
Supplemental Materials 

Data sets used for the meta-analysis 

In this section we describe in some detail the designs of the data sets we used in our analysis. A 
summary of the microarray platforms used is in Table S1. Details of our preprocessing methods 
(quality control and batch correction) are described in the next subsections. Details on the 
originally reported differential expression results for each study are also given in a later section.  

Downing – The goal of the study described in (Downing et al. 2012) was to elucidate genetic 
pathways involved in susceptibility to alcohol teratogenesis by examining global changes in gene 
expression in embryos and placentae from two mouse strains, C57BL/6J, DBA/2J, and their first 
generation reciprocal crosses. C57BL/6J embryos are known to be susceptible to morphological 
malformations following prenatal alcohol exposure, while DBA/2J are known to be relatively 
resistant. Pregnant dams were intragastrically intubated on GD9 with either 5.8 g/kg ethanol 
(20% w/v) or an isocaloric amount of maltose dextrin; a non-intubated control group was also 
included. There were five litters per treatment and genotype (B6B6, D2D2, B6D2, D2B6). Dams 
were sacrificed four hours after intubation and RNA was extracted from whole embryos and 
placentae. Within a litter, all embryos were pooled for RNA extraction. In total, there were 120 
samples (3 treatments x 4 strains x 5 litter x 2 tissues), of which we considered only 60 
embryonic samples. Two groups of control samples, 20 intubated with maltose dextrin and 20 
non-intubated ones, were not found to have significant differences in terms of gene expression 
and therefore were considered as one control group in our study. This data set was retrieved with 
permission from PhenoGen (http://phenogen.ucdenver.edu). 

GSE1074 – This study, described in (Green et al. 2007), examined the effect of ethanol exposure 
in two related mouse strains, C57BL/6J and C57BL/6N, which are known to have different 
susceptibility to teratogenic effects of alcohol. Pregnant dams received intraperitoneal injection 
on the 8th day of gestation (GD8); alcohol-exposed animals received 22% absolute alcohol in 
isotonic saline (2.9 g ethanol per kg body weight), while control animals received saline injection. 
Subset of animals also received an injection of PK11195, a ligand previously shown to protect 
mouse embryos from teratogen-induced eye and brain malformations. The four samples treated 
with PK11195 were excluded from our study.  

Treated dams were euthanized three hours after the treatment and the RNA was extracted from 
microdisected embryonic cranial neural folds (headfolds). The same 12 samples were run on two 
different microarray platforms, Perkin Elmer and Affymetrix; we used only microarrays 
generated on the latter. In total, we considered four alcohol-treated and four control samples from 
this study. Each group had two B6J and two B6N samples. 

GSE9545 – In this study (Zhou et al. 2011), teratogenic effects of alcohol was assessed using 
whole embryonic culture of C57BL/6 mice. Pregnant dams were sacrificed on GD8.25 and the 
gravid uteri were removed and transformed into whole embryonic cultures. Treatment consisted 
of adding ethanol (88 mM) to alcohol-exposed embryo cultures for 46 hours, after which RNA 
was extracted from whole embryos.  



Two independent experiments were performed using the same experimental procedure, but 
different microarray platforms. Experiment 1 (GSE9542.2) was done on 8 samples, four alcohol-
treated and four controls, and Experiment 2 (GSE9542.1) used 7 alcohol-treated and 4 control 
samples. The data set IDs are taken from Gemma (Zoubarev et al. 2012), where the original GEO 
data set GSE9545 was split in two based on the microarray platform used. These two data sets 
were analyzed separately in our study. 

GSE34305 – This study (Kleiber et al. 2012) examines long-term changes in gene expression 
patterns in brains of adult mice prenatally exposed to alcohol via maternal preference drinking. 
Experimental C57BL/6J female mice were given access to 10% ethanol solution and pure water 
sipping tubes starting from 14 days prior to fertilization until 10 days postpartum. Control dams 
had access to water only. The ethanol and water consumption was measured daily and only 
experimental dams that consumed ethanol above certain threshold were considered.  RNA was 
extracted from whole brains of adult male offspring at PD70. Two independent microarray 
experiments were conducted using offspring from different ethanol-consuming and control dams. 
In the first experiment, RNA samples were pooled from three non-littermate mice to reduce litter 
effect and two biological replicates were performed per treatment group (2:2 samples). In the 
second experiment, RNA samples were pooled from two non-littermate mice and three biological 
replicates were performed per treatment group (3:3). We analyzed the microarrays from two 
experiments together, after correcting for batch effects.  

GSE34469 – This experiment, described in (Laufer et al. 2013), was conducted by the same 
group as GSE34305, but this time mice were exposed to two acute doses of alcohol at 
neurodevelopmental times representing the human first and second gestation trimester equivalent. 
The group used C57BL/6J for two independent experiments: in the first one, relating to the 
human first gestational trimester, the dams were given two doses of either ethanol (2.5g/kg of 
ethanol in saline) or saline injections spaced two hours apart at each GD8 and GD11. RNA was 
extracted from whole brains of adult male mice at P70. RNA samples from three mice were 
pooled to reduce litter effects and two biological replicates per treatment group were performed 
(2:2). In the second experiment (modeling trimester 2), the dams were given two 2-hour spaced 
injections of either ethanol or saline injections at GD14 and GD16. RNA was extracted in the 
same way as in experiment 1. We analyzed the microarrays from two experiments together, after 
correcting for batch effects. 

GSE34549 – This data set was generated as a part of the same study as GSE34469 (Laufer et al. 
2013) with the focus on the human third gestation trimester equivalent. Since in mice this 
developmental period occurs postnatally, the mice pups were treated directly with two 2-hour 
spaced injections of either ethanol (2.5 g/kg) or saline on PD4 and PD7. The adult male mice 
were sacrificed at postnatal day 70 (PD60 in the GEO record) and RNA was extracted from 
whole brain tissue. Samples from three male mice from three different litters were pooled as one 
biological replicate; there are two biological replicates per treatment group (2:2). 

GSE23105 – This study (Kaminen‐Ahola et al. 2010a) focuses on growth restriction phenotype in 
mice subjected to prenatal alcohol exposure, but also examines gene expression changes in 
kidneys of alcohol-exposed animals after birth. The study used a mouse model of PAE based on 



maternal ad libitum ingestion of 10% ethanol. Experimental pregnant C57BL/6J dams were given 
10% ethanol solution in water from fertilization to GD8.5. RNA was extracted from kidneys of 
six control males and from six ethanol-exposed males at PD28. 

GSE23106 – This study (Kaminen-Ahola et al. 2010b) was conducted by the same group and in a 
similar way as the GSE23105 study described above. While not specified by the authors, it is 
likely that the samples used in these two studies were extracted from the same animals. As 
described previously, experimental pregnant C57BL/6J dams were subjected to ad libitum 
ingestion of 10% ethanol from fertilization to GD8.5. For this study, RNA was extracted from 
livers of 3 ethanol-exposed and 4 control animals at PD28. 

GSE1996 – To our knowledge there is no publication for this study. The GEO record states that 
the goal of the study was to compare the pattern of gene expression in hippocampus of rats 
prenatally exposed to alcohol. Three groups of pregnant Sprague-Dawley rat dams were placed 
on different diet regimens: a liquid diet containing 5% alcohol, an isocaloric liquid diet without 
alcohol and a lab chow ad libitum diet, but as it was done for Downing data set, we grouped two 
non-alcohol containing diet groups together. Offspring from each of these groups were allowed to 
grow until adulthood and placed into one of two training groups: a contextual fear conditioned 
group and a naive/unhandled group. Hippocampi of adult male rats were dissected at PD100 and 
used to isolate total RNA from each rat diet and training condition. 

Quality Control Procedures 

The Affymetrix data sets were first subjected to quality assessment of raw data. For Affymetrix 
GeneChip arrays, we computed Affymetrix standard quality metrics using Bioconductor package 
simpleaffy: average background, scale factor, percent present and 3’/5’ ratio (Affymetix 2002).  

Average background is intended to measure optical background and is typically between 20 and 
100 for a good quality array. This value is usually compared across the arrays and should be 
comparable. We consider an array potentially troubled if its average background is 50% smaller 
or greater than the average value across all arrays.  

The scale factor is median feature intensity on an array and is used by Affymetrix for 
normalization. Good quality arrays are expected to be within 3-fold of each other; arrays with 
scale factors outside this range are considered to be poor quality. 

Percent present represent percentage of genes called present by Affymetrix detection algorithm 
and it is expected to be comparable across the arrays within one experiment. We consider an 
array potentially troubled if its percent present value is 20% smaller or greater than the average 
value across all arrays.  

The 3’/5’ ratio servers as a measure of RNA quality and is computed as the expression ratio of 3’ 
and 5’ probesets mapped to two internal control genes, β-actin and GAPDH, which are relatively 
long and ubiquitously expressed. A high 3’ to 5’ ratio may indicate degraded RNA or inefficient 
transcription of double-stranded cDNA. For an array of good quality, Affymetrix recommends 
that the 3'/5' ratio should not exceed 3 for β-actin and 1.25 for GAPDH. 



In addition to quality metrics available for Affymetrix GeneChip arrays, we computed two multi-
array quality metrics proposed by (Bolstad et al. 2004) and implemented in R package affyPLM 
(Bolstad et al. 2005). Relative Probe Expression (RLE) values are computed for each probeset by 
comparing the expression value on each array against the median expression value for that 
probeset across all arrays. The median RLE values are expected to be close to 0, assuming that 
most genes are not differentially expressed in a given experiment. A median RLA value that is 
not centered near 0 or has large interquartile range (IQR) might indicate a poor quality array. We 
consider an array potentially troubled if absolute value of RLE is greater than 0.05 or IRQ is more 
than 2-fold greater than the mean IRQ value across arrays. 

The second multi-array metrics that we compute is Normalized Unscaled Standard Error (NUSE). 
This value is computed for each gene and on each array as a ratio of standard error estimate and 
the median standard error estimate for that gene across all the arrays in the experiment. The 
median NUSE value for each array is expected to be around one. Arrays are suspected to be of 
poor quality if either the median NUSE is higher than 1one or they have large IQR. We consider 
an array potentially troubled if NUSE value is greater than 1.05 or IRQ is more than 2-fold 
greater than the mean IRQ value across arrays. 

All Affymetrix microarrays were scored for the described quality metrics and if an array scored 
poorly on at least two measures it was considered for exclusion. Based on QC we excluded one 
sample from Downing data set (Hopkins_E_90_Mouse430_2.CEL) and one sample from 
GSE1074 data set (GSM136067). 

Finally, for every data set included in the meta-analysis we plotted boxplots of log2-intensities 
and sample correlation heatmaps. The boxplots give a summary of the distribution of probeset (or 
probe, in case of Illumina platform) expression values and are expected to be comparable across 
samples. Discordant boxplots may indicate problematic arrays. Sample correlation heatmaps 
show sample pair-wise correlation coefficients as a color matrix and are another approach for 
identifying potential outlier samples. For all the arrays sample correlation heatmaps and boxplots 
were examined for further evidence of outliers. 

Batch Effect Correction 

Batch effects are systematic non-biological differences between batches of samples in microarray 
experiments that can be caused by technical or environmental difference during sample 
extraction, preparation or scanning (Luo et al. 2010). These batch effects can be strong enough to 
mask or confound true biological differences and need to be removed prior to further data 
processing and analysis. For data sets used in this study the information about batches was not 
explicitly stated in the original publications and/or public GEO records, so we relied on the “scan 
date” of the chips extracted from the CEL files.  

Three of the data sets, Downing, GSE34305 and GSE34469, were generated in multiple batches 
based on the scan dates. The Downing data set contained six different batches, generated during a 
period of two months, five of which had 12 samples on average, while the last generated batch 
had only one sample (Hopkins_E_70_Mouse430_2.CEL). Since batch correction cannot be 



performed in the case of single-sample batches, this sample was removed from further analysis. 
Data sets GSE34305 and GSE34469 contained two batches each, generated a year apart, 
corresponding to two experiments performed in each study. The existence of batch effects was 
confirmed using the gt function from the R package globaltest (Goeman et al. 2004), which tests 
for association between batches and gene expression patterns. For all three data sets the globaltest 
p-value was <0.05 indicating strong associations between batches and levels of gene expression.  

We used Combat (Johnson et al. 2007) to correct for the batch effect in these three data sets. After 
batch correction globaltest p-value was 1 for Downing and GSE34469 and 0.87 for GSE34305. 

Using p-value distributions for data set quality control 

The distribution of raw p-values for each data set was used for additional quality control. Under 
the complete null hypothesis of no differential expression, the p-value distribution is expected to 
be uniform on the interval (0,1). If a data set has differentially expressed genes we would expect 
to see an excess of small p-values, generating peak on the left (e.g. Downing distribution in 
Figure S1). A p-value distribution that has an unexpected shape such as a lower than expected 
number of small p-values (e.g. GSE43324 in Figure S1) is an indicator of some technical artifacts 
in the data or unexplained correlation among the samples that violates the assumption of 
independence of the statistical model used (Barton et al. 2013).  Such violations are particularly 
problematic for a meta-analysis based on p-values, as Fisher’s test assumes a uniform distribution 
of p-values under the null. Based on visual inspection and the persistence of poor distributions 
despite QC efforts, we excluded data sets GSE43324 and GSE1997 from the meta-analysis 
(Figure S1). Several other data sets were retained despite having minor deviations from the 
expected distributions (GSE23105, GSE23106 and GSE34469, which all have drops in p-value 
density close to zero). All the remaining data sets show clear evidence of differential expression 
(Figure S1). 

Meta-analysis 

For meta-analysis we used Fisher’s combined probability test (Fisher 1928). Fisher’s method 
combines p-values resulting from the individual differential expression analyses into one test 
statistic (F) in the following way: 

𝐹 = −2 ln(𝑝!)
!

!!!

 

where k is the number of data sets being integrated and pi is the p-value from the ith data set. 
Under the null hypothesis, the test statistic has a χ2 distribution with 2k degrees of freedom. P-
values for Fisher’s test were computed based on this distribution.  

In order to take into account the directionality of gene expression changes, we conducted separate 
meta-analyses for up-regulated and down-regulated genes. For each individual data set, we 
computed one-sided p-values corresponding to two alternative hypotheses (gene expression does 
not increase after PAE and gene expression does not decrease after PAE) and used them to 



compute F statistics for each direction separately (the computed one-sided p-values for each data 
set and each direction of change are given at http://www.chibi.ubc.ca/faculty/paul-
pavlidis/pavlidis-lab/data-and-supplementary-information/pae/).  

Since data sets were generated on different platforms we used gene-level data to allow for cross-
platform integration. In the case where a gene had more than one probeset assigned to it, the p-
values for the probesets were Bonferroni-corrected and the lowest corrected p-value was used to 
represent the gene for that data set (thus if a gene had two probesets, the p-values were multiplied 
by 2, subject to corrected p≤1.0). The gene-level p-values used in Fisher’s method are given at 
http://www.chibi.ubc.ca/faculty/paul-pavlidis/pavlidis-lab/data-and-supplementary-
information/pae/. A gene was analyzed in a meta-analysis if it was present in at least three data 
sets. This requirement was relaxed to two for meta-analyses containing only four data sets 
(“prenatal”, “chronic”). 

Functional enrichment analysis 

We used ermineJ (Gillis et al. 2010), version 3.0, to run functional enrichment analysis on our 
results. ErmineJ computes enrichment of gene sets associated with genes in the input gene lists. 
By default, ermineJ uses Gene Ontology (Ashburner et al. 2000) gene sets from all three 
domains: cellular component, molecular function and biological process, but it also allows user-
imported gene sets, such as Phenocarta (Portales-Casamar et al. 2013) gene set (see below). For 
GO enrichment analysis of our results we used only biological process ontology. We analyzed 
meta-results (complete list of analyzed genes with their Fisher’s p-values) using precision-recall 
method in ermineJ. This method uses precision-recall curves to compute gene set enrichment and 
is mostly concerned with what is happening at the top of the input gene list. We used negative 
log10 of Fisher’s p-values as gene scores, which were then converted to ranks. Only GO gene sets 
that had between 5 and 400 genes were considered.  

Core signature genes were computed using jackknife procedure and they do not have p-values 
associated with them nor a clear ranking compared to all the other analyzed genes, thus we used 
ermineJ’s over-representation analysis to compute functional enrichment in core signatures. 

Pathway analysis using DAVID on-line resource 

We also used the Database for Annotation, Visualization and Integrated Discovery (DAVID; 
(Huang et al. 2009)) v6.7 to compute biological pathway enrichment (based on KEGG pathways). 
The analyzed genes lists were our meta-signatures and background gene lists were composed of 
all the genes included in the particular meta-analysis.   

Spliceosome pathway was found to be significantly enriched in “all”, “acute” and “prenatal” 
down-regulated meta-signatures. This is in agreement with the results of ermineJ’s GO 
enrichment analysis, where one of the enriched biological processes was RNA splicing. Another, 
unexpected, KEGG pathway that comes up as being significantly enriched in “acute” and 
“prenatal” meta-signatures, but also “all” down-regulated core signature is Systemic Lupus 
Erythematosus. This is mainly due to a number of histone genes that are shared between the lupus 
pathway and our gene lists.  



Literature derived candidate FASD genes 

Phenocarta (phenocarta.chibi.ubc.ca; previously known as Neurocarta; (Portales-Casamar et al. 
2013)) is a database of gene-phenotype associations specifically focusing on neurodevelopmental 
diseases. Gene-phenotype associations are amalgamated across multiple resources and literature, 
making it one of the most comprehensive resources of this kind. We downloaded 129 known 
FASD candidate genes from Phenocarta (on December 2013). Non- mouse genes were converted 
to their mouse orthologues using HomoloGene ((NCBI Resource Coordinators 2014); 
http://www.ncbi.nlm.nih.gov/homologene). These genes were used to look for known FASD 
candidates among meta- and core signatures and for functional enrichment analysis using ermineJ 
(Gillis et al. 2010). 

Histone genes 

We downloaded mouse gene annotation file from NCBI Gene Database 
(ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/ Mus_musculus.gene_info.gz). We 
extracted all histone-coding genes using keyword “histone”,  “family” and “cluster”. The 
nomenclature for replication-dependent histone genes is that their gene symbols are based on 
which histone cluster they belong to (e.g. Hist1h4a is a histone H4 gene that is found in cluster 
Hist1) and their full name contains phrase “histone cluster” (Marzluff et al. 2002). Replication-
independent histone genes contain “histone family” in their full name. After removing all 
predicted and pseudo-genes we were left with 83 annotated protein-coding histone genes found in 
the mouse genome. These genes were used to assess the distribution of histone genes in our meta- 
and core signatures and to compute functional enrichment using Fisher’s exact test (Table S10). 

This histone enrichment was only partially detectable from the analysis based on GO, which 
indicated enrichment in GO categories related to nucleosome organization and chromatin 
assembly. However, only a subset of histone genes (currently 30 out of 83) is annotated with 
appropriate GO categories such as “nucleosome assembly” (GO:0006334). Other histone genes 
are either not annotated at all or are annotated with non-specific, high-level terms. 

Network analysis 

For computing local network properties of our gene signatures we used mouse and human 
aggregated PPI networks. Mouse PPIN was constructed using Biological General Repository for 
Interaction Datasets (BioGRID) (Chatr-Aryamontri et al. 2013), Molecular Interaction Database 
(MINT) (Chatr-aryamontri et al. 2007) and Database of Interacting Proteins (DIP) (Salwinski et 
al. 2004). The aggregated mouse PPIN consisted of 2,926 unique genes and 5,333 unique 
interactions. Since this represents a small subset of mouse genes we also used aggregated human 
PPIN. The human network was constructed using BioGRID, MINT, DIP, Human Protein 
Reference Database (HPRD) (Keshava Prasad et al. 2009), InnateDB (Breuer et al. 2013) and 
iRefIndex (Razick et al. 2008). This network consisted of 14,242 unique genes and 153,175 
unique interactions. For the purposes of the network analysis, the two networks were aggregated 
together (mouse genes were converted to their human homologs using NCBI’s resource 
HomoloGene). The final network consisted of 14,325 unique genes and 160,663 unique 



interactions. Using this integrated network, we computed local network properties of our meta- 
and core signature genes and their statistical significance using permutation test. Permutation 
distributions of the average shortest path length (using Dijkstra’s algorithm), average local 
clustering coefficient and average node degree were computed using 10,000 random gene sets 
sampled from the PPI network with similar size and node degree as the analyzed gene list. 

Differential expression results in the original studies 

Here we describe the results originally reported (if any) by the authors of the studies used, and 
how they were treated for comparing to our results.  

GSE1074 – The original study (Green et al. 2007) reports that there were 2340 differentially 
expressed probesets based on the analysis of Affymetrix microarrays (the ones that we used in 
our study). However, neither these probesets nor corresponding genes were available for 
download, so we were not able to assess the overlap with our results.  

GSE9545 – The original publication (Zhou et al. 2011) reports 850 and 2519 significantly 
differentially expressed probesets in experiments 1 and 2, respectively. These experiments 
correspond to data sets GSE9545.2 and GSE9545.1 in our study, respectively. The paper reports 
only 87 overlapping probes that are in the same direction of change (listed in Table 2 of Zhou et 
al. 2011).  We used these probeset IDs to intersect and compare with our results. 

Downing – This study (Downing et al. 2012) reported 329 probesets with significant ethanol 
treatment effects, but after the authors removed the ones with significant interaction between the 
main factors there were 283 remaining probesets. The paper does not provide a list of these 
probesets but a list of, presumably, corresponding genes. There are 50 unique genes listed in their 
Supplementary Table 4 of (Downing et al. 2012) (Ethanol main effect categories and genes). We 
were not able to analyze two of these genes either due to obsolete gene symbol that could not be 
confidently resolved (Fswap) or changes in genome annotation or probeset mapping criteria 
leading to the absence of Prdm10 from the current gene expression platform annotation.  

GSE23105 – The paper (Kaminen‐Ahola et al. 2010a) reports 148 differentially expressed probes 
for this data set, 46 up-regulated and 102 down-regulated, albeit none of these was reported as 
significant at FDR<0.05. These probes are listed in Supplementary Table 3 of (Kaminen‐Ahola et 
al. 2010a). Out of 148, 116 were present in our re-analysis (the rest of them were excluded 
because they did not map to a unique gene). We used probeset IDs to intersect and compare with 
our results.  

GSE23106 – This study (Kaminen-Ahola et al. 2010b) reported 12 genes to be significantly 
down-regulated and 3 genes to be significantly up-regulated after ethanol exposure. The genes are 
listed in Supplementary Table 1 of (Kaminen-Ahola et al. 2010b). Of the 15 genes, we were not 
able to find an entry for two in NCBI Gene Database (LOC668047 and D14ERTD449E). 
Additional two genes have been renamed since the paper was published; C730007P19RIK has 
been changed to Sult2a2 and EG624219 has been changed to Gm6484 (predicted gene). Genes 
Sult2a2 and Slco1a4 were excluded from differential expression analysis in our study due to 



unavailability of uniquely matching probes and low expression values, respectively. This left 11 
genes to be directly compared to our results. This data set was later re-analyzed in (Kaminen‐
Ahola et al. 2010a), where the authors report 167 differentially expressed genes (p-value<0.01) in 
Supplementary Table 1, 16 of which were reported as significant at FDR<0.05. 36 of these probes 
were not present in our re-analysis because they did not map to a unique gene. While there was 
no direct overlap between the reported probes and the significantly differentially expressed 
probes from our analysis, the AUC for the rank comparison was 0.70 and 0.82 for up-regulated 
and down-regulated probes, respectively. In Table 2 we report the comparison with the original 
findings (Kaminen-Ahola et al. 2010b). 

GSE34305 – The authors of this study (Kleiber et al. 2012) report genes that were identified in 
both experiments as significant and show same direction of change. There are 73 up-regulated 
genes listed in Table 2 of the paper and 90 down-regulated gens listed in Table 3 (Kleiber et al. 
2012). Out of these 163 genes, 15 were not analyzed in our study, 12 due to multi-mapping issues 
(as mentioned in the main article, probesets mapping to multiple genes were excluded from the 
analysis) and 3 due to changes in genome annotation (they were no longer considered assayed by 
the GPL6246 platform based on our annotation of the platform).  

GSE34469 – This data set was initially described in (Laufer et al. 2013) but no list of 
differentially expressed genes was provided. The same group more recently published another 
paper (Kleiber et al. 2013) using the same gene expression data and provided lists of significant 
probesets/genes in their supplemental table 1, however they did separate analyses for the two 
experiments (first and second trimester). The published lists of up-regulated and down-regulated 
probesets for early (Trimester 1; 195 probesets)) and late (Trimester 2; 231 probesets) exposure 
have very little overlap: there are only 6 down-regulated and none of the up-regulated probesets 
shared across different treatments. Since we performed our analysis on all of the samples in the 
data set, disregarding the time difference between the exposures, but batch-corrected for different 
experiments (based on the scanned date), our results are not directly comparable to the published 
results. We still provide overlap information in Table 2, done on both early and late lists from the 
paper.  

GSE34549 – This data set was initially described in (Laufer et al. 2013) but no list of 
differentially expressed genes was provided. The same group recently published another paper 
using the same gene expression data and provided a list of significant probesets/genes in the 
supplemental table 1 (Trimester 3). There are 376 probesets (374 unique genes) on the list, 15 up-
regulated after ethanol exposure and 361 down-regulated (the paper reports 336 probesets in total, 
which seems to be a typo). We used probeset IDs to intersect and compare with our results. 

GSE1996 – Currently there is no publication for this study and thus we were not able to compare 
our results with the results from the original study. 
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Supplementary Figures 

 

 

 

Figure S1: Distributions of p-values for all considered data sets. Data sets GSE43324 and 
GSE1997 were excluded based on their p-value distributions.  

 

 



 

Figure S2: Overlaps of significantly differentially expressed genes obtained from the re-analysis 
of the individual data sets. Data set GSE9545.1 is not included since it does not have any overlaps 
with any other data set. The gene lists for each of the above data sets were obtained by 
considering unique set of genes associated with probesets differentially expressed at FDR<0.05. 
The direction of change was taken into account. 
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Figure S3: Heatmap/table showing correlation between meta-results and results of DE analysis of 
the individual data sets. Spearman correlation was calculated using a full list of Fisher’s p-values 
(meta-results) and p-values resulting from the DE analysis of the individual data sets. In general, 
higher correlation is, as expected, reflected in a data set’s inclusion in a particular meta-analysis 
(data sets included in a particular analysis are grouped and framed together). Positive correlations 
with each individual data set are also evident in the “all” meta-analysis, suggesting a degree of 
concordance across all the studies. 

 



 

 

 

 

Figure S4: Overlap between up-regulated and down-regulated meta-signature. 
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Figure S5: Support for top six up-regulated genes in “all” meta-analysis. Data points represent 
log-transformed one-sided p-values from the individual differential expression analyses of all 
data sets. Full circles signify the p-values that remained significant after multiple test correction 
(FDR<0.05). The red vertical line is added for a reference at a nominal (uncorrected) p-value of 
0.05. 

 



 

 

Figure S6: Support for top six down-regulated genes in “all” meta-analysis. See legend to Figure 
S5 for explanation. 

 



 

Figure S7: Overlaps among down-regulated core signatures. 
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Figure S8: Example of expression pattern of core signature gene – Crebzf. Normalized, batch 
corrected expression values are plotted for each data set. Note the differences in the ordinate of 
each plot, which reflect expression levels as measured in each data set. Apparent absence of 
expression in data set GSE23106 agrees with previous observations of low Crebzf expression in 
mouse liver tissue (data from Expression Atlas; (Petryszak et al. 2013)). 

  



 

 

Figure S9: Network analysis - permutation distributions for “all” down-regulated meta-signature. 
Permutation distributions of the average shortest path length and average local clustering 
coefficient were computed using 10,000 random gene sets sampled from the PPI network with 
similar size and node degree as the analyzed gene list. Red vertical line represents obtained values 
for the examined genes signature list.  

 

 

 



 

 

Figure S10: Support for “all” down-regulated core signature genes annotated with peptidyl-
proline modification GO term. See legend to Figure S5 for explanation. 

 



 

 

Figure S11: Scatter plot of GO term semantic similarity for statistically significant “all” meta-
analysis results. We initially grouped the terms in three general categories based on their 
closeness in the graph. The graph was produced by REVIGO (Supek et al. 2011), a Web server 
that summarizes lists of GO terms using a simple clustering algorithm that relies on semantic 
similarity measures. In addition, it uses multidimensional scaling on a matrix of the GO terms' 
semantic similarities to plot GO terms in a two-dimensional space grouping more similar terms 
together. Since the RNA processing is a child term of RNA metabolism, we further group these 
GO terms into RNA metabolism and macromolecular complex biogenesis. 

 



 

 

Figure S12: Support for 8 histone-coding genes that are present in meta-signatures. See legend to 
Figure S5 for explanation. 

 



 

 

Figure S13: Support for RNA splicing associated genes found in the down-regulated “all” core 
signature. See legend to Figure S5 for explanation. 

 

  



Supplementary Tables 

GEO 
Platform 
ID 

Platform Name 
# of 
probesets 

# of uniquely 
mapping probesets 

# of unique 
genes 

GPL1261 
Affy GeneChip Mouse 
Genome 430A 2.0 

45101 28536 17456 

GPL339 
Affy GeneChip Mouse 
Expression Array 430A 

22690 19039 12559 

GPL6246 
Affy Mouse Gene 1.0 ST 
Array 

3557 21045 19443 

GPL341 
Affy GeneChip Rat 
Expression Set 230 Array 

15923 8778 7717 

GPL6887 
Illumina MouseWG-6 v2.0 
Expression Beadchip 

45281 32212 19169 

 

Table S1: Information about microarray platforms used in the gene expression studies. The 
mapping and gene counts are from annotations obtained via Gemma. 

 

Data set Factors 
# of significant 
upregulated 
probesets 

# of significant 
downregulated 
probesets 

Downing treatment; strain 301 321 

GSE1074 treatment; strain 0 0 

GSE9545.1 treatment 0 2 

GSE9545.2 treatment 0 1 

GSE34469 treatment 0 0 

GSE34549 treatment 0 0 

GSE34305 treatment 0 0 

GSE23105 treatment 0 0 

GSE23106 treatment 7 7 

GSE1996 treatment; strain 935 351 

 

Table S2: Results of differential expression analysis. The numbers shown represent the number 
of probesets significant at FDR<0.05. 

 



 all prenatal postnatal acute chronic 

Direction UP DOWN UP DOWN UP DOWN UP DOWN UP DOWN 

# of genes in 
meta-signatures 59 436 267 182 0 127 65 283 38 8 

 

Table S3: Results of meta-analyses for “all”, “prenatal”, “postnatal”, “acute” and “chronic” data 
sets. A meta-signature consists of genes that Fisher’s test found to be significant at FDR<0.05. 

 

 

Table S4: Correlation among meta-results. Spearman correlation was calculated for each pair of 
performed meta-analyses (for the same direction of expression) using a full list of Fisher’s p-
values (meta-results). The values above the diagonal correspond to up-regulated meta-analysis 
results and the values below the diagonal to down-regulated. 

 

 all prenatal postnatal acute chronic 

Direction UP DOWN UP DOWN UP DOWN UP DOWN UP DOWN 

# of genes in 
core signatures 

0 104 10 6 0 7 0 28 1 0 

 

Table S5: Results of jackknife procedure for “all”, “prenatal”, “postnatal”, “acute” and “chronic” 
meta-analyses. The procedure and computation of core signatures are described in Materials and 
Methods. 

 

  UP-REGULATED 

  all prenatal postnatal acute chronic 

D
O

W
N

-R
E

G
U
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A

T
E

D
 

 all 
 

0.68 0.72 0.77 0.65 

prenatal 0.63 
 

-0.02 0.92 -0.02 

postnatal 0.82 0.08 
 

0.16 0.93 

acute 0.84 0.79 0.47 
 

0.04 

chronic 0.67 0.07 0.82 0.17 
 



 all prenatal postnatal acute chronic 

Direction UP DOWN UP DOWN UP DOWN UP DOWN UP DOWN 

# of genes in meta-
signatures 59 436 267 182 0 127 65 283 38 8 

overlap with 
Phenocarta 

 Gpx1 

Pax6 

Ntf3 

Neurod1 

Neurog2 

Adh1 Neurog2 

Gap43 

Mapk1 

* 

 Pax6  Ntf3 

Gpx1 

Mapk1 

Neurog2 

 

 Pax6 

* 

 

Table S6: Overlap of meta-signatures with known FASD candidate genes from Phenocarta. The 
asterisk symbolizes statistically significant overlap.  

 

 all prenatal postnatal acute chronic 

Direction UP DOWN UP DOWN UP DOWN UP DOWN UP DOWN 

# of genes in core 
signatures 0 104 10 6 0 7 0 28 1 0 

overlap with 
Phenocarta 

 Gpx1      Gpx1 

Ntf3 

* 

  

 

 Table S7: Overlap of core signatures with known FASD candidate genes from Phenocarta. The 
asterisk symbolizes statistically significant overlap.  



GO Term ID GO Term Description 
Number of 
Genes 

Corrected  

p-value 

GO:0018208 peptidyl-proline modification 29 (5) 2.14E-03 

GO:0033866 nucleoside bisphosphate biosynthetic process 7 (3) 0.015 

GO:0018193 peptidyl-amino acid modification 396 (11) 0.015 

GO:0008380 RNA splicing 230 (8) 0.046 

GO:0033865 nucleoside bisphosphate metabolic process 13 (3) 0.047 

GO:0006457 protein folding 123 (6) 0.048 

 

Table S8: Results of functional enrichment analysis for “all” down-regulated core signature. 
Number of genes given corresponds to the total number of genes annotated with the 
corresponding GO term; the number in parentheses indicates the number of core-signature genes 
annotated with the corresponding GO term. The values given for each meta-analysis correspond 
to corrected p-values from ermineJ analysis (FDR<0.1). The values are displayed only for the 
significant GO terms.  

 

  



GO Term ID GO Term Description 
Number of 

Genes 
all acute prenatal 

GO:0006323 DNA packaging 86  0.042 0.056 

GO:0006333 
chromatin assembly or 
disassembly 

68  0.026 0.052 

GO:0006334 nucleosome assembly 42  0.021 0.035 

GO:0006397 mRNA processing 292 5.31E-09 5.25E-09 5.24E-09 

GO:0008380 RNA splicing 222 2.65E-09 2.62E-09 2.62E-09 

GO:0016071 mRNA metabolic process 341 1.77E-09 1.75E-09 1.75E-09 

GO:0016568 chromatin modification 366  0.029 0.030 

GO:0022613 
ribonucleoprotein complex 
biogenesis 

183 1.33E-09 0.017 0.021 

GO:0031497 chromatin assembly 53  0.026 0.042 

GO:0034470 ncRNA processing 182 1.06E-09 0.023  

GO:0034622 
cellular macromolecular 
complex assembly 

289 8.85E-10 1.31E-09 1.31E-09 

GO:0034660 ncRNA metabolic process 240 0.015 0.015  

GO:0034728 nucleosome organization 60  0.045 0.039 

GO:0042254 ribosome biogenesis 135  0.039 0.052 

GO:0065004 
protein-DNA complex 
assembly 

57  0.040 0.035 

GO:0071103 DNA conformation change 114  0.056  

GO:0071824 
protein-DNA complex 
subunit organization 

75  0.021 0.038 

 

Table S9: Results of functional enrichment analysis for “all”, “acute” and “prenatal” down-
regulated meta-analyses’ results. Number of genes given corresponds to the number of genes 
annotated with the corresponding GO term. The values given for each meta-analysis correspond 
to corrected p-values from ermineJ analysis (FDR<0.1). The values are displayed only for the 
significant GO terms.  

  



Gene Symbol all acute prenatal allCORE acuteCORE 

H2afx + + - - - 

Hist1h3f - + + - - 

Hist1h4i + + + - - 

Hist2h2be + + + + + 

Hist2h3c1 + + + + - 

Hist2h3c2 + + + - - 

Hist3h2a + + + + + 

Hist3h2ba + + + + + 

enrichment 
p-value 

2.37E-05 5.21E-09 6.66E-09 5.65E-05 9.82E-06 

 

Table S10: Presence of histone genes in meta- and core signatures. The first three columns 
represent meta-signatures and the last two core signatures. ‘+’ indicates a presence of particular 
histone gene in a signature. The p-values are computed using Fisher’s exact test. 

 

 
gene signature 

number of 
genes 

shortest 
path 

node degree 
clustering 
coefficient 

m
et

a-
si

gn
at

ur
es

 

all UP 51 0.07 0.88 0.30 

all DOWN 356 0.0003 0.81 0.16 

prenatal UP 205 0 0.63 0.003 

prenatal DOWN 148 0.40 0.76 0.47 

postnatal DOWN 98 0.12 0.65 0.08 

acute UP 53 0.06 0.42 0.15 

acute DOWN 232 0.05 0.67 0.64 

chronic UP 30 0.96 0.45 0.59 

co
re

 all DOWN 91 0.008 0.59 0.24 

acute DOWN 25 0.04 0.76 0.11 

 

Table S11: Results of gene network analysis for meta- and core signatures. The first column 
shows the number of signature genes in the integrated network. The following three columns 
show permutation test p-values for local network properties. The significant p-values (at 
significance threshold α=0.05) are bolded.  


