	1 th -22 th aa	8 th -29 th aa	Bogdanove et al., 2011
Xanthomonas oryzae pv. oryzicola	XOC_3053	350	lipoprotein, putative	92/96.9	1 th -22 th aa	3 th -23 th aa	Bogdanove et al., 2011
Xanthomonas axonopodis	XAC29_07240	350	hypothetical protein	91.4/96.6	1 th -22 th aa	3 th -23 th aa	accession CP004399.1
Xanthomonas oryzae pv. oryzae	PXO_01147	350	hypothetical protein	90.9/96.3	1 th -22 th aa	3 th -23 th aa	Salzberg et al., 2008
Xanthomonas citri pv. citri	XAC1434	348	conserved hypothetical protein	90.6/96.0	1 th -20 th aa	2 th -21 th aa	da Silva et al., 2002
Xanthomonas alfalfae	XACM_1423	368	hypothetical protein	87/92.1	1 th -40 th aa	21 th -41 th aa	Jalan et al., 2011
Xanthomonas perforans (formerly Xanthomonas axonopodis pv. vesicatoria)	XPE_3657	368	hypothetical protein	87/92.1	1 th -40 th aa	21 th -41 th aa	Potnis et al., 2011
Xanthomonas euvesicatoria (formerly Xanthomonas campestris pv. vesicatoria)	XCV1491	368	putative secreted protein	87.2/91.8	1 th -40 th aa	25 th -44 th aa	Thieme et al., 2005
Xanthomonas fuscans subsp. fuscans	XFF4834R_ch r30620	368	putative pectin lyase	87.2/91.8	1 th -28 th aa	21 th -44 th aa	Darrasse et al., 2013
Xanthomonas translucens pv. undulosa	FD63_12180	363	hypothetical protein	62/74.1	1 th -41 th aa	22 th -42 th aa	Peng et al., 2016
Xanthomonas sacchari	SB85_05035	348	hypothetical protein	61.1/73.7	1 th -16 th aa	6 th -23 th aa	accession CP010409.1
Xanthomonas albilineans	XALc_2014	347	polygalacturon ase domain protein	59.9/71.6	1 th -23 th aa	6 th -25 th aa	Pieretti et al.,2009
Pseudoxanthomonas spadix	DSC_11120	342	Putative secreted protein	56.4/67.1	1 th -17 th aa	53 th -69 th aa	Lee et al., 2012
Xylella fastidiosa subsp. fastidiosa	XFLM_05720	342	carbohydrate-b inding and sugar hydrolysis	55.1/68.6	1 th -24 th aa	5 th -26 th aa	Schreiber et al., 2010
Xylella fastidiosa	XF_0119	342	hypothetical	54.6/67.7	1 th -24 th aa	7 th -28 th aa	Simpson et

			protein				al., 2000
Pseudoxanthomonas	D 2275	2.00	OmpA/MotB	10.4/04.1	1 th aath		accession
suwonensis	Psesu_2275	369	domain protein	13.4/24.1	1 ^m -22 ^m aa	5 th - 23 th	CP002446.1
Pseudoxanthomonas sp.							Bai et al.,
Root630	No						2015
Pseudoxanthomonas sp.	N-						Bai et al.,
Root65	NO						2015
Pseudoxanthomonas	No						Patil et al.,
dokdonensis	INO						2016
Pseudoxanthomonas	No						GCA_0015
mexicana	110						56105.1
Pantoea ananatis							Hara et al
(formerly Xanthomonas	No						2012
uredovorus)							2012
Stenotrophomonas							
maltophilia (formerly	No						Crossman et
Xanthomonas	INO						al., 2008
maltiphilia)							
Ralstonia solanacearum	No						Salanoubat
Kuisionia solanacearam	NO						et al., 2002
	No						Stover et al.,
Pseudomonas group							2000
I sendomonas group							Buell et al.,
							2003
							Bell et al.,
Frwinia group	No						2004
Erwinia group							Smits et al.,
							2010
Dickeya (formerly	No						Pritchard et
Erwinia chrysanthemi)	110						al., 2013
							Medrano &
Pantoea group	No						Bell, 2012
T amoed group							Matsuzawa
							et al., 2012
Pectobacterium	No						Park et al.,
carotovorum	110						2012

Searching the HpaM homologues in plant bacterial pathogens were carried out by blast the genome sequences in KEGG database and NCBI database with the HpaM sequence. All the *Xanthomonas* spp. strains whose genome sequences were available in both databases were scanned and the representative strains were shown here. Identity/similarity analysis was performed using the Align X program in Vector NTI software. Signal peptide and transmembrane domain predictions were carried with the **SMART** Architecture (Simple Modular Research Tool) program (http://smart.embl-heidelberg.de) the **TMPRED** and program (http://www.ch.embnet.org/software/TMPRED_form.html), respectively. No, no significant similarity protein (similarity>20%) was found within the genome sequence.

Reference

- Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, *et al.* (2015) Functional overlap of the *Arabidopsis* leaf and root microbiota. *Nature* **528**: 364-9.
- Bell KS, Sebaihia M, Pritchard L, Holden MT, Hyman LJ, Holeva MC, *et al.* (2004)
 Genome sequence of the enterobacterial phytopathogen *Erwinia carotovora* subsp. *atroseptica* and characterization of virulence factors. *Proc Natl Acad Sci USA*. 101: 11105-10.
- Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, *et al.* (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic *Xanthomonas* spp. *J Bacteriol.* **193**: 5450-5464.
- Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, et al. (2003)
 The complete genome sequence of the Arabidopsis and tomato pathogen
 Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA. 100: 10181-6.
- Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, *et al.* (2008) The complete genome, comparative and functional analysis of *Stenotrophomonas maltophilia* reveals an organism heavily shielded by drug resistance determinants.

Genome Biol. 9: R74.

- da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, *et al.* (2002) Comparison of the genomes of two *Xanthomonas* pathogens with differing host specificities. *Nature* **417**: 459-63.
- Darrasse A, Carrère S, Barbe V, Boureau T, Arrieta-Ortiz ML, Bonneau S, *et al.* (2013)
 Genome sequence of *Xanthomonas fuscans* subsp. *fuscans* strain 4834-R reveals
 that flagellar motility is not a general feature of xanthomonads. *BMC Genomics.* 14: 761.
- Hara Y, Kadotani N, Izui H, Katashkina JI, Kuvaeva TM, Andreeva IG, *et al.* (2012) The complete genome sequence of *Pantoea ananatis* AJ13355, an organism with great biotechnological potential. *Appl Microbiol Biotechnol.* **93**: 331-41.
- Jalan N, Aritua V, Kumar D, Yu F, Jones JB, Graham JH, *et al.* (2011) Comparative genomic analysis of *Xanthomonas axonopodis* pv. *citrumelo* F1, which causes citrus bacterial spot disease, and related strains provides insights into virulence and host specificity. *J Bacteriol.* **193**: 6342-57.
- Lee SH, Jin HM, Lee HJ, Kim JM, and Jeon CO. (2012) Complete genome sequence of the BTEX-degrading bacterium *Pseudoxanthomonas spadix* BD-a59. *J Bacteriol*. **194**: 544.
- Matsuzawa T, Mori K, Kadowaki T, Shimada M, Tashiro K, Kuhara S, *et al.* (2012) Genome sequence of *Pantoea agglomerans* strain IG1. *J Bacteriol*. **194**: 1258-9.
- Medrano EG and Bell AA. (2012) Genome sequence of *Pantoea* sp. strain Sc 1, an opportunistic cotton pathogen. *J Bacteriol*. **194**: 3019.
- Park TH, Choi BS, Choi AY, Choi IY, Heu S, and Park BS. (2012) Genome sequence of *Pectobacterium carotovorum* subsp. *carotovorum* strain PCC21, a pathogen causing soft rot in Chinese cabbage. *J Bacteriol*. **194**: 6345-6.

- Patil PP, Midha S, Kumar S, and Patil PB. (2016) Genome Sequence of Type Strains of Genus *Stenotrophomonas*. *Front Microbiol*. **7**: 309.
- Peng Z, Hu Y, Xie J, Potnis N, Akhunova A, Jones J, *et al.* (2016) Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of *Xanthomonas translucens*. *BMC Genomics*. **17**: 21.
- Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Cociancich S, *et al.* (2009) The complete genome sequence of *Xanthomonas albilineans* provides new insights into the reductive genome evolution of the xylem-limited *Xanthomonadaceae*. *BMC Genomics.* 10: 616.
- Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, *et al.* (2011) Comparative genomics reveals diversity among *xanthomonads* infecting tomato and pepper. *BMC Genomics.* **12**: 146.
- Pritchard L, Humphris S, Saddler GS, Elphinstone JG, Pirhonen M, and Toth IK. (2013) Draft genome sequences of 17 isolates of the plant pathogenic bacterium *dickeya*. *Genome Announc*. 1(6).
- Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, *et al.* (2002) Genome sequence of the plant pathogen *Ralstonia solanacearum*. *Nature* **415**: 497-502.
- Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, et al. (2008) Genome sequence and rapid evolution of the rice pathogen *Xanthomonas oryzae* pv. *oryzae* PXO99^A. *BMC Genomics*. **9**: 204.
- Schreiber HL, Koirala M, Lara A, Ojeda M, Dowd SE, Bextine B, *et al.* (2010) Unraveling the first *Xylella fastidiosa* subsp. *fastidiosa* genome from Texas. *Southwestern Entomologist.* **35**: 479-483.

Simpson AJ, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, et al. (2000)

The genome sequence of the plant pathogen *Xylella fastidiosa*. The *Xylella fastidiosa* Consortium of the Organization for Nucleotide Sequencing and Analysis. *Nature* **406**: 151-9.

- Smits TH, Rezzonico F, Kamber T, Blom J, Goesmann A, Frey JE, et al. (2010) Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other *Erwinia* spp. *Mol Plant Microbe Interact.* 23: 384-93.
- Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. (2000) Complete genome sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic pathogen. *Nature* **406**: 959-64.
- Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, *et al.* (2005) Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium *Xanthomonas campestris* pv. *vesicatoria* revealed by the complete genome sequence. *J Bacteriol.* **187**: 7254-66.