
S1 Appendix for “Spatial gender-age-period-cohort
analysis of pancreatic cancer mortality in Spain
(1990-2013)”

In this appendix, age-specific pancreatic cancer mortality rates (on a semi-logarithmic
scale on the y-axis) by birth cohort and period for Navarra (first row), Barcelona
(second row), and Las Palmas (bottom row) are given in Fig A. Besides, a detailed
definition of Model 1, prior distributions, sensitivity analysis, and identifiability issues
of APC models are given.

Fig A. Age-specific pancreatic cancer mortality rates (on a semi-logarithmic scale on
the y-axis) by birth cohort and period for Navarra (first row), Barcelona (second row),
and Las Palmas (bootom row).

PLOS 1/5



Model 1 can be expressed in matrix form as

log(r) = (I2 ⊗ 1A ⊗ 1I ⊗ 1T )β + (I2 ⊗ 1A ⊗ 1I ⊗ IT )α+ (I2 ⊗ 1A ⊗ II ⊗ 1T )γ+

(I2 ⊗ 1A ⊗K)κ+ (12 ⊗ IA ⊗ 1I ⊗ 1T )φ+ (12 ⊗ IA ⊗ 1I ⊗ IT )δ.
(1)

where β = (β1, β2)
′, α = (α11, ..., α1T , α21, ..., α2T )

′, γ = (γ11, ..., γ1I , γ21, ..., γ2I)
′,

κ = (κ11, ..., κ1K , κ21, ..., κ2K)′, φ = (φ1, ..., φA)
′, and

δ = (δ11, δ12, ..., δ1T , ..., δA1, ..., δAT )
′. In this expression, ⊗ is the Kronecker product

and I2, II , IA and, IT , represent identity matrices of dimension 2× 2, I × I, A×A and,
T × T respectively. 12, 1I , 1A and 1T represent vectors of ones of length 2, I = 13,
A = 50, and T = 24 respectively, and finally, K is a matrix of dimension (T × I)×K
where K = 84 (the total number of cohorts is computed as K = 5× (I − 1) + T ). This
matrix is defined as follows: let us consider the first observation of our data set. This
corresponds to the number of deaths for males in region 1, age-group 1, and year 1. For
this observation, the cohort index would be 5× (13− 1) + 1 = 61 (it doesn’t depend on
gender or region index). Then, the first row of matrix K is a row of zeros except the
value of column 61 which is 1. Suppose now that the second observation of our data set
corresponds to the number of deaths in males of region 1, age-group 1, and year 2. For
this observation the cohort index is 5× (13− 1) + 2 = 62, therefore the second row of
matrix K is a row of zeros except the value of column 62 which is 1, and so on. In
general, if the k-th row of the data set corresponds to the number of deaths and the
population observed in age-group i and year t, then the k-th row of matrix K is a row
of zeros except the value of the column 5× (13− i) + t which is 1.

Finally, the random effects are assumed to follow the following multivariate normal
distributions

α ∼ N(0, σ2
α(I2 ⊗Rα)

−); γ ∼ N(0, σ2
γ(I2 ⊗Rγ)

−);

κ ∼ N(0, σ2
κ(I2 ⊗Rκ)

−); φ ∼ N(0, σ2
φR
−
φ );

δ ∼ N(0, σ2
δ (Rt ⊗Rφ)

−).

In these expressions, Rα, Rγ and, Rκ are structure matrices corresponding to first
order random walks for time, age, and cohort respectively (see for example [1], p. 95),
and the symbol − denotes the Moore-Penrose generalized inverse. Note that a first
order random walk is like a CAR model on a line where we use first order neighbors to
define the structure matrix. Besides, Rφ is the spatial neighborhood matrix defined by
adjacency, where two areas are considered neighbors if they share a common border.
Second order random walks (RW2) priors were also considered in the analysis but RW1
priors were finally selected by DIC and WAIC. Note also that a Type IV interaction [2]
was chosen as the best option for the spatio-temporal interaction term, i.e., temporal
trends are similar for neighboring regions. Finally, prior distributions on the precision
parameters need to be given to fully specify the final selected model. Carroll and
coauthors [3] stated that the default gamma priors on precision parameters in R-INLA
could not be suitable in some cases in disease mapping models. Here, penalized
complexity priors (PC-priors) [4] on the precision parameters (τα = 1/σ2

α, τγ = 1/σ2
γ ,

τκ = 1/σ2
κ, τφ = 1/σ2

φ and τδ = 1/σ2
δ ) were used. A vague zero mean normal prior with

precision 0.001 was considered for the gender fixed effects.
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A sensitivity analysis was performed to evaluate if the results were sensitive to the use
of particular priors (in our case PC-priors). In particular, improper uniform priors on
the standard deviations were also considered. Posterior means and standard deviations
for the precision parameters were computed, and they are displayed in Table A. The
results indicate that the posterior distributions of the precision parameters did not
change much, and therefore PC-priors were chosen as they provided smaller values of
WAIC and DIC.

Table A. Estimated posterior mean and standard deviation of the model parameters
for different priors.

Parameter
PC-priors on precisions Improper uniform priors on standard deviations

mean sd 0.025quant 0.975quant mean sd 0.025quant 0.975quant

βm -9.448 0.0182 -9.485 -9.413 -9.449 0.0183 -9.486 -9.414
βf -9.915 0.0200 -9.956 -9.877 -9.916 0.0201 -9.957 -9.878

τt 1538.089 1380.232 361.7038 5160.176 1576.64 1468.8737 359.3415 5427.695
τi 1.429 0.385 0.7971 2.299 1.21 0.3646 0.6246 2.043
τk 129.293 50.195 56.2458 250.317 125.78 48.6994 54.9344 243.222
τa 66.684 14.918 41.6064 99.785 65.71 14.8276 40.8501 98.651
τat 1657.008 688.996 742.3417 3389.089 1640.19 680.7644 735.8873 3350.899

Finally, Fig B shows a dispersion plot of estimated rates with both sets of priors for the
hyperparameters (first graph), and the posterior distribution of the precisions
parameters with both set of priors. Results are essentially the same.
Identifiability problems are well-known in APC models [5, 6]. First of all, sum-to-zero
constraints on the spatial, temporal, age, and birth cohort effects were applied to ensure
the identifiability of the model intercept. To guarantee identifiability of the space-time
interaction term and the main temporal and spatial effects the eigenvectors of the
interaction precision matrix Rt ⊗Rφ (see Appendix 1) having null eigenvalues are used
as linear constraints (see [7] for more details). However, the age, period, and cohort
effects are still not identifiable (see for example [8–11]). Moreover, as these three effects
(age, period, and cohort) vary across gender, then their relative effects of males versus
females are not identifiable either [12]. However, as the linear predictor can always be
identified and interpreted [13], the posterior means of pancreatic cancer mortality rates
were computed and averaged by age, period, and cohort for each gender category.
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Fig B. Dispersion plot of estimated rates, and posterior distributions for fixed effects
and hyperparameters using PC-priors on precisions (black lines) and improper uniform
distributions on standard deviations (red lines).
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