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1 Direct integral estimation

In the following we apply the direct integral approach for estimating model parameters using
predator prey data. The dynamic model is given by

P ′(t) = ksC(t)− dP (t),
C ′(t) = a(N(t)− r)P (t)− sC(t),
N ′(t) = −a(N(t)− r)P (t),

(1)
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where the notation P ′(t) stands for dP/dt, and the same for C and N . Recall the abstract
form given in equation (10) of the main text,

F (x(t); θ) = g(x(t); θNL)θL,

where θ = (θ>NL, θ
>
L )>. Since the nonlinearity of the parameters in model (1) has a multi-

plicative form (i.e., ks and ar), there exist more than a single possible formulation for the
matrix g and the parameters θ = (θ>NL, θ

>
L )>. For example, let x(t) = (P (t), C(t), N(t))>,

θNL = (k, r)>, and θL = (s, d, a)>. Then the matrix g(x(t); θNL) corresponding to model (1)
takes the form  kC(t) −P (t) 0

−C(t) 0 (N(t)− r)P (t)
0 0 −(N(t)− r)P (t)

 .

However, this is not the formulation used in practise, since that applying the method in
steps and using other matrix forms can lead to better numerical stability of the algorithm.
While studying the optimal formulation to use is of much interest, this is outside the scope
of the current work. In the next section we describe in detail the estimation procedure we
applied.

1.1 Nonparametric smoothing

It is assumed that the unknown system of equations can be approximated for any t ∈ [0, T ] by
a linear combination of cubic B-spline functions denoted by φk(t), k = 1, . . . , K`, ` ∈ {1, 2, 3},
namely,

P (t) ≈
∑K1

k=1 β1,kφk(t),

C(t) ≈
∑K2

k=1 β2,kφk(t),

N(t) ≈
∑K3

k=1 β3,kφk(t).

(2)

In our experiment, both P (·) andN(·) are observed, enabling estimation of the coefficients
vectors β1 = (β1,1, . . . , β1,K1)

> and β3 = (β3,1, . . . , β3,K3)
> from (2) in a straight forward

manner (the estimation of C(·) is described later). Let P̃n = (P̃ (t1), . . . , P̃ (tn))>, and Ñn =

(Ñ(t1), . . . , Ñ(tn))> be the observed noisy versions of P (·), and N(·) on the grid 0 ≤ t1 <
· · · < tn = T < ∞. Denote by Φ` the n × K` matrix composed of the column vectors
(φj(t1), · · · , φj(tn))>, j = 1, . . . , K`, ` ∈ {1, 3}. Then we define

β̂1 = (Φ>1 Φ1)
−1Φ>1 P̃n,

β̂3 = (Φ>3 Φ3)
−1Φ>3 Ñn.

The estimators for P (·) and N(·) are given by

P̂ (t) =
∑K1

k=1 β̂1,kφk(t), t ∈ [0, T ],

N̂(t) =
∑K3

k=1 β̂3,kφk(t), t ∈ [0, T ].
(3)

Practically the evaluation of the estimators above is done on a finite grid 0 ≤ t1 < · · · <
tm = T <∞, not necessarily identical to (actually denser than) the original sampling points.
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The following procedure was used for estimating the parameters of model (1). In the first
step we estimate a and r; in the second we estimate k, and d over a grid of values for s.
Finally, in the third step we choose the best s value and as a result, the final estimators for
k and d.

1.2 Estimating a and r

Looking at the third equation in (1) one can see that N(t) = r whenever dN/dt = 0, which
in this case occurs in the tail of the experiment; see Figure 1 of the main text. However, data
at the tails are sparse with only two observations. This fact made the estimation task quite
challenging since effectively, there is not much information in the observations for estimating
r. In practise, in each experiment the mean of the last two observations was used as an
estimate for r. Given r̂, the estimator for r, it is possible to estimate a as follows. According
to the third equation in (1) we have

N(t)−N(0) = −a
∫ t

0

N(v)P (v)dv + ar

∫ t

0

P (v)dv.

Recall that in our experiment, the initial values P (0) and N(0) are known. The form

above implies that one can use a least squares type of estimator for a. Indeed, let Ĝ3i =
(−

∫ ti
0
N̂(v)P̂ (v)dv + r̂

∫ ti
0
P̂ (v)dv), where N̂(·) and P̂ (·) are given in (3). Let Ĝ3 be the

m× 1 vector (Ĝ31, . . . , Ĝ3m)>. Let N̂ = (N̂(t1)−N(0), . . . , N̂(tm)−N(0))>, then we have

â = (Ĝ>3 Ĝ3)
−1Ĝ>3 N̂ .

1.3 Estimating k and d for a given s

Consider the first equation in (1) according to which we have

P (t)− P (0) = ks

∫ t

0

C(v)dv − d
∫ t

0

P (v)dv. (4)

If we fix s, then plugging estimators for the system states leads naturally to an ordinary least
squares type of solution for k and d. However, C(·) is an unobserved function. The estimation
of C(·) is conducted by noting that according to (1), (2) and the fact that C(0) = 0 we have

N(t)−N(0) = −C(t)− s
∫ t

0

C(v)dv (5)

≈
K2∑
k=1

[−φk(t)− s
∫ t

0

φk(v)dv]β2,k.

Let Φi = (−φ1(ti) − s
∫ ti
0
φ1(v)dv, . . . ,−φK2(ti) − s

∫ ti
0
φK2(v)dv). Let Φs be the m × K2

matrix with rows Φ1, . . . ,Φm. Then we define β̂2 of (2) to be

β̂2(s) = (Φ>s Φs)
−1Φ>s N̂ .
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Using s in the notation above stresses that the estimator β̂2 depends on s. Plugging in, one
gets

Ĉs(t) =

K2∑
k=1

β̂2,k(s)φk(t), t ∈ [0, T ].

Now define P̂ = (P̂ (t1)−P (0), . . . , P̂ (tm)−P (0))>, Ĝ1i = (s
∫ ti
0
Ĉs(v)dv,−

∫ ti
0
P̂ (v)dv), and

let Ĝ1 be the matrix with rows Ĝ11, . . . , Ĝ1m. Then, with (4) in mind one obtains

(k̂(s), d̂(s))> = (Ĝ>1 Ĝ1)
−1Ĝ>1 P̂ . (6)

1.4 Estimating s

Looking at the sum of (4) and (5) (i.e., based on the first and second equations of (1))
consider

ŝ = arg min
s
M(s), (7)

where we have defined

M(s) =
m∑
i=1

(P̂ (ti)− P (0) + N̂(ti)−N(0)− s(k̂(s)− 1)

∫ ti

0

Ĉs(v)dv

+Ĉs(ti) + d̂(s)

∫ ti

0

P̂ (v)dv)2. (8)

Note that the above loss function is different from the Euclidean norm presented in equation
(11) of the main text. In practise, equation (8) yields good estimations. Further note that
this loss is the only nonlinear optimisation used in the fitting procedure. However, also here
one can avoid using nonlinear optimisation algorithms by evaluating the above loss over
a grid and looking for a minimum, both visually and numerically, see Figure 2. This is
demonstrated in the main text for both real and synthetic data. The final estimators for k
and d according to equations (6)-(7) are given by

k̂ = k̂(ŝ),

d̂ = d̂(ŝ).

1.5 Performance of the estimation method for various noise levels

To study the robustness of the direct integral approach to various noise levels a simu-
lation study was conducted using Monte Carlo experiments. Model (1) was solved for
ξ = (P (0), C(0), N(0))> = (106, 0, 108)>, similar to the experimental design, and the ’true’
θ = (k, s, d, a, r)> = (5, 0.05, 0.02, 4 × 10−9, 3 × 105)> (values that are close to those esti-
mated from the real data, see Table 2 of the main text). The statistical model considered
is additive, meaning that Gaussian measurement errors were added to the deterministic so-
lutions of equation (1). For instance, the measurements of the predator will be given by
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Figure 1: The first step of the method requires smoothing. The spline fits are displayed with
the solid line. Observations are displayed with plus sign. Water content: upper left - 20%,
upper right - 50%, middle left - 70%, middle right - 80%, bottom - 100%.

P̃ (ti) = P (ti; θ, ξ) + εi, i = 1, . . . , n, where P (ti; θ, ξ) is the deterministic solution of (1) at
point ti with respect to initial values ξ and parameter θ. The measurement error εi follows a
Gaussian distribution with zero expectation and standard deviation that is proportional to
both P and N : σP (ti) = σ×P (ti), and σN(ti) = σ×N(ti) where σ ∈ {0.01(0.01)0.1}. Note
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Figure 2: The loss function M(s) given in (8). A clear minimum is apparent here. Water
content: upper left - 20%, upper right - 50%, middle left - 70%, middle right - 80%, bottom
- 100%.

that unlike the Monte Carlo experiment reported in the main text, here the variance was
not constant over time, and we tested the performance for various noise levels. In the Monte
Carlo experiment 100 different random samples were generated as described above. The time
points were set to be exactly as in the real experiment [0, 8, 16, 24, 36, 48, 96, 168], hence,
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n = 8. Further, the number of spline bases was fixed to K = {K1, K2, K3} = {11, 5, 9}. This
bases setup was found to work well when the noise was as in the Monte Carlo experiment
reported in the main text. Implying that the direct integral method as applied here was
challenged with a non-optimal setup.

The simulation result is presented in Figure 3. On the vertical axis we see the square

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Noise level

1

2

3

4

5

6

7

8

R
S

S

×107

Figure 3: Square root of sum of squares for various noise levels. The direct integral method
in solid line; the nonlinear least squares in dashed line.

root of sum of squares, and on the horizontal axis the noise level (σ above). The sum of
squares was calculated as follows: The model equations (1) were solved using the estimated
parameters values, and next we summed the squared differences between the solutions of the
ODEs to the noisy observations, over the first and third equations. The performance of the
direct integral method is presented in solid line and as expected, the sum of squares increases
together with the noise level. In order to assess the performance of the direct integral method
in this specific scenario, a weighted nonlinear least squares (NLS) was executed. Taking into
account the fact that the variance of the measurement error is not fixed in time, we used
the true values of the variance for the weights. Figure 3 suggests that for small noise levels
the performance of the direct integral method is better than that of the NLS, while for
larger noise levels, the NLS performs better. Note that in the setup considered here, the
performance of the two methods was comparable without substantial differences. In Figure 4
one can see the ’true’ simulated values versus the error-laden observations, enabling a visual
sense of the imposed error.

1.6 Confidence intervals

Here we present a way to calculate confidence intervals for the parameters of interest. Specifi-
cally, due to the limited amount of data, we explore the reliability of the parametric bootstrap
in our context, via a simulation study.

The following Monte Carlo experiment was preformed. The predator-prey ODE system
given in equation (1) was solved for initial conditions given by ξ = (P (0), C(0), N(0))> =
(106, 0, 108)>, and ’true’ parameters given by θ = (k, s, d, a, r)> = (5, 0.05, 0.02, 4× 10−9, 3×
105)>. In this simulation the measurement error εi follows a Gaussian distribution with zero
expectation and standard deviation that is proportional to both P and N : σP = 0.01 × P̄ ,
and σN = 0.01× N̄ where P̄ , and N̄ are the means of P (·), and N(·) over the time interval
of the experiment, respectively.
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Figure 4: Visualising noise level. solution P of model (1) in solid, and observations in plus
signs. Left: noise level σ = 0.01. Right: noise level σ = 0.1.

Recall that the parametric bootstrap procedure assumes that the distribution of the
error is known, Gaussian in this case. Confidence intervals for k, s, d, a, r using the di-
rect integral estimator, resulted in a coverage of 0.72, 0.37, 0.38, 0.005, 0.94 for n = 8 and
0.78, 0.845, 0.81, 0.77, 0.725 for n = 16, respectively (200 Monte Carlo simulations, 300 boot-
strap samples in each). As expected, increasing (doubling) sample size improved the confi-
dence intervals coverage for all parameters except for r in this setting. However, the bootstrap
procedure had to assume that σ is known, otherwise, using the bootstrap by estimating σ
with such a small sample size was numerically unstable. The above results are not surprising
in the context of the complex nonlinear problem tackled here. To further investigate the
coverage of the confidence intervals, we repeated the above exercise using nonlinear least
squares (NLS). When executing NLS for n = 8 by starting the nonlinear optimisation
from the true parameters the coverage of the confidence intervals for k, s, d, a, r was
0.91, 0.91, 0.88, 0.93, 0.9, respectively (200 Monte Carlo simulations, 300 bootstrap samples
in each). However, using the NLS by starting the nonlinear optimisation from a random
point (normal random variable with mean values the true parameters k, s, d, a, r and stan-
dard deviation of 0.01× (k, s, d, a, r)) resulted in a coverage of 0.76, 0.66, 0.76, 0.38, 0. Thus,
the coverage of the confidence intervals shrunk considerably with a relative small change
in the parameters used for initiating the optimisation. For instance, starting the optimisa-
tion from the parameters estimated by the direct integral method, resulted in a dramatic
reduction in the coverage, 0.26, 0.17, 0.27, 0.14, 0, respectively. Here also we considered σ
to be known, otherwise applying the bootstrap by estimating σ was numerically unstable.
Although the NLS (or maximum likelihood) has theoretically all the required optimal sta-
tistical properties, it seems that unless a much more expensive optimisation procedure is
carried out (e.g., global optimisation), the NLS may practically have no reliable uncertainty
quantification in a complex setup as the one considered here. In a future work we plan to
study further the problem of uncertainty quantification in this context.
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