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1 Discretization of the continuous equations
Here, we show the discretization of the partial differential equations of the mathematical model proposed in
the main text. The strong form of the problem is: find f, c such that:

∂f

∂t
= ∇ · (D∇f) + P (d) (fhyc − f)− U (c) f (1a)

∂c

∂t
= M

(
λ2∆c− µ (c, f)

)
, (1b)

with natural boundary conditions. We first show the spatial discretization followed by the temporal dis-
cretization.

1.1 Spatial discretization
The spatial discretization is based on the Galerkin method and on isogeometric analysis [1, 2]. Let Ω be the
problem domain and [0, T ] the time interval of interest. We start by deriving the weak form of the strong
problem. Let V denote the trial solution space for c and f . The test function spaces are assumed to be the
same as their corresponding trial spaces. We denote L2 the space of square integrable functions. H1 is the
Sobolev space of square integrable functions with square integrable first derivatives. After multiplying with
smooth functions, integrating over the domain, and applying integration by parts, we obtain the variational
formulation of the problem, which may be stated as follows: find f(t) ∈ L2([0, T ];V)∩H1([0, T ];L2(Ω)) and
c(t) ∈ L2([0, T ];V) ∩H1([0, T ];L2(Ω)) such that:∫

Ω

w1
∂f

∂t
dΩ +

∫
Ω

∇w1D∇f dΩ−
∫
Ω

w1P (d) (fhyc − f) dΩ +
∫
Ω

w1U (c) f dΩ = 0 ∀w1 ∈ V (2a)

∫
Ω

w2
∂c

∂t
dΩ +

∫
Ω

∇w2Mλ2∇cdΩ +
∫
Ω

w2Mµ (c, f) dΩ = 0 ∀w2 ∈ V (2b)

We make use of the Galerkin method to perform the spatial discretization. Let us define the discrete space
Vh, which is a subset of V. We approximate the previous weak problem by the following variational problem
over the finite dimensional space: find fh(t) ∈ L2([0, T ];Vh) ∩H1([0, T ];L2(Ω)) and ch(t) ∈ L2([0, T ];Vh) ∩
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H1([0, T ];L2(Ω)) such that:∫
Ω

wh1
∂fh

∂t
dΩ +

∫
Ω

∇wh1D∇fh dΩ−
∫
Ω

wh1P (d)
(
fhyc − fh

)
dΩ +

∫
Ω

wh1U
(
ch
)
fh dΩ = 0 ∀w1 ∈ Vh (3a)

∫
Ω

wh2
∂ch

∂t
dΩ +

∫
Ω

∇wh2Mλ2∇ch dΩ +
∫
Ω

wh2Mµ
(
ch, fh

)
dΩ = 0 ∀w2 ∈ Vh (3b)

Here, fh is defined as

fh (x, t) =
nb∑
A=1

fA (t)NA,p (x) (4)

where nb is the dimension of the discrete space Vh, the coefficients fA are the so-called control variables,
and NA,p are the basis functions. The subindex p in NA,p denotes the polynomial degree. The rest of the
variables, namely ch, wh1 , and wh2 , are defined analogously to fh. We use

The multivariate spline functions NA,p are constructed from univariate B-splines using tensor products.
Univariate B-splines may be defined from a knot vector, that is, a non-decreasing set of coordinates in the
parameter space. Since the paper deals with simulations on squares only, the parameter space and the
physical space may be considered identical. Let Ξ = {ξ1, ξ2, . . . , ξn+p+1} be the knot vector, where ξi ∈ R is
the ith knot, i is the knot index, i = 1, 2, . . . , n + p + 1, n ∈ N is the number of basis functions, and p the
polynomial order or degree. A univariate B-spline basis, Ni,p, is defined recursively given some degree p ∈ N
and a knot vector Ξ1. Starting with piece-wise constants (p = 0):

Ni,0 (ξ)
{

1 if ξi ≤ ξ < ξi+1,

0 otherwise.
(5)

For higher degrees p = 1, 2, . . . the basis is defined using the Cox-de Bor recursion formula:

Ni,p (ξ) = ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) + ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) . (6)

1.2 Temporal discretization
We integrate in time using the generalized-α method [3] which can be applied to a first-order in time
differential equations following [4]. The generalized-α method is a second-order accurate, unconditionally
A-stable method with controllable high-frequency dissipation that can be easily implemented within an
adaptive time step framework. These features make it a good choice for the resolution of the model, as we
are able compute nonlinear stiff problems with large time steps.

In the following we use ḟhn , f
h
n , ċ

h
n, and chn for the fully discrete solutions of the tumour angiogenic

factor time derivative, the tumour angiogenic factor, the order parameter time derivative, and the order
parameter, respectively. The problem can be stated as: given ḟhn , f

h
n , ċ

h
n, c

h
n and ∆tn = tn+1 − tn, find

ḟhn+1, f
h
n+1, ċ

h
n+1, c

h
n+1 such that:∫

Ω

wh1 ḟ
h
n+αm

dΩ +
∫
Ω

∇wh1D∇fhn+αf
dΩ−

∫
Ω

wh1P (d)
(
fhyc − fhn+αf

)
dΩ

+
∫
Ω

wh1U
(
chn+αf

)
fhn+αf

dΩ = 0 (7a)

∫
Ω

wh2 ċ
h
n+αm

dΩ +
∫
Ω

∇wh2Mλ2∇chn+αf
dΩ +

∫
Ω

wh2Mµ
(
chn+αf

, fhn+αf

)
dΩ = 0 (7b)

1The standard in CAD are open knot vectors, defined as those whose first and last knot values appear p + 1 times.
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where

fhn+1 = fhn + ∆tnḟhn + γ∆tn
(
ḟhn+1 − ḟhn

)
, (8)

chn+1 = chn + ∆tnċhn + γ∆tn
(
ċhn+1 − ċhn

)
, (9)

ḟhn+αm
= ḟhn + αm

(
ḟhn+1 − ḟhn

)
, (10)

ċhn+αm
= ċhn + αm

(
ċhn+1 − ċhn

)
, (11)

fhn+αf
= fhn + αf

(
fhn+1 − fhn

)
, (12)

chn+αf
= chn + αf

(
chn+1 − chn

)
, (13)

γ = 1
2 + αm − αf , (14)

αm = 1
2

(
3− ρ∞
1 + ρ∞

)
, (15)

αf = 1
1 + ρ∞

, (16)

and ρ∞ is the spectral radius of the amplification of the matrix2 as ∆t→∞. If the condition γ = 1
2 +αm−αf

is satisfied we obtain second-order accuracy and provided that αm ≥ αf ≥ 1
2 we obtain unconditional stability

for a linear problem.
After space and time discretization, we obtain a non-linear system which is solved using a predictor

multi-corrector algorithm based on the Newton-Raphson method following [6].

2 Estimation of fact

In order to estimate the value of the parameter fact we study the following one-dimensional problem in the
domain Ω = [0, L]:

∂f

∂t
= D

∂2f

∂x2 − Udf, (17)

subject to the initial and boundary conditions

f(x, 0) = e−mx, f(0, t) = fhyc = 1, f(L, t) = e−mL

for large values of L and m. This problem is a simplification of the equation that governs the dynamics
of tumour angiogenic factor, that is, equation (1a). Here, we replaced the production term by a Dirichlet
boundary condition at x = 0 and used the parameter value of fhyc given in table 1 in the main text. The
right-hand side boundary condition imposes a small value of f far away from the production of TAF. We
have also defined an initial condition compatible with the problem. This configuration may be thought as
a hypoxic cell located at x = 0 that releases tumour angiogenic factor which diffuses and decays at a rate
proportional to D and Ud, respectively.

This problems allows us to study the time evolution of the distance dact at which f = fact; that is the
distance at which a hypoxic cell can activate a tip endothelial cell. As the objective is to estimate an order
of magnitude for fact, we neglect the uptake rate of endothelial cells. Using separation of variables we obtain
the solution to this problem in the form of the following Fourier series

f (x, t) =
∞∑
n=1

an (t) sin
(nπx
L

)
+ e−mx (18)

2The amplification matrix establishes the relation between the vector of unknowns in two consecutive time steps for a linear
model problem. The eigenstructure of the amplification matrix defines the stability of the algorithm (see [5]).
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where,

an (t) = qn(nπ
L

)2
+ Ud
D

(
1− exp

{
−D

((nπ
L

)2
+ Ud
D

)
t

})
, (19)

qn =

(
m2 − Ud

) ∫ L

0
e−ms sin

(nπs
L

)
ds∫ L

0
sin2

(nπs
L

)
ds

(20)

We show in figure 1a the solution for L = 300 at several times. We observe in the figure that fact needs to be
small for a hypoxic cell to activate a tip endothelial cell in less than one day at a distance of dact = 200 µm.
As shown in figure 1b, for fact = 0.001, dact grows in time but is always below 300 µm within the timescale
of angiogenesis.
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Figure 1. Estimation of fact. (a) Plot of the solution to the one-dimensional problem in equation (17) for t = 0, t = 0.3, and
t = ∞. (b) Plot of dact at different times for fact = 0.001.
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