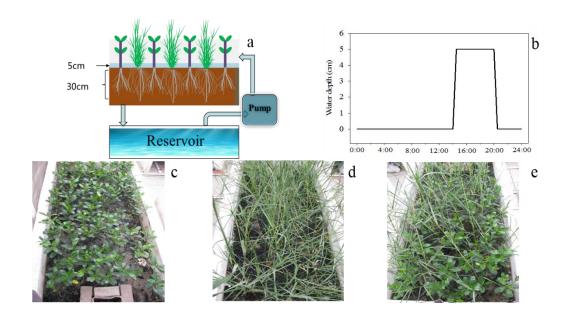
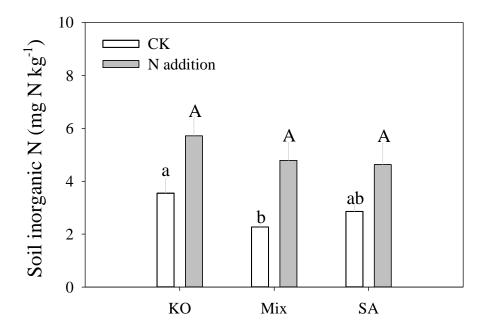
Biology Letters

Electronic Supplementary Material

Increased nitrogen input enhances *Kandelia obovate* seedling growth in the presence of invasive *Spartina alterniflora* in subtropical regions of China


Xiaowei Cui^{1, 2}, Weimin Song^{1*}, Jianxiang Feng², Dai Jia¹, Jiemin Guo², Zhonglei Wang², Hao Wu², Fei Qi², Jie Liang¹ and Guanghui Lin^{1, 2*}

¹Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing 100000, China;


²Division of Ocean Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518000, China.

*Authors for correspondence (wmsongo@gmail.com and lingh@tsinghua.edu.cn).

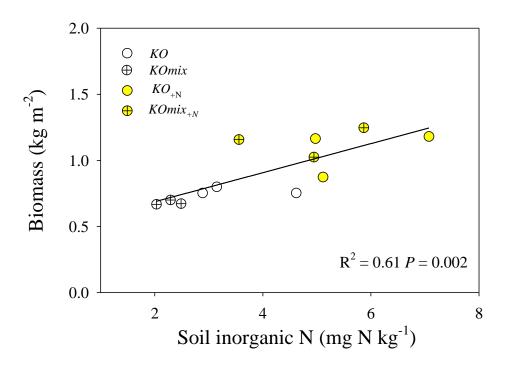

Figure S1. A schematic representation of the experimental mesocosms used in the experiment (a), and the change in water depth in the mesocosms with time (b). The picture shows a monoculture mesocosm of *K. obovata* (c), a monoculture mesocosm of *S. alterniflora* (d) and a mixed culture of *K. obovata* and *S. alterniflora* (e) at the beginning of the experiment (August 2012).

Figure S2. The mean soil inorganic N content at 0-10 cm depth in the three vegetation types (KO: monoculture of *K. obovata*; Mix: mixed culture of *K. obovata* and *S. alterniflora*; SA: monoculture of *S. alterniflora*) under the two nitrogen addition treatments in June 2013.

Figure S3. Relationship between *K. obovata* biomass and soil inorganic N content at 0-10 cm depth in June 2013. (*KO*: *K. obovata* in the monoculture; *KOmix*: *K. obovata* in the mixed culture; KO_{+N} and $KOmix_{+N}$ represent *K. obovata* in the monoculture and mixed culture with the N addition treatment, respectively).

