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Cohort description

The Age, Gene/Environment Susceptibility-
Reykjavik (AGES)

The Reykjavik Study cohort originally comprised a
random sample of 30,795 men and women born in
1907-1935 and living in Reykjavik in 1967 [1]. A total
of 19381 attended, resulting in 71% recruitment rate.
The study sample was divided into six groups by birth
year and birth date within month. One group was
designated for longitudinal follow-up and was examined
in all stages. One group was designated a control group
and was not included in examinations until 1991. Other
groups were invited to participate in specific stages of
the study. Between 2002 and 2006, the AGES-
Reykjavik study re-examined 5764 survivors of the
original cohort who had participated before in the
Reykjavik Study. Of those, 3,219 have genomic
genotypes and only 3,166 went through gait assessment
that included 6 meter walk in usual pace.

The Atherosclerosis Risk in Communities (ARIC)

The ARIC study is a population-based cohort study of
atherosclerosis and clinical atherosclerotic diseases [2].
At its inception (1987-1989), 15,792 men and women,
including 11,478 white and 4,266 black participants
were recruited from four U.S. communities: Suburban
Minneapolis,  Minnesota; = Washington  County,
Maryland; Forsyth County, North Carolina; and
Jackson, Mississippi. In the first 3 communities, the
sample reflects the demographic composition of the
community. In Jackson, only black residents were
enrolled. Participants were between age 45 and 64 years
at their baseline examination in 1987-1989 when blood
was drawn for DNA extraction and participants
consented to genetic testing. Between 2004 and 2006,
participants who had undergone magnetic resonance
scanning at the third ARIC visit were invited to
participate in the ARIC MRI study [3]. Gait assessment
was performed on 1134 ARIC participants. Time to
walk 25 feet (7.62 m) at the participants’ usual pace was
recorded in an unobstructed corridor with a stop watch.
Four hundred and forty five participants of European
ancestry with genome-wide genotype data and a gait
speed measurement were enrolled to this study.

Baltimore Longitudinal study on Aging (BLSA)

The Baltimore longitudinal study on Aging (BLSA)
study is a population-based study aimed to evaluate

contributors of healthy aging in the older population
residing predominantly in the Baltimore-Washington
DC area [4]. Starting in 1958, participants are
examined every one to four years depending on their
age. Currently there are approximately 1100 active
participants enrolled in the study. Blood samples were
collected for DNA extraction, and genome-wide
genotyping was completed for 1231 subjects using
[llumina 550K. This analysis focused on a subset of the
participants (N=334) with European ancestry with data
on walking speed (6 meter walk in normal pace). The
BLSA has continuing approval from the Institutional
Review Board (IRB) of Medstar Research Institute.

Cardiovascular Health Study (CHS)

The CHS is a population-based cohort study of risk
factors for CHD and stroke in adults >65 years
conducted across four field centers [5].The original
predominantly Caucasian cohort of 5,201 persons was
recruited in 1989-1990 from random samples of the
Medicare eligibility lists; subsequently, an additional
predominantly African-American cohort of 687 persons
were enrolled for a total sample of 5,888. Only 3980
CHS participants who were free of CVD at baseline,
consented to genetic testing, and had DNA available for
genotyping were GWASed. Finally, to maintain race
homogeneity we picked 3184 Caucasian with gait speed
(4.6 meter walk normal pace) and genome wide
assessments to participate in the current study.

Framingham Heart Study (FHS)

The FHS is a longitudinal community-based multi-
generational study funded by the National Heart Lung
and Blood Institute [6]. The Original cohort (Genl) has
undergone 32 biennial examinations since 1948; the
Offspring cohort (Gen2) has participated in 9 exams
from 1971 onwards, and the Omni group 1 cohort in 4
examinations from 1994 onwards. The Gen3 and Omni
group 2 cohorts completed 2 examinations since 2002
and are currently starting the third examination cycle
(April 2016). All participants undergo extensive
research examinations and surviving Original cohort,
Offspring and Gen 3 participants had genome-wide
genotyping with the Affymetrix 500K Array Set and
50K Human Gene Focused Panel available at the start
of this study [7]. At Offspring exam 8 (2005-2008) and
Original cohort exam 26 (1999-2001), participants were
asked to walk a 4 meter course at a normal pace while
being timed with a stop watch by trained technicians.
The usual pace walk was repeated and the faster of the
two walks was used for analysis. Participants were
excluded if under age 60. The final sample included
2384 participants (56.1% women), mean age 72.4 (SD
8.5) years (range 60 to 98) with gait speed and genomic
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genotyping assessed. Informed consent was obtained at
each attended exam and the Boston University Medical
Center Institutional Review Board approved the
protocol for all examinations.

Health, Aging, and Body Composition Study
(HABC)

The Health Aging and Body Composition (HABC)
Study is a NIA-sponsored cohort study of the factors
that contribute to incident disability and the decline in
function of healthier older persons, with a particular
emphasis on changes in body composition in old age.
Between March 1997 and July 1998, 3075 70-79 year
old community-dwelling adults (41%  African-
American) were recruited to participate in the Health
ABC Study; characteristics of the cohort have been
described elsewhere [8]. Medicare beneficiary listings
were used to recruit in metropolitan areas surrounding
Pittsburgh, Pennsylvania, and Memphis, Tennessee.
Eligibility criteria included having no difficulty walking
one-quarter of a mile, climbing 10 steps, or performing
activities of daily living (transferring, bathing, dressing,
and eating); no history of active treatment for cancer in
the prior 3 years; and no plans to move from the area
within 3 years. Genotyping was successful for 2,802
unrelated individuals (1663 Caucasians and 1139 African
Americans). To reduce race bias we include only
Caucasians of which 1482 have their gait speed assessed
in normal pace (6 meter walk) have enrolled to the study.

Health and Retirement Study (HRS)

The Health and Retirement Study (HRS) is a longitudinal
survey of a representative sample of Americans over the
age of 50 [9]. The current sample is over 26,000 persons
in 17,000 households. Respondents are interviewed every
two years about income and wealth, health and use of
health services, work and retirement, and family
connections. DNA was extracted from saliva collected
during a face-to-face interview in the respondents' homes.
These data represent respondents who provided DNA
samples and signed consent forms in 2006 and 2008. Gait
speed was measured only on respondents > 65 years of
age. Respondents were removed if they had gait
velocities <0.05 or gait velocities > 5sd from the mean. A
total of 5,073 subjects who have both a measure of gait
speed (2.5 meter walk at a normal pace) and high quality
imputed genomic genotypes were included in the
analysis.

Invecchiare in Chianti (InCHIANTI)
The InCHIANTI study is a population-based

epidemiological study aimed at evaluating the factors
that influence mobility in the older population living in

the Chianti region in Tuscany, Italy [10]. The details of
the study have been previously reported. Briefly, 1616
residents were selected from the population registry of
Greve in Chianti (a rural area: 11,709 residents with
19.3% of the population greater than 65 years of age),
and Bagno a Ripoli (Antella village near Florence;
4,704 inhabitants, with 20.3% greater than 65 years of
age). The participation rate was 90% (n=1453), and the
subjects ranged between 21-102 years of age. Overnight
fasted blood samples were for genomic DNA extraction.
[lumina Infinium HumanHap 550K SNP arrays were
used for genotyping. Data from 898 subjects were used
for this analysis with genetic and walking speed (4
meter walk in normal pace) data. The study protocol
was approved by the Italian National Institute of
Research and Care of Aging Institutional Review and
Medstar Research Institute (Baltimore, MD).

Lothian Birth Cohorts 1921 (LBC1921) and 1936
(LBC1936)

The Lothian Birth Cohorts include surviving
participants from the Scottish Mental Surveys of 1932
or 1947 (SMS1932 and SMS1947), having been born,
respectively in 1921 (LBC1921) and 1936 (LBC1936)
[11-13]. The LBC1921 cohort consists of 550 relatively
healthy individuals, 316 females and 234 males,
assessed on cognitive and medical traits at about 79
years of age. When tested, the sample had a mean age
of 79.1 years (SD = 0.6). The LBC1936 consists of
1091 relatively healthy individuals assessed on
cognitive and medical traits at about 70 years of age. At
baseline the sample of 548 men and 543 women had a
mean age 69.6 years (SD = 0.8). They were all
Caucasian and almost all lived independently in the
Lothian region (Edinburgh city and surrounding area) of
Scotland. Genotyping was performed at the Wellcome
Trust Clinical Research Facility, Edinburgh. Among
participants with genome-wide data and gait speed
assessment (6 meter walk in normal pace), 510
(LBC1921) and 1001 (LBC1936) individuals were
available for the present analysis.

Osteoporotic Fractures in Men Study (MrOS)

The Osteoporotic Fractures in Men Study (MrOS) is a
multi-center prospective, longitudinal, observational
study of risk factors for vertebral and all non-vertebral
fractures in older men, and of the sequelae of fractures
in men [14, 15]. MrOS study population consists of
5,994 community dwelling, ambulatory men aged 65
years or older from six communities in the United
States (Birmingham, AL; Minneapolis, MN; Palo Alto,
CA; Monongahela Valley near Pittsburgh, PA; Portland,
OR; and San Diego, CA). Inclusion criteria were
designed to provide a study cohort that is representative
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of the broad population of older men. Genomic DNA
from participants in the Osteoporotic Fractures in Men
(MrOS) Study was extracted from whole blood samples
collected at the baseline visit using the Flexigene
protocol (Qiagen, Valencia, CA, USA) at the University
of Pittsburgh. Among the 5994 MrOS participants
enrolled at the baseline visit, 5130 samples with whole
genome genotyping data that passed QC. Of which,
only 4,643 with gait speed assessed in normal pace (6
meter walk) were enrolled to the study.

The Religious Orders Study and Rush Memory and
Aging Project (ROSMAP)

Data came from 2 community based cohort studies of
aging and dementia, the Religious Orders Study and
Rush Memory and Aging Project (ROSMAP). Details
about the study design have been described previously
[16, 17]. Both studies were approved by the institutional
review board of Rush University Medical Center.
Participants were free of known dementia at enrollment
and agreed to annual clinical evaluation and brain
donation at the time of death. An informed consent and
an Anatomic Gift Act form were obtained from each
participant. The follow-up rate among the survivors
exceeds 90%. The two studies are conducted by the
same team of investigators and share a large common
core of test batteries, which allows combined analysis
of the data. Gait speed was derived by timing with a
stop watch how long it took a participant to walk 8 feet
(2.5m) at their usual pace [18]. DNA was extracted
from whole blood, lymphocytes, or frozen postmortem
brain tissue. Genotyping was performed at the Broad
Institute’s Center for Genotyping and the Translational
Genomics Research Institute [19]. Among participants
with genome-wide data and gait speed assessment 1,646
individuals were available for the present study.

Rotterdam Study (RSI, -I1, -III)

The Rotterdam Study is a population-based study in
Rotterdam that currently investigates 14,926 inhabitants
from a suburb of the city aged 45 years or over.
Participants were enrolled during three recruitment
phases — in 1990 (cohort 1), 2000 (cohort 2), and 2006
(cohort 3) [20, 21]. Visits to the research center are
planned every 3-4 years for wvarious medical
examinations. Genotyping was successfully performed
on 11,496 participants. Gait assessment was introduced
in the study protocol in 2009. The Rotterdam Study has
been approved by the Medical Ethics Committee of the
Erasmus MC and by the Ministry of Health, Welfare
and Sport of the Netherlands , implementing the Wet
Bevolkingsonderzoek: ERGO (Population Studies Act:
Rotterdam Study). All participants provided written
informed consent to participate in the study and to

obtain information from their treating physicians. Gait
assessment of 3651 subjects included 5.79-m long
pressure-activated walkway (GAITRite Platinum; CIR
systems, Sparta, NJ: 4.88-m active area; 120-Hz
sampling rate) [22, 23]. Follow thorough exclusion the
reminder 2911 subjects were genomic genotyped and
imputed to the HapMap 2 reference panel.

Study of Osteoporotic Fractures (SOF)

The Study of Osteoporotic Fractures (SOF) is a
prospective multicenter study of risk factors for
vertebral and non-vertebral fractures [24]. The cohort is
comprised of 9704 community dwelling women 65
years old or older recruited from populations-based
listings in four U.S. areas: Baltimore, Maryland,
Minneapolis, Minnesota; Portland, Oregon; and the
Monongahela Valley, Pennsylvania. Women enrolled
in the study were 99% Caucasian with African
American women initially excluded from the study due
to their low incidence of hip fractures. The SOF
participants were followed up every four months by
postcard or telephone to ascertain the occurrence of
falls, fractures and changes in address. To date, follow-
up rates have exceeded 95% for vital status and
fractures, a review of pre-operative radiographs. The
SOF study recruited only women. Among the 9704 SOF
participants enrolled at the baseline visit, 3625 samples
with whole genome genotyping data that passed QC. Of
which, only 3,441 with gait speed assessed in normal
pace (6 meter walk) were enrolled to the study.

Tasmanian Study of Cognition and Gait (TASCOG)

TASCOG is a study of cerebrovascular mechanisms
underlying gait, balance and cognition in a population-
based sample of Tasmanian people aged at least 60
years [25]. Individuals aged 60-86 years (n = 395)
living in Southern Tasmania, Australia, were randomly
selected from the electoral roll between 2006 and 2008
to participate in the study. Individuals were excluded if
they lived in a nursing home, had a contraindication for
magnetic resonance scanning (MRI) or were unable to
walk without a gait aid. The response rate was 55%, and
genotyping was performed at the Diamantina Institute,
University of Queensland. The study was approved by
the Human Health and Medical Research Ethics
Committee, University of Tasmania. Genomic data and
gait speed assessment (GAITRite) were available for
360 subjects that are part of this study.

Genetic Epidemiology Network of Arteriopathy
(GENOA)

The Genetic Epidemiology Network of Arteriopathy
(GENOA) study consists of hypertensive sibships
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recruited for linkage and association studies in order to
identify genes that influence blood pressure and its
target organ damage [26]. In the initial phase of the
GENOA study (Phase I: 1996-2001), all members of
sibships containing > 2 individuals with essential
hypertension clinically diagnosed before age 60 were
invited to participate, including both hypertensive and
normotensive siblings. In the second phase of the
GENOA study (Phase II: 2000-2004), 1239 European
American participants were successfully re-recruited to
measure potential target organ damage due to
hypertension. From 2001-2006, Phase II GENOA
participants that had a sibling willing and eligible to
participate underwent a neurocognitive testing battery to
assess several domains of cognitive and neurological
functioning, including the assessment of gait speed
(N=967). Participants were excluded from this analysis
if they were less than 60 years of age or gait velocities
>1.9m/s. The sample includes 471 European Americans
(55.0% female) with imputed genotypes and a measure
of gait speed on a 25 foot (7.6 meter) walking course.

Leiden Longevity Study (LLS)

The LLS has been designed to investigate biomarkers of
healthy ageing and longevity [27] and has been
described in detail previously [28]. It is a family-based
study consisting of 1,671 offspring of 421 nonagenarian
sibling pairs of Dutch descent, and their 744 partners.
DNA from the LLS was extracted from white blood
cells at baseline using conventional methods and
genotyping was performed with Illumina Human660W-
Quad and OmniExpress BeadChips (Illumina, San
Diego, CA, USA). Imputation was performed with
IMPUTE using the HapMap 2 reference panel [29].
Walking speed at usual pace was determined over 4
meters. Among participants with genome-wide data and
gait speed assessment 235 individuals were available
for the present study.

Osteoporotic Fractures in Men Study (MrOS)
Sweden (Malm6[MrOSMalmo] and Gothenburg
[MrOSGBG])

The Osteoporotic Fractures in Men (MrOS) study is a
multicenter, prospective study including older men in
Sweden, Hong Kong and the United States. The MrOS
Sweden study (n=3014) [30] consists of three sub-
cohorts from three different Swedish cities (n=1005 in
Malmo, n=1010 in Gothenburg, and n=999 in Uppsala).
Study subjects (men aged 69 to 81 years) were
randomly identified using national population registers.
A total of 62% of the MrOS Sweden subjects who have
both GAIT information and high quality imputed
genomic genotypes participated in the study (n=922 in
Malmo, n=960 in Gothenburg). To be eligible for the

study, the subjects had to be able to walk without
assistance, provide self-reported data, and sign an
informed consent. The study was approved by the ethics
committees at the Universities of Gothenburg, Lund,
and Uppsala. Informed consent was obtained from all
study participants. Genome-wide genotyping was
performed in the MrOS Gothenburg and MrOS Malméo
sub cohorts. Walking speed at usual pace was
determined over 6 meters. Both duration of the walk
and the number of steps were measured.

Expression quantitative trait loci (eQTL) analysis

A general overview of a subset of >50 eQTL studies has
been published [31], with specific citations for >100
datasets included in the current query following here.
Blood cell related eQTL studies included fresh
lymphocytes [32], fresh leukocytes [33], leukocyte
samples in individuals with Celiac disease [34], whole
blood samples [35-54], lymphoblastoid cell lines (LCL)
derived from asthmatic children [55, 56], HapMap LCL
from 3 populations [57], a separate study on HapMap
CEU LCL [58], additional LCL population samples [59-
65], neutrophils [66, 67], CD19+ B cells [68], primary
PHA-stimulated T cells [62, 65], CD4+ T cells
(20833654), peripheral blood monocytes [59, 68-72],
long non-coding RNAs in monocytes [73] and CD14+
monocytes before and after stimulation with LPS or
interferon-gamma [74], CD11+ dendritic cells before
and after Mycobacterium tuberculosis infection [75] and
a separate study of dendritic cells before or after
stimulation with LPS, influenza or interferon-beta [76].
Micro-RNA QTLs [77, 78], DNase-I QTLs [79],
histone acetylation QTLs [80], and ribosomal
occupancy QTLs [81] were also queried for LCL.
Splicing QTLs [82] and micro-RNA QTLs [83] were
queried in whole blood.

Non-blood cell tissue eQTLs searched included omental
and subcutaneous adipose [37, 48, 54, 63, 84], visceral
fat [37] stomach [84], endometrial carcinomas [85],
ER+ and ER- breast cancer tumor cells [86], liver [37,
84, 87-90], osteoblasts [91], intestine [92] and normal
and cancerous colon [93, 94], skeletal muscle [37, 95],
breast tissue (normal and cancer] [96, 97], lung [48, 98-
101], skin [48, 59, 63, 102], primary fibroblasts [62, 65,
103], sputum [104], pancreatic islet cells [105], prostate
[106], rectal mucosa [107], arterial wall [37] and heart
tissue from left ventricles [48, 108] and left and right
atria [109]. Micro-RNA QTLs were also queried for
gluteal and abdominal adipose [110] and liver [111].
Methylation QTLs were queried in pancreatic islet cells
[112]. Further mRNA and micro-RNA QTLs were
queried from ER+ invasive breast cancer samples,
colon-, kidney renal clear-, lung- and prostate-
adenocarcinoma samples [113].
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Brain eQTL studies included brain cortex [36, 72, 114-
116], cerebellar cortex [117], cerebellum [115, 118-
121], frontal cortex [117, 119, 121], gliomas [122],
hippocampus [117, 119], inferior olivary nucleus (from
medulla) [117], intralobular white matter [117],
occipital cortex [117], parietal lobe [120], pons [121],
pre-frontal cortex [118, 119, 123, 124], putamen (at the
level of anterior commissure) [117], substantia nigra
[117], temporal cortex [115, 117, 119, 121], thalamus
[119] and visual cortex [118].

Additional eQTL data was integrated from online
sources including ScanDB, the Broad Institute GTEx
Portal, and the Pritchard Lab (eqtl.uchicago.edu).
Cerebellum, parietal lobe and liver eQTL data was
downloaded from ScanDB and cis-eQTLs were limited
to those with P<1.0E-6 and trans-eQTLs with P<5.0E-8.
Results for GTEx Analysis V4 for 13 tissues were
downloaded from the GTEx Portal and then additionally
filtered as described below www.gtexportal.org:
thyroid, leg skin (sun exposed), tibial nerve, aortic
artery, tibial artery, skeletal muscle, esophagus mucosa,
esophagus muscularis, lung, heart (left ventricle),
stomach, whole blood, and subcutaneous adipose [48].
Splicing QTL (sQTL) results generated with
sQTLseeker with false discovery rate P<0.05 were
retained. For all gene-level eQTLs, if at least 1 SNP
passed the tissue-specific empirical threshold in GTEx,
the best SNP for that eQTL was always retained. All
gene-level eQTL SNPs with P<1.67E-11 were also
retained, reflecting a global threshold correction of
P=0.05/(30,000 genes X 1,000,000 tests).

Analysis Plan

1) Analysis Plan:
a. Imputation: all cohorts have imputed to HapMap,
using either BimBam or MACH.
b. Cohort-specific analyses
i. Multiple linear regression of imputed SNPs on
gait speed (m/s)
ii. All analyses will be sex-combined
iii. SNPs will be coded as additive model as a count
of the number of variant alleles present (1 degree of
freedom).
iv. Covariate adjustment:
1. age (at time of exam)
2. gender
3. study site (for cohorts with multiple sites)
4. principal components that control
population stratification (in some cohorts)
5. height
6. Osteoarthritis*

for

c. Meta-analysis: Inverse variance weighted meta-
analysis to be performed on summary statistics of

imputed data. Meta-analysis of gait speed outcome will
be performed using a fixed effects model of beta
estimates and standard errors from each cohort.

i. Significance threshold: A threshold of p-value
5x10-8 will be used to determine genome-wide
statistical significance.

*Cohorts with Osteoarthritis measurement will add a
variable yes/no converted to 1/0 for any sort of
osteoarthritis and will provide two analyses one with
and one without this variable.

— Cohorts without Osteoarthritis measurement will
stick to the original analytic plan.
— Cohorts with Osteoarthritis
provide:

I. Analysis which includes everyone with or
without osteoarthritis.

II. Analysis only for the one without this variable.

d. Cohorts with mixed ethnicity will be stratified by

race. Meta analysis will test both possibilities with the
additional race as a separate cohort and without.

measurement  will

2) Data format: The data delivery format for the meta-
analysis will be according to the CHARGE protocol for
file sharing.

a. ShareSpaces, a secure web-based file-sharing
system implemented by the University of Washington's
Catalyst computing group, will be used.

b. The following variables should be included when
sharing imputed results for meta-analysis (Table 11).
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SUPPLEMENTARY FIGURES
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Supplementary Figure 1. Q-Q plot of expected (red line) vs. observed (black dot line) —log10 p-values
for meta-analysis of genome-wide association studies of gait speed.
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Supplementary Figure 2. LocusZoom plots for the genes (7 genes) with most suggestive variants (not listed in the
top tens) associated with gait speed of the combined analysis (A) CEP112; (B) PHACTR1, (C) CNTN5, (D) FHOD3, (E)
PRIM2, (F) PTPRT, (G) ADAMTS18). In each plot, the -log10 of p values are on the left y-axis; the SNP genomic
position (HG19) on the x-axis; the estimated recombination rate from 1000 genomes Nov. 2014 EUR are on the
right y-axis and plotted in blue. The most significant SNP is in purple diamond and plotted using the p value attained
from the meta-analysis. SNPs are colored to reflect linkage disequilibrium (LD) with the most significant SNP in red
(pairwise r2 from 1000 genomes Nov. 2014 EUR). Gene annotations are from the SeattleSegAnnotation141.
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SUPPLEMENTARY TABLES

Please browse links in Full Text version to see
Supplementary Tables S1-S11.
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