1 Identification of a substrate domain that determines system specificity in mycobacterial type VII

- 2 secretion systems
- 3
- 4 Trang H. Phan¹, Roy Ummels², Wilbert Bitter^{1,2}, Edith N.G. Houben^{1*}
- 5 ¹Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije
- 6 Universiteit Amsterdam, Amsterdam, The Netherlands
- 7 ²Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam,
- 8 The Netherlands
- 9
- 10 * Corresponding author. Email: e.n.g.houben@vu.nl
- 11
- 12
- 13

Supporting information

	1 α1 α2
PPE41	MHFEAY PPE VNSANIYAGPGPDSMLAAARAWRSLDVEMTAVQRSFNRTLLS-LMDAWAGP
PPE18	MDFGSL PPE INSAKMYAGAGSGSILVAAEAWDSVAVDLYSAASSCQSVIWGLAFGQ WVG A
PPE68_1	MLWNAL PPELNTARLMAGAGAAPALQAASGWEALGAALEAQADGVAASLVS-LGEMWSGA
	* : : *** : * : * * * * * * * * * * * * * * *
	α3 α4
PPE41	VVMQLMEAAKPFVRWLTDLCVQLSEVERQIHEIVRAYEWAHHDMVPLAQIYNNRAERQIL
PPE18	SASLMGAAAAPYVAWLGATATRAELAANQARGAAVAYESAFAATVPPALILENRLQLVTL
PPE68 1	GSDRALAAAAPMVIWLRGAAQVAHTRAAQATAQAGAYLQALAMTPSLPEIAANHVTHAVL
-	** * * * * * * * *
	a2
PPE41	IDNNALGQFTAQIADLDQEY-DDFWDEDGEVMRDYRLRVSDALSKLTPWKAPPPIAHS
PPE18	IATNIFGONTPAIATTEAEY-GEMWAQDAAAMYGYAGSAAMLAETLTPFEEAPEVANA
PPE68_1	AATNFLGINTVPIGANEADYFIRMWNQAASAMDVYQAETMLNTAFEKLEPMTAILD-QNV
	.* :* * *. : :* :* :* ** * .
	190
PPE41	TVLVAPVSPSTASSRTDT
PPE18	GGLVNQTAAVGQAIDSAAAGQLMSNVPQALQQLAAPAPQGASTATAPKSLLQSVTSS
PPE68_1	GQLANDVAEEVAQASSQVPLFPVANLPIQPAMSGSVLQLLQPLQAVTSL
	*: :.
	-1
DEDE	
PEZD DED1	
PESE	
PESS	
	α2 99
PE25	KYRQTIAAAAVVLEEFAHALTTGA <mark>DKYATAEADNIKTFS</mark>
PE31	MYQMVSAKAAAIHEHFAATLATSA <mark>ASYLSTETANAVASQ</mark>
PE35	QVLALNTAAQDELARAGQALRQIAGMYSAVDNSWSDTLA
	: *:* * * :. : :

Figure S1: Sequence alignments of PPE and PE proteins used in this study. The conserved PPE and WxG
motifs in PPE proteins and PE and secretion signal YxxxD/E motifs in PE proteins are depicted in bold. In
the PPE sequence alignment, blue regions are the predicted EspG binding domains that were swapped in
this study. The residue L125 of PPE68_1 is bolded and indicated in purple. In the PE sequence alignment,
the blue regions indicate the C-terminal 15 amino acids, containing the YxxxD/E motifs that were swapped
between ESX-1 and ESX-5 PE substrates in this study.

- ___

Figure S2: PPE18 containing the predicted EspG₁ binding domain of PPE68_1 is not secreted in the *M. marinum* WT strain. A, Schematic representation of the WT *M. marinum* ESX-5 substrates PE31/PPE18 WT (in cyan), the WT *M. marinum* ESX-1 substrates PE35/PPE68_1 (in pink). The predicted EspG₁ binding region of PPE68_1 (P108-W145) was introduced into the corresponding region of PPE18 (A108-W144), resulting in PPE18 SWAP. **B**, Immunoblot analysis of PPE18 WT and PPE18_SWAP secretion by overexpression of *ppe18* and *ppe18 swap* on the episomal plasmid pSMT3 under the control of the *hsp60* promoter. P=bacterial pellet, S=culture filtrate.

- 29
- 30
- 31
- -
- 32

Figure S3: Effect of different PE35/PPE68_1 hybrid constructs on the transcript level of *esxA*. Total RNA
was isolated from WT *M. marinum* M^{USA}, *eccCb*¹ mutant strain, and M^{USA} strains exogenously expressing
PE35 WT/PPE68_1 WT, PE35 WT/PPE68_1 SWAP, PE35 SWAP/PPE68_1 WT, PE35 SWAP/PPE68_1 SWAP.
Three different sets of primers, including *esxA1*, *esxA2* and *esxA3*, were used to amplify *esxA* cDNA. Ct
values were normalized for Ct values of the household gene *sigA* and compared to Ct values of *esxA*obtained from WT M^{USA}.

Figure S4: Effect of espG₁ knockout and its complementation on the secretion of ESX-1 substrates. Secretion analysis in the $\Delta espG_1$ strain and corresponding complemented variant harboring the complete region of $espH-espG_1-eccA_1$ on an integrative plasmid pMV under the control of the hsp60 promoter. P=bacterial cell lysates, S=culture filtrate. Surface localization of the secreted EspE was restored upon an introduction of espG₁ as it was found in the Genapol X-080 cell extraction, whereas EsxA was re-secreted into the cultural supernatant. GroEL2 was included as the cytosolic and supernatant control. 0.2 OD unit of Genapol pellet and 0.5 OD unit of Genapol and culture supernatant were loaded. P=bacterial cell lysates, S=culture filtrate.

Figure S5: Restoration of PE_PGRS protein secretion by complementing the $espG_5$ transposon mutant strain. $eccCb_1$ mut/ $espG_5$::tn was complemented with the integrative pMV plasmid containing the esxM $esxN-espG_5$ gene cluster and a streptomycin resistance gene. Fractions enriched for cell-surface proteins of M^{USA}, $eccCb_1$ mut/ $espG_5$::tn and complemented variant were isolated by the Genapol X-080 extraction and analyzed by western blot analysis. PE_PGRS signals were found in the pellet of $espG_5$::tn strain upon the complementation of $espG_5$ and its cell-surface localization was restored. GroEL2 was included as loading control. 0.2 OD unit of Genapol pellet and 0.5 OD unit of Genapol supernatant were loaded.

- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27

1 Table S1: Strains used in this study

Strains	Characteristics	Reference
E. coli		
TOP10F'	F'[lacl ^q , Tn10(TetR)] mcrA (mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ (ara leu) 7697 galU galK rpsL (StrR) endA1 nupG; Tc ^R	Invitrogen
M. marinum		
M ^{USA}	Wild-type strain	30
M ^{vu}	M^{USA} with single base insertion in eccCb ₁ (MMAR_5446)	7
$M^{VU}/\Delta eccC_5$	M^{VU} with unmarked eccC ₅ (MMAR_2665) deletion. The strain additionally contains the plasmid pSMT3::mspA for viability	27
∆espG ₁	M^{USA} with the unmarked <i>espG</i> ₁ (<i>MMAR_5441</i>) deletion	This study
LA1	M^{VU} with mariner transposon inserted in <i>espG</i> ₅ (<i>MMAR_2676</i>). The strain additionally contains the plasmid pSMT3:: <i>mspA</i> for viability	27

1 Table S2: Plasmids used in this study

Plasmids	Characteristics	Reference
pSMT3::PE31/PPE18_HA	pSMT3 carrying in Spel-BamHI a 1.56-Kb PCR fragment containing PE31 (<i>MMAR_4241</i>) and PPE18 (<i>MMAR_4240</i>) genes with HA-tagged C terminus, Hyg ^R	This study
pSMT3::PE35/PPE68_1_H A	pSMT3 carrying in Nhel-BamHI a 1.49-Kb PCR fragment containing PE35 (<i>MMAR_0185</i>) and PPE68_1 (<i>MMAR_0186</i>) genes with HA-tagged C-terminus, Hyg ^R	This study
pSMT3::PE31/PPE18 SWAP_HA	pSMT3 carrying in Spel-BamHI a 1.6-Kb PCR fragment containing PE31 (<i>MMAR_4241</i>) gene and C-terminally tagged PPE18 (<i>MMAR_4240</i>) with a region of P107_W145 being replaced by PPE68_1 L106_W144, Hyg ^R	This study
pSMT3::PE35/PPE68_1 SWAP_HA	pSMT3 carrying in Nhel-BamHI a 1.49-Kb PCR fragment containing PE35 (<i>MMAR_0185</i>) gene and C-terminally tagged PPE68_1 (<i>MMAR_0186</i>) with a region of P107_W144 being replaced by PPE18 A108_W144, Hyg ^R	This study
pSMT3::PE35 SWAP/PPE68_1_HA	pSMT3 carrying in Nhel-BamHI a 1.49-Kb PCR fragment containing PE35 with a region of 15 amino acid PE31 C- terminal secretion signal and C-terminally HA-tagged PPE68_1, Hyg ^R	This study
pSMT3::PE35 SWAP/PPE68_1 SWAP_HA	pSMT3 carrying in Nhel-BamHI a 1.49-Kb PCR fragment containing PE35 swapped with a region of 15 amino acid PE31 C-terminal secretion signal and C-terminally tagged PPE68_1 with a region of P107_W144 being replaced by PPE18 A108_W144, Hyg ^R	This study

pMV::PE35/PPE68_1_HA (Kan ^R)	pMV carrying EcoRI-HindIII a 1.49-Kb PCR fragment containing PE35 (<i>MMAR_0185</i>) and PPE68_1 (<i>MMAR_0186</i>) genes with HA-tagged C-terminus, Kan ^R	This study
pMV::PE35/PPE68_1 SWAP_HA (Kan ^R)	pMV carrying EcoRI-HindIII a 1.49-Kb PCR fragment containing PE35 (<i>MMAR_0185</i>) and a C-terminally HA- tagged PPE68_1 (<i>MMAR_0186</i>) genes with a region of P107_W144 being replaced by PPE18 A108_W144, Kan ^R	This study
pMV::PE35/PPE68_1_HA (Strep ^R)	pMV carrying PE35 (<i>MMAR_0185</i>) and PPE68_1 (<i>MMAR_0186</i>) genes with HA-tagged C-terminus, Strep ^R	This study
pMV::PE35/PPE68_1 SWAP_HA (Strep ^R)	pMV carrying PE35 (<i>MMAR_0185</i>) and PPE68_1 (<i>MMAR_0186</i>) genes with HA-tagged C-terminus with a region of P107_W144 being replaced by PPE18 A108_W144, Strep ^R	This study
pSMT3::PE35/PPE68_1 L125E	pSMT3::PE35/PPE68_1 in which leucine-125 has been mutated into a glutamine, Hyg ^R	This study
pSMT3::PE35/PPE68_1 L125A	pSMT3::PE35/PPE68_1 in which leucine-125 has been mutated into an alanine, Hyg ^R	This study
pMV:: <i>espG₁/espH/eccA₁</i> (Kan ^R)	pMV carrying Pacl-HindIII an <i>espG</i> 1/ <i>espH</i> / <i>eccA</i> 1 (<i>MMAR_5441/MMAR_5442 /MMAR_5443</i>), Kan ^R	This study
pMV:: <i>esxM/esxN/espG₅</i> (Strep [®])	pMV carrying XmnI-HindII an <i>M. marinum</i> esxM/esxN/espG ₅ , Strep ^R	This study

- .

1 Table S3: Primers used in this study

Plasmids	Primer name	Primer sequence	Restriction site
pSMT3::PE31/PPE18_ HA	PE31-SPEI-F PPE18-HA-BAMHI-R	CCCACTAGTGTGTCTTCTGTTACGGCTC CCCGGATCCTCACGCGTAGTCCGGCACGTCGTAC GGGTA TCCCGCGGCTGGAGGG	Spel BamHI
pSMT3::PE35/PPE68_ 1_HA	PE35-NHEI-F PPE68_1-HA-BAMHI-R	CCCGCTACG ATGCGATCCATGTCTTTTGA CCCGGATCCTCACGCGTAGTCCGGCACGTCGTAC GGGTA CCAGTCGTCGTCGTCATCC	Nhel BamHl
pSMT3::PE35/PPE68_ 1 L125R_HA	PPE68_1 L125R-F PPE68_1 L125R-R	GACCAATTTCCGAGGCATCAACA TGTTGATGCCTCGGAAATTGGTC	
pSMT3::PE35/PPE68_ 1 L125A_HA	PPE68_1 125A-F PPE68_1 125A-R	GACCAATTTCCGCCGCATCAACAC GTGTTGATGCGGCGGAAATTGGTC	
pSMT3::PE35/PPE68_ 1 SWAP_HA	PPE18 A108_W144_ Fw PPE18 A108_W144_Rv PPE68_L106_Rv	CCTTGGCGATGACGCCGTCGCTGGCGTTGATCCTC GAAAACC CATCGCGCTGGCGGCCTGGTTCCACATCTCGCCGT ACTCAG GGATCAACGCCAGCGACGGCGTCATC	Nhel BamHl
pSMT3::PE35 SWAP/PPE68_1_HA	PPE68 N145_Fw PE35_PE31(15C) ss_Fw PE35_PE31(15C) ss_Rv	CGAGATGTGGAACCAGGCCGCCAGC GAAACCGCCAACGCCGTGGCATCTCAA TAGTCGGCCTGCCAAC TTGAGATGCCACGGCGTTGGCGGTTTCGGTGCTC AGGTACGAGGCCGCGATCTGCCGC	Nhel BamHl
pMV::PE35/PPE68_1 _HA pMV::PE35_PPE68_1 SWAP_HA	PE35_EcoRI_F PPE68_1_HA_HindIII_R	GGGGGGAATTCATGCGATCCATGTCTTTTG GGGGGGAAGCTTTCACGCGTAGTCCGGC	EcoRI HindIII
pSMT3::PE31/PPE18 SWAP PPE68_HA	PPE68 P107_W144_Fw PPE68 P107_W144_Rv PPE18_M1_P106_Rv	ACGGTGCCCCCG CCCGAGATCGCCG GGCGTCCTGGGCCCACATTCGGATGAAATA GTC CGGCGATCTCGGGCGGGGGCACCGT	

	PPE18_A146_Fw	GACTATTTCATCCGAATGTGGGCCCAGGACGCC	
$\Delta espG_1$	EspG1 KO LF	TTTTTTTTCCATAAATTGGTTCGAATCAGGCCGAA TATG	
	EspG ₁ KO LR	TTTTTTTTCCATTTCTTGGATCAGCCAAAAATCTTG TC	
	EspG ₁ KO RF	TTTTTTTTCCATAGATTGGAGTCTGCTCGAACTACT TCC	
	EspG ₁ KO RR	TTTTTTTCCATCTTTTGGTTGAGCCACGACACCAG ATG	
pMV::espG1/espH/ec	$Fw_Pacl_EspG_1$	GGGGGGTTAATTAAATGACCGGTCCGCTCG	Pacl
cA ₁	Rv_ EccA ₁ _HindIII	GGGGGGAAGCTTTCACTCTCTCATATTGAGGTGT G	HindIII
pMV::esxM-esxN- espG₅	EsxMmar_XmnI_F	GACTGAAAGAATTCCATATGACTGCACGCTTT ATGACC	Xmnl HindIII
		GACTAAGCTTTCAAACTCTGCTATGCGTTTTC	
	EspG ₅ mar_HindIII_R		
Quantitative PCR	SigA-Fw	GAAAAACCACCTGCTGGAAG	
	SigA-Rv	CGCGTAGGTGGAGAACTTGT	
	esxA1_Fw	CACCAGCATTCATTCCCTTC	
	esxA1_Rv	AGGTTCTGCAGCGAGTTGTT	
	esxA2 qPCR F	ATTCGGCCTTCTGCTTGTTGG	
	esxA2 qPCR R	TTCGGCCTTCTGCTTGTTGG	
	esxA3 qPCR F	GCATCCAGCGCAATTCAGGG	
	esxA3 qPCR R	GCGAGTTGTTGAGCTCCTGC	